Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Jonah Berggren - ,
Titre Consistent Dimer Models on Surfaces with Boundary
Date04/12/2023
Horaire14:00 à 15:00
Diffusion
Résume

A dimer model is a quiver with faces embedded in a surface. Dimer models on the disk and torus are particularly well-studied, though these theories have remained largely separate. Various “consistency conditions” may be imposed on dimer models on the disk or torus with implications relating to 3-Calabi-Yau properties and categorification. We extend many of these definitions and results to the setting of general surfaces with boundary. We show that the completed dimer algebra of a “strongly consistent” dimer model is bimodule internally 3-Calabi-Yau with respect to its boundary idempotent. As a consequence, the Gorenstein-projective module category of the completed boundary algebra of a suitable dimer model categorifies the cluster algebra given by its underlying ice quiver. We give a class of examples of annulus models satisfying the requisite conditions. 

This talk will take place on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG