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A Tribute to Pierre Lelong
Born in Paris on March 14, 1912, Pierre Lelong died
also in Paris on October 12, 2011. He was a brilliant
student and he was admitted to Ecole Normale
Supérieure in 1931. He attended the lectures of
Professors Arnaud Denjoy and Paul Montel, who
was his thesis advisor. He defended his Thèse d’Etat
in 1941 about the singularities of holomorphic
functions of two variables. In 1942, he introduced
the class of plurisubharmonic functions which
were developed independently by Kiyoshi Oka in
Japan in the early 1940s. With these functions, he
built a powerful tool in complex analysis in several
variables which has been clearly important in the
works of many mathematicians such as K. Kodaira,
H. Grauert, L. Hörmander, E. Bombieri.

Pierre Lelong taught at the Universities of
Grenoble (1943–1945), Lille (1946–1954), and the
University of Paris (Sorbonne and Paris 6) until
1981. From 1959 to 1961, he was a very effective
advisor of the President of the French Republic
Général Charles de Gaulle for scientific research
and public education. Pierre Lelong was elected as
a member of the French Academy of Sciences in
1985.
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He made an important contribution to the
development of the French school in complex
analysis and analytic geometry. One of the last
great French mathematicians of the twentieth
century has passed away.

Jean-Pierre Demailly

Pierre Lelong: A Foundational Work in
Complex Analysis and in Analytic Geometry
My first encounter with Pierre Lelong goes back
to 1977, a year during which I started to attend
his “Séminaire d’Analyse” in Paris, coorganized
in collaboration with Henri Skoda since 1976.
During the same year, I also benefitted from a
series of lectures that Pierre Lelong gave on the
theory of plurisubharmonic functions and positive
currents, following a Ph.D. course presented a
few months earlier by Henri Skoda at Université
Paris VI. These early contacts have had a strong
and lasting influence on my scientific career. In
fact, my later scientific investigations almost never
departed from the fundamental theories initiated
by Pierre Lelong during the decades 1940–1950 and
1950–1960 ([4], [5]): these theories have wonderful
applications to vast subdomains of mathematics,
e.g., in number theory or algebraic geometry.
Even though many mathematicians throughout the
world have continued exploring these directions
in the following decades, most experts would
certainly agree that a lot remains to be done today.

A few years later, when I defended my “Thèse
de Doctorat d’État” in 1982, I had the privilege of
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being invited to Pierre Lelong’s private dwelling
in Paris. This was the occasion for me to realize
another important aspect of his past activities,
namely, his deep commitment to politics, and
the guidance he exerted in 1959–1961 during a
major reform of higher education and research,
as one of the scientific advisors of Géneral de
Gaulle, then the president of the French Republic.
Especially impressive were Pierre Lelong’s private
library and the unusual number of books and
documents dealing with politics and political
science. At present, the French system of higher
education is faced with severe difficulties, and I
cannot refrain from thinking what a benefit my
country had during the 1960s, a period, of course,
much more favorable economically, when the
scientific policy was guided by such enlightened
minds as Pierre Lelong. In fact, France enjoyed at
that time a sustained scientific and technological
development, as well as a very strong increase of
the number of students at universities. One would
like to see clearer signs today that the European
governments are ready to invest in science and to
give it again a prominent role in the evolution of
society—and, as a consequence, to rely extensively
on the expertise of the scientific community rather
than on technocrats!

Even though this is probably not the most central
part of Pierre Lelong’s scientific work, I would like
to discuss here one contribution that has in my view
shed light on several important problems. This is
a paper entitled “Éléments extrémaux sur le cône
des courants positifs fermés” (“Extremal elements
in the cone of closed positive currents”), published
in the Séminaire d’Analyse in 1971/1972 [7]. The
first main statement of the paper is:

Theorem 1. Let M be an analytic set of complex
codimension p, assumed to be irreducible, in a con-
nected complex analytic manifold X (countable at
infinity). Then the current of integration [M] is ex-
tremal in the cone of closed positive currents of
bidegree (p, p) in X.

After stating this result, Pierre Lelong observed
that many other examples of closed positive
currents that had then been investigated were not
extremal, especially those arising from smooth
convex functions or smooth plurisubharmonic
exhaustion functions like log |z|, and he concluded:
“It is likely that Theorem 1 does not produce all
extremal elements in the cone of closed positive
currents; this seems to be an important unsolved
question of complex geometry .” I still remember a
private discussion we had on this issue at Jussieu.
Strongly stimulated by these observations and
by a further exchange with Jean-Louis Verdier,
I realized a couple of weeks later, around the end
of 1981, that such a restrictive property concerning
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Pierre Lelong in Dublin,
March 1973.

extremal elements could
not hold. In fact, it would
have implied via Choquet’s
representation theorem a
formulation of the Hodge
conjecture that was much
too strong to be true.
Therefore some of the ex-
tremal elements must be
more complicated than cur-
rents of integration on
analytic sets, and I found
shortly afterwards an ex-
plicit example of such
an extremal closed pos-
itive current of bidegree
(1,1) in the complex pro-
jective plane [De82]. As first
noticed by Eric Bedford, fur-
ther examples appear in a natural way in complex
dynamics of several variables; many invariant
closed positive currents produced by complex
dynamical systems are actually extremal currents,
although their support is in general a fractal
set, and therefore is not analytic. This is, for
instance, what happens for a current of the form
limk→+∞ d−k iπ ∂∂ log |Pk(z)|, where Pk is the kth
iteration of a polynomial endomorphism of degree
d > 1 on projective space, the support of such a
current being a Julia set [Sib99]. The dynamical
study of “hyperbolic” endomorphisms of certain
algebraic surfaces, e.g., K3 surfaces, also leads to
such extremal invariant currents [2].

Another fundamental statement contained in
the above-cited article [7] is the following.

Theorem 2. If G is a pseudoconvex domain in Cn,
the positive cone generated over rational coefficients
by functions of the form log |f |, where f is holomor-
phic in G, is dense in the cone of plurisubharmonic
functions on G.

Corollary. If, moreover, H2(G,R) = 0, the positive
cone generated over rational coefficients by cur-
rents of integration [D] on irreducible divisors of
G is dense in the cone of closed positive currents of
type (1,1) on G.

The original proof of Lelong rests upon a use
of complex function theory on Hartogs domains
of the type |w | < e−ϕ(z), (z,w) ∈ Cn × C. If
ϕ is plurisubharmonic and if z is taken in a
pseudoconvex domain G, it is known that the
corresponding Hartogs domain in G × C is again
pseudoconvex ; as a consequence, there exists
a holomorphic function F(z,w), the domain of
existence of which is precisely the Hartogs domain
|w | < e−ϕ(z). The approximation of the function
ϕ by logarithms of holomorphic functions fj(z) is
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Pierre Lelong and Henri Cartan in Wimeureux,
France, May 1981.

then obtained by applying Hadamard’s formula to
compute the radius of convergence of the power
series

∑
k∈N ak(z)wk of F(z,w). The corollary

is then derived by means of the fundamental
“Lelong-Poincaré” equation, stating that for every
holomorphic function F the current i

π ∂∂ log |F|
coincides with the current of integration [ZF] on
the zero divisor of F .

These approximation results for currents are
now a central ingredient of modern analytic
geometry. By replacing the qualitative existence
theorem of defining holomorphic functions and
Hadamard’s formula with deeper results such as
the Ohsawa-Takegoshi L2 extension theorem ([10]),
one can obtain more precise statements in which
the multiplicities of the approximating Q-divisors
converge uniformly to the “Lelong numbers” of the
given closed positive (1,1)-current. In that way, one
gets a very strong analytic tool that allows one, in
particular, to prove numerous geometric results—
for instance, Siu’s theorem on the analyticity of
level sets associated with Lelong numbers of closed
positive currents [15]. Another consequence of such
techniques in algebraic geometry is the proof of
the conjecture on the invariance of plurigenera for
deformations of arbitrary nonsingular projective
algebraic varieties ([14], [11]) ; the latter result
relies again on the Ohsawa-Takegoshi theorem and
on a compactness argument for closed positive
currents of type (1,1); it comes as a surprise that
no algebraic proof is known at this point in time,
although the statement involves only algebraic
objects !

Finally, among applications to number theory,
one should mention Bombieri’s theorem on alge-
braic values of meromorphic functions of several
variables satisfying algebraic differential equations
[1], [15], [9]. The proof, here again, exploits in
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Hubert Delange, Philippe Noverraz, and Pierre
Lelong in La Jolla, California, July 1966.

an essential way the compactness properties of
closed positive currents of type (1,1) in classes
of currents of finite order, in conjunction with
Hörmander’s L2 estimates for the ∂ operator.

Pierre Lelong’s clever use of “flexible objects”1,
such as plurisubharmonic functions and positive
currents, has permitted the emergence of various
important techniques that have led to strong
effective formulations of many results in algebraic,
analytic, or arithmetic geometry, especially in
areas where previously known techniques could
only produce qualitative results. Pierre Lelong was
perfectly aware of the philosophical dimension of
the contributions he made, and he very early set
up their most fundamental consequences.
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Yum-Tong Siu

Pierre Lelong in Memoriam
After studying his work on closed positive currents
in the late 1960s, I had the opportunity of meeting
Professor Pierre Lelong in person for the first time
in the spring of 1972 when I visited Paris VII
for one semester. He was very approachable and
humorous. Though at that time I was only a young
mathematician, he made me feel completely at
ease in our mathematical conversations. Since then
I had many occasions to discuss mathematics with
him at the meetings of the Lelong-Dolbeault-Skoda
Seminar and other mathematics seminars in Paris
and in many conferences such as the conference

Yum-Tong Siu is professor of mathematics at Harvard
University. His email address is siu@math.harvard.edu.

at Poitiers in 1972, the American Mathematical
Society’s twenty-third summer institute at Williams
College in 1975, and Lelong’s seventieth birthday
conference at Wimereux in 1981. I greatly enjoyed
and benefitted from these conversations. Each time
not only did I learn to understand better from his
perspective and gain more insight into his work,
but I also came away with a deepened interest
and greater enthusiasm for his theory of closed
positive currents. His passion for the subject was
infectious.

Lelong has made many pioneering contribu-
tions in mathematics. Especially of great impact is
his work on the Poincaré-Lelong equation, closed
positive currents and Lelong numbers. The best
way to understand this very important part of
his work is to look at it from the historic per-
spective of constructing meromorphic functions
on abstractly defined complex manifolds and see
how his contributions fit in a pivotal way into the
global landscape in the theory of several complex
variables.

The theory of several complex variables studies
complex-analytic objects such as holomorphic
and meromorphic functions and maps, complex-
analytic subvarieties, holomorphic vector bundles,
and coherent analytic sheaves. When a complex-
analytic manifold or space is projective algebraic,
by definition it is embedded inside a complex
projective space and there are many complex-
analytic objects on it which are constructed from
those on the complex projective space. When a
complex-analytic manifold is abstractly defined
by piecing together local holomorphic charts, the
construction of complex-analytic objects on it is a
problem of fundamental importance.

Historically the first breakthrough came in the
form of the uniformization theorem for Riemann
surfaces which states that a simply connected
Riemann surface is biholomorphic to the Riemann
sphere, the Gauss plane, or the open unit disk.

In the 1950s and 1960s three important methods
of constructing meromorphic and holomorphic
functions were introduced: Kodaira’s embedding
theorem, Grauert’s solution of the Levi problem,
and the solution of the complex Neumann problem
with L2 estimates of ∂̄.

Kodaira’s embedding theorem constructed mero-
morphic functions on so-called Hodge manifolds
which are compact complex manifolds carrying
some smooth closed positive-definite (1,1)-form
whose cohomology class is an integer class. Kodaira
proved his embedding theorem by using Hopf’s
blowup of a point and his vanishing theorem
obtained by Bochner’s technique of completion of
squares applied to the quadratic polynomial whose
variables are the symbols of the Laplace operator
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Christer Kiselman and Pierre Lelong in Paris,
September 1997.

for forms with coefficients in the line bundle with
Chern class represented by the given (1,1)-form.

Grauert’s solution of the Levi problem used
his bumping technique to construct holomorphic
functions on complex manifolds which admit
strictly plurisubharmonic exhaustion functions.

The solution of the complex Neumann problem
with L2 estimates of ∂̄ was developed by C. B.
Morrey, Kohn, Hörmander, and others. It pro-
duces holomorphic functions, with an additional
L2 growth condition, in a Levi-problem setting
by applying the method of Kodaira’s vanishing
theorem to an open manifold, using Hörmander’s
modification of Friedrich’s density result in the
graph norm, and then using Morrey’s technique
of handling the boundary term by some special
integration by parts involving three factors.

The significance of Kodaira’s embedding,
Grauert’s solution of the Levi problem, and
the solution of the complex Neumann problem
consists in starting with soft objects like positive
definite smooth (1,1)-forms and plurisubharmonic
exhaustion functions and ending up with rigid
objects like holomorphic functions.

The importance of Lelong’s theory of closed
positive currents is that closed positive currents
introduced and studied by him are a new class of
soft objects from which rigid objects like complex-
analytic subvarieties can be constructed with the
use of Lelong numbers.

The first step of Lelong’s theory of closed
positive currents is his result that integration over
the regular part of a pure-dimensional complex-
analytic subvariety is a closed positive current. For
a complex-analytic subvariety V of pure complex
codimension p on an open subset G in Cn, he
proved that the (p, p)-current [V], which is defined
by integrating, over the regular part of V , smooth
(n−p,n−p)-forms τ with compact support on G,
is well defined and is a d-closed current. Moreover,
[V] is automatically positive in the sense that

its value at τ is nonnegative when τ is of the
form

∏n−p
j=1

√−1τj ∧ τj for some (1,0)-forms τj .
Lelong realized the importance of singling out
the two properties of closedness and positivity
for currents and developed his theory of closed
positive currents.

The well-definedness and closedness of the
current of integration over the regular part of
a pure dimensional complex-analytic subvariety
makes possible the formulation and the proof
of the Poincaré-Lelong equation. In the language
of currents, Cauchy’s integral formula takes the

form of the Poincaré formula
√−1
2π ∂∂̄ log |z|2 = [0],

where z is the complex coordinate of C and [0]
is the (1,1)-current defined by the evaluation, at
the origin, of smooth functions on C with compact
support. Lelong’s result on currents defined by
integration over regular parts of subvarieties
enabled him to obtain the Poincaré-Lelong formula√−1
2π ∂∂̄ log |f |2 = [Z] on an open subset G of Cn,

where f is a holomorphic function onG and its zero-
set Z is of generic multiplicity 1. More generally,(√−1

2π ∂∂̄ log
∑p
j=1 |fj |2

)p = [V] on any open subset
G of Cn, where f1, . . . , fp are holomorphic functions
on G and their common zero-set V is of complex
codimension p and generic multiplicity 1.

The construction of complex-analytic subvari-
eties from closed positive currents comes from
the use of a kind of density number which Lelong
introduced and which is now known as Lelong
numbers. For a closed positive (p, p)-current Θ on
an open neighborhood of a point P in Cn, Lelong
defined the Lelong number n(Θ, P) of Θ at P as
the limit of the quotient of the total mass of Θ
on the ball of radius r in Cn by the volume of a
ball of radius r in Cn−p. It is a number describing
the density of the closed positive current Θ near
the point P . The motivation of the Lelong number
comes from the special case when Θ is the current
[V] defined by integration over the regular part of
a complex-analytic subvariety V of pure complex
codimension p and the Lelong number n([V], P)
is the multiplicity of V at P .

The significance of Lelong numbers is that their
super-level sets are closely related to complex-
analytic subsets. Here a super-level set means
a set consisting of all points where the value
of the Lelong number is no less than a certain
positive number. The first important application
of the concept of Lelong numbers is Bombieri’s
generalization, to the higher-dimensional case
by using L2 estimates of ∂̄, of the solution of
the seventh problem of Hilbert by Gelfond and
Schneider.

Later Lelong’s student Skoda and other math-
ematicians followed in his footsteps to develop
further his theory of closed positive current. Now
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a precise form of the relation between super-level
sets of Lelong numbers and complex-analytic sub-
sets is the result that for any positive number c
the set of points P with n(Θ, P) ≥ c is a complex-
analytic subvariety of complex codimension ≥ p
for any closed positive (p, p)-current Θ.

