Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Zoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :Zoom ou IHP Salle 01
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Daping Weng - Davis,
Titre Grid plabic graphs, Legendrian weaves, and (quasi-)cluster structures
Date27/06/2022
Horaire14:00 à 15:00
Diffusion
Résume

Given a plabic graph on R^2, we can choose a conormal lift of its zig-zag strands to the unit cotangent bundle of R^2, obtaining a Legendrian link. If the plabic graph satisfies a “grid” condition, its Legendrian link admits a natural embedding into the standard contact R^3. We study the Kashiwara-Schapira moduli space of microlocal rank 1 sheaves associated with the Legendrian link, and construct a natural (quasi-)cluster structure on this moduli space using Legendrian weaves. In particular, we prove that any braid variety associated with (beta Delta) for a 3-strand braid beta admits cluster structures with an explicit construction of initial seeds. We also construct Donaldson-Thomas transformations for these moduli spaces and prove that the upper cluster algebra equals its cluster algebra. In this talk, I will introduce the theoretical background and describe the basic combinatorics for constructing Legendrian weaves and the (quasi-)cluster structures from a grid plabic graph. This is based on joint work with Roger Casals, cf. arxiv.org/abs/2204.13244.

SalleZoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
AdresseZoom ou IHP Salle 01
© IMJ-PRG