IMJ-PRG
IMJ-PRG CNRS - UPMC - Paris Diderot

Séminaire de Topologie

Année 2018- 2019

Le séminaire a habituellement lieu le mardi à 10h30, dans le bâtiment Sophie Germain, en salle 1016. Un plan d’accès est disponible ici.

Organisation : Catherine Gille et Najib Idrissi.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

Voir en ligne : Ancienne page du séminaire

Julien Ducoulombier - ETH Zurich

TBA

mardi 12 février 2019 à 10:30

David Chataur - Université de Picardie Jules Verne

TBA

mardi 18 décembre 2018 à 10:30

Delphine Moussard - Institut de Mathématiques de Bourgogne

Un théorème de Fox-Milnor pour les sphères nouées dans S⁴

mardi 11 décembre 2018 à 10:30

Résumé : Pour les nœuds dans la sphère de dimension 3, on sait que le polynôme d’Alexander d’un nœud ruban se factorise sous la forme f(t)f(1/t) pour un certain polynôme f(t). À l’opposé, pour les 2-nœuds, c’est-à-dire les plongements d’une sphère de dimension 2 dans la sphère de dimension 4, le polynôme d’Alexander d’un 2-nœud ruban n’est pas même symétrique en général. Via une notion alternative de 2-nœuds rubans, on donnera une condition topologique pour retrouver la factorisation du polynôme d’Alexander. Travail en collaboration avec Emmanuel Wagner.

Abstract : For knots in the 3-sphere, it is well-known that the Alexander polynomial of a ribbon knot factorizes as f(t)f(1/t) for some polynomial f(t). For 2-knots, i.e. embeddings of a 2-sphere in the 4-sphere, the Alexander polynomial of a ribbon 2-knot is not even symmetric in general. Via an alternative notion of ribbon 2-knots, we give a topological condition on a 2-knot for recovering the factorization of the Alexander polynomial. This is a joint work with Emmanuel Wagner.

Stavros Garoufalidis - Georgia Institute of Technology / Max Planck

State integrals, the quantum dilogarithm and knots.

mardi 4 décembre 2018 à 10:30

State integrals (and their building block, the quantum dilogarithm) express the partition function of complex Chern-Simons theory of triangulated 3-manifolds with boundary. I will give an introduction to the subject, focusing on examples, as well as recent results on expressing state integrals in terms of Neumann-Zagier data and in terms of q-series of Nahm type. This is work joint in parts with R. Kashaev and D. Zagier.

Lukas Woike - Universität Hamburg

Homotopy theory of algebraic quantum field theories

mardi 27 novembre 2018 à 10:30

Algebraic quantum field theory is a mathematical framework to investigate quantum field theories on Lorentzian spacetimes from a model-independent perspective. We describe algebraic quantum field theories as algebras over a certain colored operad. This operadic formulation allows to treat the commutativity of observables on causally disjoint spacetime regions (the so-called Einstein causality) intrinsically and enables us to set up a local-to-global extension for algebraic quantum field theories based on Fredenhagen’s universal algebra construction. As a natural consequence of the operadic approach, we obtain a homotopy theory for differential graded algebraic quantum field theories. While this is mathematically interesting since it naturally leads to a homotopical relaxation of Einstein causality, we argue that it is also necessary to address open problems in quantum gauge theory. As a first non-trivial example of a non-strict homotopical algebraic quantum field theory, we discuss the homotopy orbifold of an algebraic quantum field theory on a category fibered in groupoids. The resulting theory can be interpreted as a fiber-wise groupoid cohomology with coefficients in a strict algebraic quantum field theory.

This is joint work with Marco Benini and Alexander Schenkel.

Brice Le Grignou - Universiteit Utrecht

Théorie homotopiques des cogèbres linéaires

mardi 20 novembre 2018 à 10:30

Les cogèbres apparaissent dans plusieurs branches des mathématiques notamment en topologie algébrique ou en géométrie formelle. Cependant, souvent, on les dualise de sorte à travailler avec des algèbres, plus simples à manipuler. Le but de cet exposé est de présenter des outils pour travailler directement avec différents types de cogèbres différentielles graduées : les cogèbres coassociatives, cocommutatives, de Lie, etc. Ce sont là des exemples de cogèbres sur une opérade. Pour comprendre l’infini-catégorie au sein de laquelle s’organisent ces objets, je définirai la catégorie Koszul-duale des algèbres courbées sur une coopérade - où la notion de quasi-isomorphisme n’a pas de sens - et la munirai d’une structure de modèles, Quillen équivalente à celle des cogèbres. Cet exposé présente un travail effectué en commun avec Damien Lejay.

