Logo IMJ-PRG
Sorbonne Université CNRS Paris Diderot

Séminaire Géométries et Topologie


Le groupe fondamental en théorie de Morse, Morse-stable et Floer

J.-F. Barraud - IM Toulouse

jeudi 14 février 2019 à 11:00
15-25-502

A mi chemin entre théorie de Morse et théorie de Floer, les fonctions de Morse stables sont les fonctions de Morse définies sur un produit $M\times\mathbbR^N$ (où $M$ est une variété compacte) qui sont de plus quadratiques à l’infini (i.e. en dehors d’un compact).
Outre leur intérêt intrinsèque, de telles fonctions apparaissent naturellement comme "familles génératrices" en topologie symplectique ou géométrie de contact, et la théorie de Morse stable peut être à bien des titres considérée comme un modèle simplifié en dimension finie de la théorie de Floer.
Si la situation reste exactement celle de la théorie de Morse sur le plan technique, la lecture du groupe fondamental dans la dynamique du gradient dans le cadre Morse stable est loin d’être immédiate (M. Damian a même montré qu’il existe des fonctions de Morse stables qui ont moins de points critiques que le minimum de générateurs pour le groupe fondamental). En fait, les difficultés sont exactement des mêmes que dans le cadre de la théorie de Floer, et je me placerai dans ce cadre simplifié, exempt de tout prérequis technique, pour expliquer comment obtenir des générateurs, en gardant la théorie de Floer en toile de fond.

Autres séances