The theory of closed positive currents is a
common platform with links to the historic elec-
trostatic potential method, Kodaira’s vanishing
theorem, and L2 estimates of ∂̄. This role of the
theory of closed positive currents can be most
easily seen by starting with a closer look at the his-
toric electrostatic potential method of constructing
meromorphic functions on Riemann surfaces in
the proof of the uniformization theorem.

The electrostatic potential method starts with
an electric charge on a Riemann surface X at a
point P of X. The electrostatic potential u on the
Riemann surface due to the charge is constructed by
minimizing the Dirichlet integral which is modified
by the offset of a local electrostatic potential near P .
The modification means subtracting from the test
function an electrostatic potential on a coordinate
disk centered at P with vanishing boundary normal
derivative and then forming the Dirichlet integral
on X minus the boundary of the coordinate disk.
The vanishing of the boundary normal derivative
of the local electrostatic potential corresponds
to the Weierstrass-Erdmann corner condition in
calculus of variations. The result u of minimization
is independent of the choice of the local coordinate
disk centered at P and the local offset electrostatic
potential on it.

When the Riemann surface X is simply con-
nected, the normalization of the charge is chosen
so that the meromorphic function whose real
part is the electrostatic potential u has a simple
pole at P . This meromorphic function gives a
biholomorphic map from the Riemann surface
onto the entire Riemann sphere or the complement
of a point or a slit in it. The local biholomorphic
property of the map comes from the motivation
that electric field lines outside the charge cannot
intersect. The injectivity and the surjectivity onto
the desired image come from the fact that domains
bounded by equipotential lines and field lines must
contain P in their topological closures due to the
minimizing of the Dirichlet integral with offset by
the electrostatic potential.

There is another approach to the uniformization
theorem for Riemann surfaces which uses the
Riemann mapping theorem, the Schwarz reflection
principle, and Koebe’s distortion theorem. Unlike
the approach by electrostatic potential which
allows the replacement of the charge by a closed
positive current in its higher-dimensional analogue,
this other approach cannot be extended for use
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Pierre Lelong and Jean-Baptiste Poly in Paris,
June 1972.

in the construction of holomorphic objects on
higher-dimensional complex manifolds.

In the language of closed positive currents,
for the case of the Riemann surface X being
the increasing union of relatively compact simply
connected subdomains Xν , the potential u can
be obtained as the limit of uν which satisfies√−1
2π ∂∂̄uν = −[P] on Xν with the vanishing of the

normal derivative of uν at the boundary of Xν .
This is a consequence of the Weierstrass-Erdmann
corner condition and the independence of u on the
choice of the coordinate disk at P . This formulation
in the language of closed positive currents shares
the complex Neumann condition of vanishing of
boundary normal derivative with the L2 estimates
of ∂̄ in the solution of the complex Neumann
problem. One of the crucial steps of the latter
is Morrey’s trick of using the complex Neumann
boundary condition to handle the boundary term.

The Poincaré-Lelong equation suggests that,
when the open Riemann surface X is replaced
by a noncompact complete Kähler manifold Y
with Xν replaced by a geodesic ball Yν of Y , the
(1,1)-current [P] defined by the charge at P should
be replaced by [V] for some subvariety V of pure
complex codimension p. The electrostatic potential
u as the limit of uν is to be replaced by the limit of

vν which satisfies the equation
(√−1

2π ∂∂̄vν
)p = [V]

on Yν with the vanishing of the normal derivative
of vν at the boundary Yν . This partial differential
equation is nonlinear for p > 1.

For this setting Lelong’s student Skoda used a
related, but simpler, linear differential equation
and with the use of L2 estimates of ∂̄, constructed,
from a complex-subvariety V of pure complex
codimension p inCn with volume growth condition,
global holomorphic functions onCn with L2 growth
condition whose common zero-set is V . In the
general case, with [V] replaced by a a closed
positive (p, p)-current Θ, the linear differential
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Klas Diederich, Doris Lindner, Pierre Lelong, and
Hung-Hsi Wu in Wuppertal, 1986.

equation used by Skoda equates the Laplacian of
the unknown function U to the trace measure of
Θ. He then modified U by a continuous function
to get a plurisubharmonic function ψ which he
used with the method of L2 estimates of ∂̄ to
produce his holomorphic functions. The hard
analysis developed in Skoda’s construction of the
plurisubharmonic function ψ from the closed
positive current Θ provided many essential tools
for the complex-analyticity of super-level sets of
closed positive currents.

The method of Kodaira’s vanishing theorem
uses the smooth strictly positive (1,1)-form ω
on a compact complex manifold which satisfies

ω =
√−1
2π ∂∂̄ϕ, where e−ϕ is the smooth metric of a

holomorphic line bundle. This is analogous to the
differential equation for electrostatic potential in
the uniformization theorem and to the differential
equation in the higher-dimensional case for a
closed positive (1,1)-current. One difference in
this analogy is that, in the setting of the uni-
formization theorem and the higher-dimensional
situation, the manifold is noncompact and the line
bundle is trivial. With the use of Lelong’s theory of
closed positive currents, the method of Kodaira’s
vanishing theorem can be generalized to the case
where ω is a closed positive (1,1)-current which
is strictly positive in the sense that it dominates
some smooth positive (1,1)-form in the sense
of currents. Now the metric e−ϕ is allowed to
be nonsmooth so that ϕ behaves like a plurisub-
harmonic function plus a smooth function. This
generalization yielded Nadel’s vanishing theorem
with multiplier ideal sheaves, whose analogue in
the setting of algebraic geometry is reduced to the
vanishing theorem of Kawamata-Viehweg. In the
1990s the vanishing theorem for multiplier ideal
sheaves was applied by Ein-Lazarsfeld, Demailly,
and many others to obtain a wide range of effective
results in algebraic geometry. Coupled with the use
of the extension theorem of Ohsawa-Takegoshi,
the vanishing theorem for multiplier ideal sheaves
led also to the proof of the long-conjectured de-
formational invariance of plurigenera in algebraic

geometry and the solution of other problems in
algebraic geometry. All of these developments in
the last couple of decades depend indispensably
on the tools from Lelong’s theory of closed positive
currents.

Lelong’s legacy of the theory of closed positive
currents is really an amazing piece of the global
jigsaw puzzle in the development of several
complex variables. Without doubt it will continue
to open up new vistas of research and provide ever
deeper insight into the many diverse techniques in
several complex variables and related fields.

Henri Skoda

Pierre Lelong: A Mathematician and a Man
Deeply Committed to Serving His Country
It was not long before the events of May 1968
that I first met Pierre Lelong, at the seminar he
organized jointly with François Norguet at the
Institute Henri Poincaré. I was then an advanced
student preparing my thesis under the supervision
of André Martineau who had advised me to attend
it so that I could observe “the state of the art” in the
field of holomorphic functions of several complex
variables. At that time, there were no individual
computers nor Web. Papers were typewritten with
carbon copies. Phone and television were still
luxuries. So seminars were a more important
place to interchange ideas and results between
mathematicians than nowadays. They were fewer,
and the audience of the P. Lelong and F. Norguet
seminar was very impressive because of the quality
and the number of its members. For instance, Henri
Cartan regularly attended it. As early as October
1968, I began to study P. Lelong’s works, especially
those on the zeros of entire functions in Cn. I
discovered in them, on the one hand, the detailed
study of the properties of the plurisubharmonic
functions family ([Le 45]) (that is, the function is
uppersemicontinuous and its restriction to every
complex line is subharmonic), which included both
convex functions and log |f | functions where f
is a holomorphic function. On the other hand,
as early as 1953, P. Lelong ([8]) had proved that
the current of integration on a complex analytic
set was well defined. In spite of the singularities
of the analytic set, this current was closed. The
apparent positivity of this current ([10]) (in the
sense that all the measures naturally associated
with that current by the complex structure were
positive) led Pierre Lelong to introduce the concept
of positive current. The multiplicity of the current
of integration on an analytic set at a point also led
P. Lelong to define, more generally, the density of
a positive closed current at a point. The density
was subsequently called the Lelong number of
the current. In the same way as that of Laurent
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Schwartz distributions or G. de Rham currents, it
gave the possibility of dealing with the analytic sets
of complex geometry with analytic methods totally
compatible with the algebraic method of sheaf
theory and of local algebra and especially well
adapted to the study of metric and quantitative
properties of analytic sets. The most important
part of my work is immediately connected with
the concepts P. Lelong introduced. In my inaugural
lecture at Colloque Européen en l’honneur de Pierre
Lelong, in September 1997 ([19]), I had already
widely explained the notable impact of these
concepts on the development of complex analysis
in several variables and on algebraic geometry on
the field of complex numbers from 1940 to 1997.
This in relation with Lars Hörmander ([5]), ([6]) and
Enrico Bombieri ([1]) L2 estimates for the ∂̄ operator
in 1965, then with the Ohsawa-Takegoshi ([12])
extension theorem and that of coherence from A. M.
Nadel ([11]). All these results are themselves based
on the notion of plurisubharmonic function as well
as on a long mathematical tradition in the fields
of partial differential equations and of differential
geometry. In short, mathematicians could from
that time on use an extremely effective machinery:
by the means of a convenient integral kernel, it was
possible to assign a plurisubharmonic function and
then an analytic set to every closed positive current
so that this analytic set was closely connected with
the structure of the given current.

In this collective tribute, other mathematicians
analyze this aspect of things. I would like to bring
to light other aspects which are perhaps less well
known. Pierre Lelong had built, as early as 1956 ([9]),
the equivalent in Cn of the canonical Weierstrass
product (that is, a holomorphic function F of
minimal growth vanishing on a given zeros set)
as a plurisubharmonic potential log |F| solving in
Cn, in a very modern and inventive way, in the
spirit of Hodge theory, the so-called (today) Lelong-
Poincaré equation: i

π ∂∂̄ log |F| = [X] where [X] is
the current of integration on the hypersurface X.
In my thesis in 1972 ([17]), I benefitted from all of
these methods dealing with potential theory and
L2 estimates to extend this work of P. Lelong about
hypersurfaces of Cn to any analytic set.

Then, in 1975, going back again to the solving
of the same equation, Gennadi Henkin and I ([13])
were independently successful in characterizing
the zeros of Nevanlinna class functions in bounded
smooth strictly pseudoconvex domains of Cn by
the Blaschke condition. In the same way, we more
generally have solved the equation i

π ∂∂̄V = T
where T is a closed positive current verifying the
Blaschke condition.

P. Lelong’s views have taken a prominent
role in the following way: let ρ be a smooth
strictly plurisubharmonic function defining the
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Christer Kiselman, Kiselman’s wife Astrid, Bo
Berndtsson, Pierre Lelong, Kiselman’s son Ola,
Sweden, 1981.

bounded open set Ω = {z ∈ Cn;ρ(z) < 0}. The
Blaschke condition on T can be written as∫
Ω−ρ(i∂∂̄ρ)n−1∧T < +∞ and Stokes’s formula pro-

vides the following equality:
∫
Ω−ρ(i∂∂̄ρ)n−1 ∧ T =∫

Ω(i∂ρ ∧ ∂̄ρ) ∧ (i∂∂̄ρ)n−2 ∧ T < +∞. This means
that the complex tangential component of T ,
(i∂ρ ∧ ∂̄ρ) ∧ T , has finite mass in Ω, hence it
satisfies something stronger than the Blaschke
condition. This strong condition on the behavior at
the boundary of the complex tangential component
of T was the first compulsory and decisive step to
solving the equation i

π ∂∂̄V = T with the expected
Nevanlinna estimate supε>0

∫
ρ(z)=−ε V+ < +∞. That

kind of strong estimate of the complex tangential
component of a closed positive current remains
today as an essential argument in the numerous re-
searches on hard analysis about zeros of functions
in Hardy classes on pseudoconvex domains.

