IMJ-PRG
IMJ-PRG CNRS - UPMC - Paris Diderot

Géométrie et Théorie des Modèles

Année 2017- 2018

http://www.logique.jussieu.fr/ zoe/GTM/

Organisateurs : Zoé Chatzidakis, Raf Cluckers.

Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.
Les notes de quelques-uns des exposés sont disponibles.

Jonathan Kirby - East Anglia

Blurred Complex Exponentiation

vendredi 19 janvier 2018 à 16:00

IHP, Hermite

11 rue Pierre et Marie Curie, 75005

Zilber conjectured that the complex field equipped with the exponential function is quasiminimal : every definable subset of the complex numbers is countable or co-countable. If true, it would mean that the geometry of solution sets of complex exponential-polynomial equations and their projections is somewhat like algebraic geometry. If false, it is likely that the real field is definable and there may be no reasonable geometric theory of these definable sets.
I will report on some progress towards the conjecture, including a proof when the exponential function is replaced by the approximate version given by ∃ q,r in Q [y = e^x+q+2πi r]. This set is the graph of the exponential function blurred by the group exp(Q + 2 πi Q). We can also blur by a larger subgroup and prove a stronger version of the theorem. Not only do we get quasiminimality but the resulting structure is isomorphic to the analogous blurring of Zilber’s exponential field and to a reduct of a differentially closed field.
Reference : Jonathan Kirby, Blurred Complex Exponentiation, arXiv:1705.04574

Jan Tuitman - Leuven

Effective Chabauty and the Cursed Curve

vendredi 19 janvier 2018 à 14:15

Institut Henri Poincaré, amphi Hermite

11 rue Pierre et Marie Curie, 75005

The Chabauty method often allows one to find the rational points on curves of genus at least 2 over the rationals, but has a lot of limitations. On a theoretical level, the Mordell-Weil rank of the Jacobian of the curve has to be strictly smaller than its genus. In practice, even when this condition is satisfied, the relevant Coleman integrals can usually only be computed for hyperelliptic curves. We will report on recent work of ours (with different combinations of collaborators) on extending the method to more general curves. In particular, we will show how one can use an extension of the Chabauty method by Kim to find the rational points on the split Cartan modular curve of level 13, which is also known as the cursed curve. The talk will be aimed at non-specialists with an interest in number theory.

Isaac Goldbring - UC Irvine

Spectral gap and definability

vendredi 19 janvier 2018 à 11:00

11 rue Pierre et Marie Curie, 75005 Paris

Originating in the theory of unitary group representations, the notion of spectral gap has played a huge role in many of the deep results in the theory of von Neumann algebras in the last couple of decades. Recently, with my collaborators, we are slowly understanding the model-theoretic significance of spectral gap, in particular its connection with definability. In this talk, I will discuss a few of our recent observations in this direction and speculate on some further possible developments. I will assume no knowledge of von Neumann algebras nor continuous logic. Various parts of this work are joint with Bradd Hart, Thomas Sinclair, and Henry Towsner.

Martin Bays - Münster

The geometry of combinatorially extreme algebraic configurations

vendredi 15 décembre 2017 à 16:00

ENS. salle W

Given a system of polynomial equations in m complex variables with solution set of dimension d, if we take finite subsets X_i of C each of size at most N, then the number of solutions to the system whose ith co-ordinate is in X_i is easily seen to be bounded as O(N^d). We ask : when can we improve on the exponent d in this bound ?

Hrushovski developed a formalism in which such questions become amenable to the tools of model theory, and in particular observed that incidence bounds of Szemeredi-Trotter type imply modularity of associated geometries. Exploiting this, we answer a (more general form of) our question above. This is part of a joint project with Emmanuel Breuillard.

Julien Sebag - Rennes

Géométrie des arcs et singularités

vendredi 15 décembre 2017 à 14:15

ENS, salle W

Soulignée par Nash dans les années 60, l’interaction entre la géométrie des espaces d’arcs et la théorie des singularités s’est fortement amplifiée sous l’influence de la théorie de l’intégration motivique notamment. Dans cet exposé, nous introduirons le schéma des arcs associé à une variété algébrique et donnerons quelques illustrations de cette interaction. Parmi elles, nous parlerons de l’interprétation (possible) du point de vue des singularités d’un théorème de Drinfeld et Grinberg-Kazhdan démontré au début des années 2000. (Cette dernière partie de l’exposé s’appuie sur une collaboration avec David Bourqui.)

Adam Topaz - Oxford

On the conjecture of Ihara/Oda-Matsumoto

vendredi 15 décembre 2017 à 11:00

ENS, salle W

Following the spirit of Grothendieck’s Esquisse d’un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90’s by Pop using anabelian techniques. In this talk, I will discuss the proof of stronger variant of this conjecture, using mod-ell two-step nilpotent quotients, while highlighting some connections with model theory.

Alex Wilkie - Oxford

Quasi-minimal expansions of the complex field

vendredi 17 novembre 2017 à 16:00

ENS, Salle W

I discuss a back-and-forth technique for proving that in certain expansions of the complex field every L_∞, ω-definable subset of ℂ is either countable or co-countable. Some successes of the method will also be discussed.

Dmitry Sustretov - MPIM

Incidence systems on Cartesian powers of algebraic curves

vendredi 17 novembre 2017 à 14:15

ENS, Salle W

The classical theory of abstract projective geometries establishes an equivalence between axiomatically defined incidence systems of points and lines and projective planes defined over a field. Zilber’s Restricted Trichotomy conjecture in dimension one is a generalization of this statement in a sense, with lines replaced by algebraic curves ; it implies that a non-locally modular strongly minimal structure with the universe an algebraic curve over an algebraically closed field and basic relations constructible subsets of Cartesian powers of the curve interprets an infinite field. The talk will present the basic structure of the proof of the conjecture, and outline its application, by Zilber, to Torreli-type theorem for curves over finite fields of Bogomolov, Korotiaev and Tschinkel. Joint work with Assaf Hasson.

Olivier Benoist - Strasbourg

Sur les polynômes positifs qui sont sommes de peu de carrés

vendredi 17 novembre 2017 à 11:00

ENS, salle W

Artin a résolu le 17ème problème de Hilbert : un polynôme réel positif en n variables est somme de carrés de fractions rationnelles. Pfister a amélioré ce résultat en démontrant qu’il est somme de 2^n carrés. Décider si la borne 2^n de Pfister est optimale est un problème ouvert si n>2. Nous expliquerons que cette borne peut être améliorée en petit degré et, en deux variables, pour un ensemble dense de polynômes positifs.

Immi Halupczok - Düsseldorf

Un nouvel analogue de l’o-minimalité dans des corps valués

vendredi 13 octobre 2017 à 16:00

ENS, salle W

Pour les corps réel clos, la notion d’o-minimalité a eu un énorme succès ; il s’agit d’une condition très simple à une expansion du langage des corps, qui implique que les ensembles définissables se comportent très bien d’un point de vue géométrique. Il existe plusieurs adaptations de cette notion aux corps valués (p.ex. p-mininalité, C-minimalité, B-minimalité, v-minimalité), mais la plupart de ces adaptations (a) s’appliquent seulement à une classe de corps valués assez restrictive, (b) elles n’impliquent pas tout ce qu’on voudrait, et/ou (c) elles sont définies de manière nettement plus compliquée. Dans cet exposé, je vais présenter une nouvelle notion qui n’a pas les problèmes (a) et (b) et qui a une définition raisonnablement simple.

Boris Zilber - Oxford

Approximation, domination and integration

vendredi 13 octobre 2017 à 14:15

ENS, salle W

The talk will focus on results of two related strands of research undertaken by the speaker. The first is a model of quantum mechanics based on the idea of ’structural approximation’. The earlier paper ’The semantics of the canonical commutation relations’ (arxiv) established a method of calculation, essentially integration, for quantum mechanics with quadratic Hamiltonians. Currently, we worked out a (model-theoretic) formalism for the method, which allows us to perform more subtle calculations, in particular, we prove that our path integral calculation produce correct formula for quadratic Hamiltonians avoiding non-conventional limits used by physicists. Then we focus on the model-theoretic analysis of the notion of structural approximation and show that it can be seen as a positive model theory version of the theory of measurable structures, compact domination and integration (p-adic and adelic).

Itaï Ben Yaacov - Lyon 1

Corps globalement valués

vendredi 13 octobre 2017 à 11:00

ENS, salle W

45 rue d’Ulm, 75005

Dans un travail en commun avec E Hrushovski, nous étudions les corps globalement valués, qui sont une abstraction des corps de nombres, de fonctions, ou autres dans lesquels la formule du produit est vérifiée. Les questions habituelles de la théorie des modèles, telle que l’existence d’une modèle-compagne ou encore sa stabilité, nous mènent vers de nouvelles questions de nature plutôt géométrique.
Je vais expliquer quelques avancées récentes dans ce sens, où une analyse géométrique locale nous permet de déduire des propriété globales dans un corps globalement valués.

INTRANET

WEBMAIL imj-prg.fr

MENTIONS LEGALES