I will present recent developments in Donaldson Thomas theory revealing the structure of the Cohomological Hall algebra. We start off with introducing the Cohomological Hall algebra of quiver representations and of coherent sheaves on complex curves. The main structure results will be given. Generalizing this to representations of quiver with potential and to coherent sheaves on Calabi-Yau 3-folds requires two extra steps. The first one involves vanishing cycle functors which in our situation might only exist locally. The second step deals with the obvious gluing problem which is a consequence of the local nature of the first step. The obstruction to gluing is given by a suitable cohomology class whose vanishing is an open problem in general. However, positive answers can be given in certain cases. This is joint work in progress with Ben Davison.

URL:https://www.imj-prg.fr/spip.php?article154 END:VEVENT END:VCALENDAR