Logo IMJ-PRG
Sorbonne Université CNRS Paris Diderot

Séminaire d’Analyse Fonctionnelle


Dichotomies Hilbert-évitantes et ergodicité

Noé de Rancourt - IMJ

jeudi 14 février 2019 à 10:30

Dans les années 90 est résolu le problème de l’espace homogène, grâce au travaux de Gowers, Komorowski et Tomczak-Jaegermann, qui montrent ainsi qu’un espace de Banach isomorphe à tous ses sous-espaces est nécessairement isomorphe à $\ell_2$. Ceci a mené à la question suivante : combien un espace de Banach séparable et non-isomorphe à $\ell_2$ peut-il avoir de sous-espaces, à isomorphisme près ? En particulier, Ferenczi et Rosendal conjecturent que la relation d’équivalence $E_0$ est Borel réductible à la relation d’isomorphisme entre les sous-espaces d’un tel espace (ce qui implique, en particulier, que le nombre de sous-espace deux-à-deux non-isomorphes d’un tel espace a la puissance du continu).

Dans cet exposé, je présenterai deux dichotomies d’espaces de Banach qui pourraient aider à prouver cette conjecture, et en particulier à prouver que s’il existe des contre-exemples, alors il en existe possédant une base inconditionnelle. Ces dichotomies sont dans l’esprit des dichotomies de Gowers, et de Ferenczi et Rosendal, visant à établir une classification "à sous-espace près" des espaces de Banach séparables, à ceci près qu’elles sont Hilbert-évitantes : elles assurent que le sous-espace produit est non-isomorphe à $\ell_2$. Ces dichotomies amènent à introduire une nouvelles classes d’espaces : les espaces héréditairement Hilbert-primaires, qui ne contiennent aucune somme directe topologique de sous-espaces non-isomorphes à $\ell_2$.

Les résultats présentés dans cet exposé sont tirés d’un travail en cours
en commun avec Wilson Cuellar Carrera et Valentin Ferenczi.

Autres séances