Séminaire Groupes, Représentations et Géométrie

salle 1016, 1er étage, Bâtiment Sophie Germain, 8 place Aurélie Nemours, 75013 Paris

Organisateurs : , , , , , , , et .

Page répertoriée sur l'AdM à partir de l'IMJ-PRG

Affiche du mois actuel   ( serrée   plus serrée   encore plus serrée)

Affichage avec MathJax



Vendredi 1er février 2019 à 14h00

Béatrice CHETARD (University of Ontario), Anneaux gradués de caractères, foncteurs de Mackey et de Tambara. image d'un calendrier
[L'anneau des caractères (complexes) d'un groupe G est équipé d'une filtration dite de Grothendieck, induite par les puissances extérieures des représentations de G. Peut-on calculer explicitement l'anneau gradué associé à cette filtration ? Quels liens y a-t-il entre l'anneau gradué de G et celui de ses sous-groupes ?]


Vendredi 15 février 2019 à 14h00

Satoshi NAWATA (Fudan University), Geometric representation theory of double affine Hecke algebra. image d'un calendrier
[I will talk about physics approach to geometric representation theory of double affine Hecke algebra (DAHA). DAHA can be realized as deformation quantization of coordinate ring of Hitchin moduli space over once-punctured torus. Using 2d A-model on the Hitchin moduli space, I will explain the relationship between representation category of DAHA and Fukaya category of the Hitchin moduli space.]


Vendredi 22 février 2019 à 14h00

Ivan LOSEV (Northeastern University), On equivariantly irreducible modular representations of a semisimple Lie algebra. image d'un calendrier
[In this talk I will discuss the representation theory of semisimple Lie algebras g in very large positive characteristic p. To an irreducible representation one can assign its p-character, essentially an element of g. The most interesting case is when it is nilpotent. While a lot is known about the irreducible representations and their classes in K0, there is no combinatorial classification of the irreducibles and no explicit dimension formulas for an arbitrary nilpotent p-character. A basic case creating difficulties is when the p-character is distinguished, i.e., is not contained in a proper Levi subalgebra. I will review some basics of the representation theory of g in characteristic p as well as known results.
Then I will discuss my current work with Bezrukavnikov, where we get a combinatorial classification and Kazhdan-Lusztig type formulas for K0-classes of equivariantly irreducible modules with distinguished p-character, where the equivariance is for the action of the centralizer.]



Vendredi 8 mars 2019 à 14h00

Jiro SEKIGUCHI (Tokyo University of Agriculture and Technology), On uniqueness problem of potential vector fields related with reflection groups. image d'un calendrier
[Potential vector fields (PVF) are solutions to a generalization of the WDVV equation and play an important role in the theory of flat structures. There is a ({\bf C}*)n-action on the set of PVFs of n-variables with a same weight system. It is a question whether under this action, the set of polynomial potential vector fields is a unique orbit or not. On the other hand, there is an interesting relationship between polynomial PVFs and well-generated complex reflection groups. In this talk, I explain the definition of PVF and its application to complex reflection groups. In particular I discuss a problem of uniqueness of polynomial PVFs related with well-generated complex reflection groups.]



Vendredi 22 mars 2019 à 14h00

Neil SAUNDERS (University of Greenwich).


Vendredi 29 mars 2019 à 14h00

Paul-Emile PARADAN (Université de Montpellier).


Contact :


Groupes, représentations et géométrie.
Dernière modification : le 11/02/2019

XHTML 1.0