Séminaires : Séminaire sur les Algèbres Enveloppantes

Equipe(s) :
Responsables :J.-Y. Charbonnel, R. Rentschler, M. Varagnolo
Email des responsables : Jean-Yves Charbonnel <jyc@math.jussieu.fr>, Rudolf Rentschler <rent@math.jussieu.fr>, Michela Varagnolo <varagnol@math.u-cergy.fr>
Salle : 175 rue du Chevaleret - 75013 Paris
Adresse :
Description

Orateur(s) Ivan CHEREDNIK - University of North Carolina-Chapel Hill,
Titre The PBW-filtration and nonsymmetric Macdonald polynomials.
Date28/11/2014
Horaire11:00 à 12:00
Diffusion
RésumeA fundamental but difficult question in the representation theory is counting the PBW-degree, the minimal length of the products of f-operators for all positive roots (not only simple) needed to reach any vector from the highest vector. E. Feigin, G. Fourier and P. Littlemann constructed the corresponding abstract PBW-basis for the Lie algebras of types A,C. A surprising recent conjecture due to the speaker, D. Orr and E. Feigin connects the PBW-degrees in Demazure level-one (affine) modules with the nonsymmetric Macdonald polynomials at t=infinity. This somewhat resembles the link of the BK-filtrartion to the Hall-Littlewood polynomials (q=0); both filtrations are related to the Kostant q-partition functions, though in very different ways. The conjecture was justified by the speaker and E. Feigin for extremal vectors in finite-dimensional irreducible representations (the ``top'' part of the corresponding Demazure module) for classical Lie algebras and G2.
Salle175 rue du Chevaleret - 75013 Paris
Adresse
© IMJ-PRG