In the 1950s and 1960s, P. Lelong’s ideas seemed
to be very useful to control the asymptotic behavior
of holomorphic objects. P. Lelong had observed that
Hadamard’s inequality of convexity generalized
to holomorphic functions of several variables had
much deeper consequences than with one variable.
It implies, for instance, that the asymptotic behavior
at infinity of an entire function is remarkably stable
along almost all complex lines. That has been the
decisive argument which was used to build ([18])
examples of holomorphic fiber spaces, with Stein
(C2) fiber and with Stein basis (an open subset
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of C) but which are not Stein. It gave a negative
answer to a question of Jean-Pierre Serre which
has aroused the curiosity of geometers for many
years. Indeed the fiber bundle is built in such a way
that the action of the transition automorphisms
on the fibers contradicts the consequences of
the Lelong-Hadamard inequality on the growth
alongside the fibers of a holomorphic function
globally defined on the total space. Such a function
has to be constant on the fibers and the total
fiberspace is far from being Stein. This successful
construction has shown that P. Lelong’s methods
could be more effective for strictly geometrical
problems than the more traditional sheaf theoretic
methods.

By chance or destiny, and probably with the
help of Jean-Louis Verdier, Directeur des Études
at École Normale Supérieure and Michel Hervé,
Directeur Adjoint of École Normale Supérieure,
one of the first who attended my lessons for
advanced studies in 1976 was Jean-Pierre Demailly,
a young student who was also raised on P. Lelong
and L. Hörmander’s methods. He immediately
took up the torch by extending and making more
flexible the notion of the Lelong number ([3]) and
connecting it with other important problems of
that time such as the Hodge conjecture ([2]) and
numerical vanishing theorems. From that time
forward, P. Lelong’s ideas were far from seeing
their end. More and more mathematicians took
interest in studying his works, which had also a
decisive impact on other fields, such as algebraic
geometry with, for instance, the deep results of
J. P. Demailly on the Fujita conjecture ([4]) and Y. T.
Siu’ s proof ([16]) of the invariance of plurigenera.
Let us quote too the emergence of closed positive
currents in the holomorphic dynamic systems
with several variables, following Eric Bedford’s and
Nessim Sibony’s works ([14]). I am grateful to Pierre
Lelong for having, in an unpretentious way, laid
the bases of all these mathematical developments
which, I think, are far from over.

I would like now to throw light on his seminar,
which became an important part of scientific
life. Many French or foreign researchers were
invited and benefitted from being in his audience
and the broadcasting of the talks, which were
published in “Seminar Acts”, by Springer, between
1957 and 1986, in the Lecture Notes Series. Pierre
Lelong, Pierre Dolbeault and I have shared the
managing of the Complex Analysis Seminar which
continues to the present day. Gennadi Henkin
and Jean-Marie Trépreau have taken part in the
seminar management. From October 2006, with
the arrival of Olivier Bicquard and Tien Cong Dinh,
it has become the Geometry and Complex Analysis
Seminar and has quite turned to differential
geometry, dealing, however, with an important

part of complex analysis. From time to time, Henri
Cartan and Laurent Schwartz attended the seminar,
and more regularly Paul Malliavin and Michel
Hervé. In organizing it, we could talk not only
about mathematics, research, and university, but
also about the part involving administration and
state in the research field.

I immediately saw in P. Lelong’s speech and
individual characteristics the mark of the humanist
tradition, reinforced by his classical studies in
secondary school, which gives more importance
to man than to ideology and technology. It was in
that way P. Lelong undertook to serve the state.
He trained for public service for a long time, by
attending, in the 1930s, the Institut Politique de
Paris, in addition to his mathematical activities.
In the 1960s, he became a scientific consultant
of the president of the French Republic, Général
Charles de Gaulle, and so he gave a contribution
to the effort for the expansion of universities and
planning for research. He especially contributed to
the expansion of computer science in France with
the establishment of INRIA. I think his influence
has been highly beneficial and we owe him much
still today. He also tried, during the 1980s, to
protect the Institute Henri Poincaré (IHP). For,
because of a legal vacuum, mathematicians could
have been excluded from this institute. He did his
best to obtain clear statutes for IHP, acting in the
best interest of mathematicians and theoretical
physicists.

I wish to pay tribute to the memory of Pierre
Lelong. One of the best mathematicians of the
twentieth century has left us, whose influence
will go on for a long time, but who was also an
academic deeply wedded to humanistic values and
to funding the values of the French Republic.
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