Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Matthew Pressland - ,
Titre Categorical cluster ensembles
Date17/06/2024
Horaire14:00 à 15:00
Diffusion
Résume

 In their geometric approach to cluster theory, Fock–Goncharov and Gross–Hacking–Keel construct cluster varieties beginning with a seed datum. This consists of a lattice which contains various distinguished sublattices, has a preferred basis, and carries a partially defined bilinear form. A process of mutation allows one to construct more such seed data, and birational gluing maps between the tori dual to the lattices, leading to two cluster varieties known as A and X. By enhancing the initial data to a cluster ensemble, in which the bilinear form is extended to the whole lattice, one also obtains a map from A to X. In this talk, based on joint work with Jan Grabowski, I will explain how one can obtain a seed datum, and in many cases a full cluster ensemble, from each cluster-tilting subcategory of an appropriate 2-Calabi–Yau category. Furthermore, I will explain how the seed data of different cluster-tilting subcategories are related, generalising the relationship between a seed datum and its mutations.

This talk will take place in hybrid mode at the Institut Henri Poincaré.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG