Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :S. Anscombe, V. Bagayoko, D. Basak, H. Fournier
Email des responsables : sylvy.anscombe@imj-prg.fr, bagayoko@imj-prg.fr, basak@imj-prg.fr, fournier@imj-prg.fr
Salle : 1013
Adresse :Sophie Germain
Description

Archives


Abonnement à la liste de diffusion


Orateur(s) Alexi Block Gorman - Université Gustave Eiffel,
Titre k-Automatic subsets of the natural numbers: when does one "define" the others?
Date07/10/2024
Horaire15:45 à 16:45
Diffusion
Résume

Given a set \(A\) of natural numbers that are \(k\)-automatic (i.e., their base-\(k\) representations are recognized by some finite automaton) but not definable in \((\mathbb{N},+)\), call A minimal if for any k-automatic set of natural numbers \(B\), the structure \((\mathbb{N},+,B)\) includes \(A\) as a definable set.  Conversely, say that \(A\) is maximal if for any such \(B\), the structure \((\mathbb{N},+,B)\) includes \(B\) in its definable sets.  In this talk, we will establish that every \(k\)-automatic subset of the naturals is either minimal or maximal, and will further characterize both classes of \(k\)-automatic sets.  We will discuss the analogous theorem in higher arities, and the consequences of this definability dichotomy.

Salle1013
AdresseSophie Germain
© IMJ-PRG