Adrien Brochier - Université Paris Diderot / IMJ-PRG

Théorie topologiques des champs, théorie skein et groupes quantiques

mardi 13 novembre 2018 à 10:30

La théorie skein associe à une 3-variété M un espace vectoriel, quotient de l’espace formellement engendré par les entrelacs dans M, par la relation skein qui définit le polynôme de Jones. Ces objets jouent un rôle important en topologie de basse dimension, déforment les variétés de caractères des 3-variétés, et sont étroitement liés à la théorie des représentations du groupe quantique associé à SL_2. Il existe en fait une version de cette construction pour n’importe quel groupe quantique (et plus généralement pour n’importe quelle catégorie enrubannée).
On présentera dans cet exposé la construction d’une certaine theorie topologique des champs, qui aux 3 variétés associe leurs modules des skein et leurs versions relatives. Cette théorie associe des catégories aux surfaces, qu’on peut calculer explicitement en utilisant l’homologie de factorisation, retrouvant et généralisant un cretian nombre de constructions importantes en algèbre quantique. On expliquera la relation, conjecturale, entre cette construction lorsque le paramêtre quantique est spécialisé à une racine de l’unité, et les invariants de 3-variétés de WItten—Reshetikhin—Turaev. Cet exposé est basé sur des travaux en commun avec D. Ben-Zvi, D. Jordan et N. Snyder.

Fathi Ben Aribi - Université de Genève

La conjecture du volume de la TQFT de Teichmüller pour les nœuds twist

mardi 16 octobre 2018 à 10:30

(travail en collaboration avec Eiichi Piguet-Nakazawa)
En 2014, Andersen et Kashaev ont défini une TQFT de dimension infinie à partir de la théorie de Teichmüller quantique. Cette TQFT de Teichmüller est un invariant des 3-variétés triangulées comme les complémentaires de nœuds.
La conjecture du volume associée assure que la TQFT de Teichmüller d’un complémentaire de nœud hyperbolique contient le volume du nœud comme coefficient asymptotique, et Andersen-Kashaev l’ont prouvée pour les deux premiers nœuds hyperboliques.
Dans cet exposé je présenterai la construction de la TQFT de Teichmüller et notre technique d’approche de la conjecture pour la famille infinie des nœuds twists. En particulier, nous avons prouvé la conjecture pour de nouveaux exemples de nœuds, jusqu’à 14 croisements.
Aucune notion de topologie quantique n’est pré-requise.

Catherine Gille - IMJ-PRG

Signature pour les graphes noués de Klein

mardi 9 octobre 2018 à 10:30

(travail en commun avec Louis-Hadrien Robert)
Les graphes noués dans les variétés de dimension 3 peuvent être vus comme une généralisation des noeuds. Nous allons définir un invariant de type signature pour une famille de graphes trivalents et nous ferons le lien avec les signatures classiques des noeuds.

Marco De Renzi - IMJ-PRG

Une formule de type Hennings pour les invariants de Costantino-Geer-Patureau

mardi 11 septembre 2018 à 10:30

Batiment Sophie Germain, salle 1016

Au cours des dernières années, des nombreuses constructions non semi-simples ont produit des invariants quantiques puissants et des TQFTs aux propriétés inédites. Dans cet exposé, on va se concentrer sur deux de ces théories. D’une part, les travaux de Costantino, Geer et Patureau ont produit une famille d’invariants de 3-variétés fermées équipées avec une classe de cohomologie. Ces invariants sont assez raffinés, car ils contiennent la torsion abélienne de Reidemeister, mais leur définition est plutôt compliquée. On va montrer que, lorsque on choisit la classe de cohomologie zéro, les invariants de Costantino-Geer-Patureau issus des groupes quantiques déroulés coïncident, quitte à multiplier par un coefficient scalaire, avec les invariants de Hennings renormalisés associés aux groupes quantiques petits. Cette deuxième famille d’invariants est plus facile à définir et s’étend en une famille de TQFTs liés aux foncteurs modulaires de Lyubashenko. Il s’agit d’un travail en cours avec Nathan Geer et Bertrand Patureau.

INTRANET

WEBMAIL imj-prg.fr

MENTIONS LEGALES