IMJ-PRG
IMJ-PRG CNRS - UPMC - Paris Diderot

Théorie des modèles et groupes

Année 2017- 2018

Responsables : Z. Chatzidakis, F. Oger, F. Point.
Pour recevoir le programme, écrivez à oger_at_math.univ-paris-diderot.fr
Le mardi à 16h00 en salle 1016, (parfois à 14h), consulter la page web - http://www.logique.jussieu.fr/semgrp/index.html pour plus de renseignements.

Voir en ligne : http://www.logique.jussieu.fr/semgr...

Zoé Chatzidakis - CNRS - ENS

Elimination des quantificateurs dans les D-groupes

mardi 19 décembre 2017 à 16:00

Sophie Germain, salle 1016

On sait que la théorie DCF_0 des corps différentiellement clos de caractéristique 0 élimine les quantificateurs dans le langage { + , - , · , 0 , 1 , D } des anneaux différentiels.
Pierce et Pillay ont montré que tout ensemble définissable est une combinaison booléenne d’ensembles définis par des D-variétés. Une D-variété est une paire (V, s), où V est une variété algébrique, et s : V → t(V) une section du tangent tordu de V (sera défini).

Un produit cartésien de D-variétés est une D-variété, et une sous-D-variété de (V, s) est donnée par (W, s|W), où W est une sous-variété de V telle que pour a ∈ W, on a s(a) ∈ t(W). Toutes les sous-variétés de V ne donnent donc pas des sous-D-variétés.

La question suivante se pose alors : étant donnée une D-variété (V, s), est-il vrai que tout sous-ensemble définissable de (V, s)^n est une combinaison booléenne de sous-D-variétés de (V, s)^n ?

La réponse est positive quand (V, s) est un D-groupe. Le résultat est dû à Piotr Kowalski et Anand Pillay, dans : Quantifier-elimination for D-groups, TAMS 358 Nr1 (2005), 167 - 181. Je parlerai de leur preuve.

Todor Tsankov - IMJ-PRG

Sur les flots minimaux métrisables

mardi 12 décembre 2017 à 16:00

Sophie Germain, salle 1016

C’est un vieux théorème en dynamique topologique qu’à tout groupe topologique on peut associer un unique flot minimal universel (UMF) : un flot qui se projette sur tout flot minimal du groupe. Pour de certains groupes (par exemple les groupes localement compacts), ce flot n’est pas métrisable et n’admet pas de description concrète. Néanmoins pour plusieurs “gros” groupes polonais, l’UMF est métrisable, peut être calculé, et est lié à des phénomènes combinatoires intéressants. Dans cet exposé je vais décrire l’état de l’art et mentionner quelques résultats récents qui caractérisent les UMF métrisables. Ces derniers sont du travail en commun avec I. Ben Yaacov, J. Melleray et L. Nguyen Van Thé.

Francis Oger - CNRS - Paris 7

Equivalence élémentaire entre anneaux à groupe additif de type fini

mardi 28 novembre 2017 à 16:00

Sophie Germain, salle 1016

Cet exposé est basé sur un travail de A.G. Myasnikov et M. Sohrabi. Les anneaux considérés ne sont pas supposés commutatifs, associatifs ou unitaires.
Je donnerai des caractérisations algébriques de l’équivalence élémentaire pour les anneaux R avec (R,+) de type fini (i.e. finiment engendré). Les résultats sont analogues à ceux que j’avais précédemment obtenus pour les groupes nilpotents de type fini.

Pablo Cubides-Kovacsics - Caen

Autour des extensions séparées de corps valués

mardi 7 novembre 2017 à 16:00

Sophie Germain, salle 1016

Une extension de corps valués (K ⊆ L, v) est dite séparée si tout K-sous espace vectoriel V ⊆ L de dimension finie admet une base séparée, c’est-à-dire, une base u_1, ... ,u_n telle que pour tout k_1,...,k_n in K,

v(Σ_i=1^n k_i u_i) = min_i v (k_iu_i).

Différents résultats autour de ces extensions, notamment issus des travaux de Walter Baur et de Françoise Delon, utilisent des outils de la théorie des modèles de paires de corps valués. Dans cet exposé je revisiterai certains de ces résultats en essayant de garder un point de vue algébrique. De plus, je discuterai le lien avec les extensions algébriques dites sans défaut. Il s’agit d’un travail en commun avec Ania Blaszczok et Franz-Viktor Kuhlmann.

Françoise Point - Mons - IMJ

Définissabilité des types et VC densité dans les corps topologiques différentiels

mardi 24 octobre 2017 à 16:00

Sophie Germain, salle 1016

Etant donnée une théorie T modèle-complete de corps topologiques, on considère son expansion différentielle générique et sous une hypothèse de largeur sur le corps, on peut axiomatiser la classe des modèles existentiellement clos.
On montrera un résultat de densité sur les types définissables sur des sous-ensembles définitionnellement clos dans les modèles de telles théories. Ensuite on montrera deux résultats de transfert l’un sur la VC-densité (lorsque T est NIP) et l’autre sur la propriété combinatoire NTP2.

Salma Kuhlmann - Konstanz

Groupes abéliens divisibles ordonnés ayant la propriété de relèvement

mardi 10 octobre 2017 à 16:00

Sophie Germain, salle 1016

Le théorème de Hahn asserte que tout groupe abélien divisible ordonné (GADO) est (à isomorphie près) un sous groupe du produit de Hahn, et contient la somme de Hahn (le produit et la somme en question étant pris au-dessus du squelette de G). Le squelette de G étant un invariant valuatif, il est facile de voir que tout automorphisme de G induit un automorphisme de son squelette.

Dans cet exposé, nous nous penchons sur la réciproque : peut-on caractériser les GADOs pour lesquels tout automorphisme du squelette se relève en un automorphisme du groupe ?. Il est facile de vérifier que la somme et produit de Hahn, et en fait, tout groupe de séries de Hahn κ-bornées (pour un cardinal infini κ), ont cette propriété de relèvement, mais on est loin d’une caractérisation générale. En particulier, il serait utile de savoir si tout groupe exponentiel a cette propriété.

INTRANET

WEBMAIL imj-prg.fr

MENTIONS LEGALES