Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :S. Anscombe, A. Khélif, A. Vignati
Email des responsables : sylvy.anscombe@imj-prg.fr, vignati@imj-prg.fr
Salle : 1013
Adresse :Sophie Germain
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Aleksandra Kwiatkowska - University of Münster,
Titre Compact connected spaces through projective Fraïssé limit constructions
Date06/02/2023
Horaire15:15 à 16:15
Diffusion
Résume

Using the projective Fraisse limit construction introduced by Irwin and Solecki we obtain a new compact connected one-dimensional metric space. This continuum (compact connected space) is approximated by finite connected graphs with confluent epimorphisms. We show that the obtained continuum is indecomposable, but not hereditarily indecomposable, as arc-components are dense. It is pointwise self-homeomorphic, but not homogeneous, and each point is the top of the Cantor fan. Moreover, it is hereditarily unicoherent, in particular, it does not embed a circle; however, it embeds the universal solenoid and the pseudo-arc. This is joint work with W. J. Charatonik and R. P. Roe.

Salle1013
AdresseSophie Germain
© IMJ-PRG