Résume | BPS invariants are virtual counts of semistable sheaves on a Calabi-Yau threefold, related to other enumerative invariants of interest such as Donaldson-Thomas (DT) or Gromov-Witten.
In this talk, I will discuss refinements of BPS and DT invariants for the simplest moduli space of sheaves on a Calabi-Yau threefold, that is for moduli of points in C^3. I will first review results about a cohomological refinement and compare them with computations of the cohomology of the Hilbert scheme of points in C^2. I will then discuss results and conjectures about a categorical refinement defined using matrix factorizations.
This is joint work with Yukinobu Toda. |