Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Luc PIRIO - Versailles,
Titre Hyperlogarithmic functional identities on del Pezzo surfaces
Date06/03/2023
Horaire14:00 à 15:00
Diffusion
Résume

For any d in {1,…,6}, we prove that the web of conics on a del Pezzo surface of degree d carries a functional identity HLog(7-d) whose components are antisymmetric hyperlogarithms of weight 7-d. Our approach is uniform with respect to d and relies on classical results about the action of the Weyl group on the set of lines on the del Pezzo surface. These hyperlogarithmic functional identities HLog(7-d) are natural generalizations of the classical 3-term and (Abel's) 5-term identities of the logarithm and the dilogarithm, which are the identities HLog(1) and HLog(2) corresponding to the cases d=6 and d=5 respectively.
If time allows, I will give a list of many nice properties enjoyed by the 5-term identity of the dilogarithm and will explain that most of these properties (such as being of cluster type) have natural generalizations which are satisfied by the weight 3 hyperlogarithmic identity HLog(3).
The talk will be mainly based on the preprint arXiv:2301.06775 written with Ana-Maria Castravet.

Exceptionally, this talk will take place in hybrid mode in room 1013 of the Sophie Germain building (8, place Aurélie Nemours, 75013 Paris).

Salle
AdresseSophie Germain
© IMJ-PRG