Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Melissa Sherman-Bennett - ,
Titre Cluster structures on braid and Richardson varieties
Date18/12/2023
Horaire14:00 à 15:00
Diffusion
Résume

 In 2014, Leclerc gave a construction of a conjectural cluster structure on open Richardson varieties in types ADE. His construction was categorical in nature, involving preprojective algebra modules. His conjecture inspired work on cluster structures on braid varieties in arbitrary type, which generalize open Richardsons. Two cluster structures on braid varieties were recently constructed. The first one, based on ideas and techniques from symplectic topology, is due to Casals-Gorsky-Gorsky-Le-Shen-Simental. I will discuss the other, which is joint work with Galashin, Lam and Speyer. Our main geometric tool is the Deodhar decomposition. In type A, our quivers are given by "3D plabic graphs", which generalize Postnikov's plabic graphs for the Grassmannian. Time permitting, I will also discuss related work with Serhiyenko, where we show that for type A Richardsons, Leclerc's conjectural categorical construction does in fact give a cluster structure, with quivers again given by 3D plabic graphs.

This talk will be on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG