Séminaires : Structures algébriques ordonnées

Equipe(s) : lm,
Responsables :F. Delon, M. Dickmann, D. Gondard
Email des responsables : dickmann@math.univ-paris-diderot.fr
Salle : 1013
Adresse :Sophie Germain

Mardi de 14h00 à 15h45
Page du séminaire et programme
Abonnement à la liste de diffusion

Orateur(s) Pawel Gladki - Université de Silésie - Pologne,
Titre Natural homomorphisms of Witt rings of a certain cubic order
Horaire14:00 à 15:45

Let $K$ be a number field and $\mathcal{O}_K$ its ring of integers. A famous result by Knebusch asserts that the natural homomorphism of Witt rings $W\mathcal{O}_K \rightarrow W K$ is injective. This, however, fails to be true if we replace $\mathcal{O}_K$ with an arbitrary ring $R$ whose field of fractions is equal to $K$. We shall consider one particular class of such rings here, namely orders, that is subrings $\mathcal{O}$ of $\mathcal{O}_K$ which are also $\mathbbm{Z}$-modules of rank $n = [K :\mathbbm{Q}]$. The case of orders in quadratic number fields is relatively well understood with both examples of natural homomorphisms of Witt rings being injective and not. In this talk we shall take a closer look at orders in cubic number fields. While orders in quadratic number fields are easy to describe and classify, cubic orders are considerably more difficult to handle. Nevertheless, we manage to
exhibit an example of a cubic order $\mathcal{O}$ whose Witt ring $W\mathcal{O}$ naturally embedds into the Witt ring of its field of fractions.

AdresseSophie Germain