Logo IMJ-PRG
Sorbonne Université CNRS Paris Diderot

Autour des cycles algébriques


Séminaire Autour des cycles algébriques

Marco d'Addezio et Dimitri Wyss

mercredi 20 février 2019 à 14:30
Jussieu, couloir 15-16, salle 413

14h30—15h30 : Dimitri Wyss (IMJ-PRG) Volume non-archimédien de la fibration de Hitchin
Hausel et Thaddeus on conjecturé une égalité entre les nombres de Hodge ’stringy’ des espaces de Hitchin pour les groupes SL_n et PGL_n. Motivé par cette conjecture on étudie l’intégration non-archimedienne sur la fibration de Hitchin dans le sense de Denef-Loeser et Batyrev. En utilisant la dualité des fibres de Hitchin générique on arrive ainsi à démontrer la conjecture de Hausel-Thaddeus. Dans un contexte plus arithmétique les mêmes idées donnent une nouvelle preuve de la stabilisation géométrique pour les fibres de Hitchin anisotropes, un énoncé clé dans la preuve du lemme fondamental par Ngô. C’est un travail en commun avec Michael Groechenig et Paul Ziegler.

16h00—17h00 : Marco d’Addezio (Freie Universität, Berlin) Finiteness of perfect torsion points of an abelian variety and F-isocrystals
I will report on a joint work with Emiliano Ambrosi. Let k be a field which is finitely generated over the algebraic closure of a finite field. As a consequence of the theorem of Lang-Néron, for every abelian variety over k which does not admit any isotrivial abelian subvariety, the group of k-rational torsion points is finite. We show that the same is true for the group of torsion points defined on a perfect closure of k. This gives a positive answer to a question posed by Hélène Esnault in 2011. To prove the theorem we translate the problem into a certain question on morphisms of F-isocrystals. Then we handle it by studying the monodromy groups of the F-isocrystals involved.

Autres séances