Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Zoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :Zoom ou IHP Salle 01

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Daniel LABARDINI-FRAGOSO - ,
Titre Revisiting Derksen-Weyman-Zelevinsky's mutations
Horaire14:00 à 15:00

The mutation theory of quivers with potential and their representations, developed around 15 years ago by Derksen-Weyman-Zelevinsky, has had a profound impact both inside and outside the theory of cluster algebras. In this talk I will present results obtained in joint works with Geiss and Schröer, and with de Laporte, about some interesting behaviors of DWZ's mutations of representations. Namely, despite needing several non-canonical choices of linear-algebraic data in order to be performed, they can always be arranged so as to become regular maps on dense open subsets of representation spaces rep(Q,S,d). As a consequence, one obtains the invariance of Geiss-Leclerc-Schröer's 'generic basis' under mutations even in the Jacobi-infinite case, thus generalizing a result of Plamondon. Furthermore, given two distinct vertices k, \ell of a quiver with potential (Q,S), the k-th mutation of representations takes the \ell-th indecomposable projective over (Q,S) to the \ell-th indecomposable projective over \mu_k(Q,S). When a certain 'optimization' condition is satisfied by \ell, this allows to compute certain 'Landau-Ginzburg potentials' as F-polynomials of projective representations.

SalleZoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
AdresseZoom ou IHP Salle 01