Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Edmund Heng - IHES,
Titre Fusion categories as quantum symmetries: on Bridgeland stability conditions
Date07/10/2024
Horaire14:00 à 15:00
Diffusion
Résume

Classically, finite symmetries are captured by the action of a finite group. Moving to the quantum world, one has to allow for possibly non-invertible symmetries, which are instead captured by the action of a more general algebraic structure, known as a fusion category. Such symmetries are actually ubiquitous in mathematics; for example, given a category with an action of a finite group G (e.g. A-mod, Coh(X)), its G-equivariant category (A#G-mod, Coh(X//G) resp.) has instead the action of the category of G-representations rep(G), which has the structure of a fusion category. There are also other more “exotic” fusion categories, which nonetheless capture “hidden” symmetries on familiar (non-“exotic”) categories. The aim of this talk is to discuss the application of fusion categorical symmetries to the study of Bridgeland stability conditions. I will discuss how the fusion-equivariant stability conditions — a generalisation of G-invariant stability conditions (i.e. G-fixed points) — form a closed submanifold of the Bridgeland stability manifold. Moreover, we will see the following duality result inspired by a categorical Morita duality: let D be a triangulated category with a G-action, so that its G-equivariant category D^G has a rep(G)-action. The manifold of G-invariant stability conditions (associated to D) is homeomorphic to the manifold of rep(G)-equivariant stability conditions (associated to D^G). - This is part of joint work with Hannah Dell and Anthony Licata.

This talk will take place in hybrid mode at the Institut Henri Poincaré.

 

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG