Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Julia Sauter - ,
Titre Tilting theory in exact categories
Date24/10/2022
Horaire14:00 à 15:00
Diffusion
Résume

We define tilting subcategories in arbitrary exact categories to archieve the following. Firstly: Unify existing definitions of tilting subcategories to arbitrary exact categories. Discuss standard results for tilting subcategories: Auslander correspondence, Bazzoni description of the perpendicular category. Secondly: We treat the question of induced derived equivalences separately - given a tilting subcategory T, we ask if a functor on the perpendicular category induces a derived equivalence to a (certain) functor category over T. If this is the case, we call the tilting subcategory ideq tilting. We prove a generalization of Miyashita's theorem (which is itself a generalization of a well-known theorem of Brenner-Butler) and characterize exact categories with enough projectives allowing ideq tilting subcategories. In particular, this is always fulfilled if the exact category is abelian with enough projectives.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG