Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Merlin CHRIST - Paris,
Titre Complexes of stable infinity-categories and perverse schobers
Date04/03/2024
Horaire14:00 à 15:00
Diffusion
Résume

A complex of stable infinity-categories is a categorification of a chain complex, meaning a sequence of stable infinity-categories together with a differential that squares to the zero functor. Examples of such categorical complexes arise for instance via a categorification of the totalization construction, which produces a categorical complex from a categorical multi-complex, such as a commuting cube of stable infinity-categories. We will then explain how categorified perverse sheaves, also known as perverse schobers, on C^n (with a certain stratification) can be described in terms of categorical cubes and categorical complexes of spherical functors, and what categorical totalization means in this case geometrically. This talk is based on joint work with T. Dyckerhoff and T. Walde. 

This talk will take place in hybrid mode at the Institut Henri Poincaré.

 

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG