Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Se-jin Oh - Sungkyunkwan U.,
Titre A noncommutative algebra arising from the $t$-quantized Cartan matrix
Horaire14:00 à 15:00

The quantum Cartan matrix appears ubiquitously as a key combinatorial ingredient in the representation theory of quantum affine algebras. Through the generalized Schur-Weyl duality, it also plays a central role in the one of quiver Hecke algebras and the quantum unipotent coordinate ring of (skew-)symmetric finite type. Even though there are quiver Hecke algebras and quantum unipotent coordinate rings of non (skew-)symmetric finite type, there is no counterpart in representation theory as far as I and my collaborators understand. In this talk, I introduce a non-commutative ring over Q(q1/2Q(q1/2), which is expected to be a quantum Grothendieck ring for a Hernandez-Leclerc category, if such a representation theory exists, by using the t-quantized Cartan matrix. When we consider its heart subalgebra, the algebra is isomorphic to the quantum unipotent coordinate ring of any finite type. This talk is mainly based on joint work with Kashiwara, Jang and Lee.

This talk will take place on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar