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Un gouvernement passe et tombe, un peuple grandit, resplendit, puis
décroit, qu’importe ! les vérités de la science se transmettent, s’accroissent
toujours, font toujours plus de lumiére et plus de certitude. Le recul d’un
siécle ne compte pas, la marche en avant reprend quand méme, ’humanité
va au savoir, malgré les obstacles. Objecter qu’on ne saura jamais tout est
une sottise, il s’agit de savoir le plus possible, pour arriver au plus de
bonheur possible.

Emile Zola, Travail

Governments rise and fall, peoples grow, shine, and decline, none of it
matters ! the truths of science are passed on, ever increased, always
bringing more light and certainty. A delay of a century is inconsequential,
the march forward resumes anyway, humanity strives toward knowledge, in
spite of any obstacle. To say one might not ever know everything is absurd,
the point is to know the most, to achieve the most happiness.

Emile Zola, Work
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Une isométrie de Deligne-Riemann-Roch pour les
fibrés vectoriels plats unitaires sur des courbes
modulaires

Résumé

L’objectif de cette thése est de définir et d’étudier une métrique de Quillen sur une courbe modulaire
ayant des cusps pour la métrique de Poincaré, munie d’un fibré vectoriel holomorphe plat unitaire.
Dans le cas compact, étudié par Bismut-Gillet-Soulé et Deligne, cette métrique de Quillen est
une modification de la métrique L? par le déterminant du laplacien de Dolbeault agissant sur les
sections. Une de ses propriétés fondamentales est qu’elle satisfait une isométrie de type Riemann-
Roch. Sous nos hypothéses, cette construction ne peut étre faite, en raison de la singularité aux
cusps de la métrique de Poincaré sur la courbe modulaire, et de la métrique canonique sur le fibré.
Un premier essai de définition, réalisé par Takhtajan et Zograf pour des fibrés d’endomorphismes
en remplacant le déterminant du laplacien de Dolbeault par la valeur en 1 de la dérivée de la
fonction zeta de Selberg, a mené a une formule de courbure, mais pas a une isométrie. La métrique
de Quillen définie dans ce texte généralise celle donnée par Takhtajan et Zograf aux fibrés plats
unitaires. Elle aura cependant ’avantage crucial de rentrer dans le cadre d’une isométrie, similaire
a celle étudiée par Deligne, et de mener & un théoréme de Riemann-Roch arithmétique.

Afin de contourner les singularités des métriques, nous utiliserons des méthodes dues a Freixas
i Monplet et von Pippich. Ces derniéres sont principalement constituées d’outils de chirurgie
analytique, tels que la troncature des métriques et des formules de recollement de Mayer-Vietoris,
pour réduire I’étude des déterminants de laplaciens & des calculs de type global, pour lequel nous
utiliserons la formule des traces de Selberg, et de type local, qui nécessitera l'introduction de
fonctions spéciales.

Mots-clés

Isométrie de Deligne-Riemann-Roch, métrique de Quillen, torsion analytique holomorphe, théorie
d’Arakelov, theoréme de Riemann-Roch arithmétique, Courbe modulaire, groupe fuchsien, fibré vec-
toriel plat unitaire, chirurgie analytique, formule de Mayer-Vietoris, formule des traces de Selberg,
fonction hypergéométrique, sommation de Ramanujan.
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A Deligne-Riemann-Roch isometry for flat unitary
vector bundles on modular curves

Abstract

The purpose of this thesis is to define and study a Quillen metric on a modular curve with cusps
and the Poincaré metric, endowed with a flat unitary holomorphic vector bundle. In the compact
case studied by Bismut-Gillet-Soulé and Deligne, this is given by a modification of the L?-metric
using the determinant of the Dolbeault Laplacian acting on sections. One of its fundamental
properties is that it fits into a Riemann-Roch type isometry. Under our hypotheses, this definition
cannot be applied, since the Poincaré metric on a modular curve, and the canonical metric on
the vector bundle present singularities at each cusp. A first attempt was made by Takhtajan
and Zograf, for endomorphism bundles, using the first order derivative ar 1 of the Selberg zeta
function. They proved a curvature formula, but not an isometry. The Quillen metric we will define
in this text will generalize the one defined by Takhtajan and Zograf to flat unitary vector bundles,
and will also involve derivatives of the Selberg zeta function. However, it will have the decisive
advantage of satisfying an isometry, similar to the one studied by Deligne, leading to an arithmetic
Riemann-Roch formula.

To circumvent the metric singularities, we will use methods developped by Freixas i Montplet and
von Pipppich. They primarily involve the use of analytic surgery methods, taking the form of
truncation of metrics and Mayer-Vietoris glueing formulae, to reduce the study of determinants
of Laplacians to computations of two natures: global, for which we use the Selberg trace formula,
and local, requiring us to introduce special functions.

Keywords

Deligne-Riemann-Roch isometry, Quillen metric, holomorphic analytic torsion, Arakelov geometry,
arithmetic Riemann-Roch theorem, modular curve, Fuchsian group, flat unitary vector bundle, an-
alytic surgery, Mayer-Vietoris formula, Selberg trace formula, hypergeometric function, Ramanujan
summation.
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Introduction

The main focus of this thesis is to derive a Deligne-Riemann-Roch isometry for arithmetic surfaces,
whose incarnation at every complex place is a modular curve, endowed with particular vector
bundles. Before we dive into this pressentation, let us see a brief history of the various Riemann-
Roch theorems, and their place in complex geometry, di erential geometry, and Arakelov geometry.

Theorem 1 (Riemann-Roch). Let X be a compact Riemann surface, and. be a holomorphic
line bundle onX . Denote by! x the holomorphic cotangent bundle orX . We have the following
equality of integers

hO(X;L) hi(X;L) = ho(X;L) h® X;!'xy L' = degL+1 g:

where g is the genus ofX , and h' denotes the dimension of a cohomology space.

As written above, this theorem relates a fundamental topological invariant, the genus to quantities
de ned in complex geometry, taking advantage of the fact that Riemann surfaces live in both
worlds. We will often refer to theorems which, as a generalization or in a similar way, link two
domains which area priori unrelated, as Riemann-Roch type theorems In the 1950s, two such
results emerged: a complex geometric version, and a relative algebraic geometric version.

Theorem 2 (Hirzebruch-Riemann-Roch). Let X be a compact, complex manifold, ance be a
holomorphic vector bundle onX . Denote by (X;E ) the holomorphic Euler characteristic of E,
i.e. the alternating sum of the dimensions of the coherent cohomology spacesf We have

(X;E) = Rx ch(E)td(X) ;

wherech (E) is the Chern character ofE, and td (X) is the Todd class of the tangent bundle of .

Theorem 3 (Grothendieck-Riemann-Roch). Letf : X ! S be a smooth and projective morphism
of smooth complex quasi-projective algebraic varieties, ane be a vector bundle onX. Denoting
by T; the relative tangent bundle, we have the equality in the de Rham cohomologySf

ch(Rf E) = f (ch(E)td(Ty)) :

This last equality in cohomological in nature, though one can introduce a smooth Kéhler metricg
on X and a smooth hermitian metric h on E to lift

ch(Rf E) f (ch(E)td(T))

to a di erential form, which must be exact, meaning it has a d-primitive. The dd°-lemma then states
that a dd°-primitive exists, though it does not indicate how to nd one. A canonical representative,
in the sense of [21], can be found, using the work of Bismut, Gillet, and Soulé from [9, 10, 11],
as well as that of Bismut and Koéhler from [12], though the latter assume that the higher direct
imagesR'f E are locally free. This form, well-de ned up to Im @+ Im @ is called the holomorphic

1



analytic torsion form. The notion of torsion originated in 1935 from the work of Reidemeister,
and was greatly developped by Ray and Singer, rst in the real case as thanalytic torsion in [78],
and then in [79] as the holomorphic analytic torsion form in the complex case. It has been studied
extensively. Taking the (1; 1)-part of this lift of the Grothendieck-Riemann-Roch is of particular
importance. On the left-hand side, we nd the Knudsen-Mumford determinant line bundle de ned
in [64]. It is an algebraic line bundle onS, whose ber at a point s2 S is given by

N _ 1y
(E); =  detH'(Xs;Es) :

To lift the degree 2 part of the Grothendieck-Riemann-Roch theorem to the level of(1; 1)-forms,
we need to de ne a metric on (E) from the metrics g and h. Using Hodge theory, and the
identi cations of the Dolbeault cohomology spaces to the appropriate spaces of harmonic forms,
we can de ne the L2-metric on (E). However, this metric is not satisfactory, as it does not
vary smoothly in family. This is not surprising, since the L?-metric only depends on kernels
of Laplacians, and not on their full spectra. To Il this gap, we consider the (0; 0)-part of the
holomorphic analytic torsion, given by

P
logT (g;h) = ( 1)%glogdet® ©a)
q>0 '

where (9 s the Dolbeault Laplacian acting on (0; g)-forms with values in E, and det® denotes
the modi ed determinant, which is built from the strictly positive eigenvalues through a zeta
regularization process. The renormalization of thel >-metric, de ned as

kkg = T(g:h) " kk..

produces a metric on the determinant line bundle, called theQuillen metric, which varies smoothly
in family. The study of the curvature of this line bundle equipped with this metric has been of
extreme importance, and is in particular made in [11], leading to the following result.

Theorem 4. We have the equality of(1; 1)-forms
. _ . . (1;1) .
a x(E);kkq = f (ch(E;h) td(Tx;9)) ,

wherech (E;h) and td (Tx ; g) are the Chern-Weil representatives.

In order for this result to make sense, it should be stressed that : X | S must be proper, and
that the metrics g and h have to be smooth. When the metrics are not smooth, nothing can be said
a priori, even when the base is a point, but advances have been made. For instance, Takhtajan
and Zograf de ned in [93] a Quillen metric on a modular curve arising from a Fuchsian group of
the rstkind  without torsion with the endomorphism bundle of a stable parabolic vector bundle
coming from a unitary representation of . Their Quillen metric is de ned as

kko = (Z°Q; ;Ad ) Pkke. ;

where Ad is the adjoint representation of , which induces the bundleEnd E, and Z denotes the
Selberg zeta function. In the process, they derived the following curvature formula, wheré€ is the
Kahler form on the moduli space of stable parabolic bundles, and is the cuspidal defect.

Theorem 5. We have the equality of(1; 1)-forms

& x (EndE);kky = L8
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This result has recently been extended to account for the presence of elliptic points in [94]. Takhta-
jan and Zograf further studied in [93] the moduli space of stable parabolic vector bundles, extending
the work of Mehta and Seshadri from [69]. These curvature formulae are not the only interesting
results to get using Quillen metrics. As a matter of fact, Deligne proved a functorial Riemann-
Roch theorem, in the form of an isomorphism compatible with base change and exact sequences,
for families of compact Riemann surfaces and vector bundles, both endowed with smooth metrics.
Using the work of Bismut, Gillet, and Soulé from [9, 10, 11] and of Bismut and Lebeau from [13],
this isomorphism becomes an isometry up to explicit factor. Furthermore, when Riemann surfaces
are considered, the de nition of the Quillen metric can be simpli ed to

kkg = det’® ke ;

where is the Dolbeault Laplacian acting on sections ofE. It should be noted that this Laplacian
appears instead of the one acting or{0; 1)-forms because both have the same determinant.

Theorem 6 (Deligne-Riemann-Roch isometry) Let X 'S be a proper, smooth scheme mor-
phism of relative dimension 1, with geometrically connected bers, andE a vector bundle overX
of rank r. There is a functorial isomorphism of line bundles over the bas&, canonical up to sign

D Es
x=s (E)® ' lxus;!x=s detE;detE ! 1. 1C,(X=S;E) ¥ :

When both X and E are endowed with smooth metrics, this isomorphism becomes an isometry, up
to an explicit factor c(g;r) depending on the genus of the bers oK=S and on the rank of E.

We have used two intersection bundles here, namely the Deligne pairing, and thiC , bundle. Both
notions represent functorial lifts to the level of line bundles of the integration along the bers of
polynomials in Chern classes. This is extensively studied by Elkik in [40, 41], and will be further
explained in sections 5.1.2 and 5.1.3. This theorem was obtained with the aim of getting a deeper
understanding of Arakelov geometry and of the arithmetic Riemann-Roch theorem of Gillet-Soulé,
which had been obtained but not published at that time. This relatively new theory was developped
by Arakelov in [2, 3] from arithmetic intersection theory, which generalizes classical intersection
theory. These elds of study were greatly expanded by Gillet and Soulé in [51], leading to the proof,
in [52], of their Riemann-Roch type theorem. The right setting is that of arithmetic varieties, which
are regular, quasi-projective, at schemes overSpecZ, although there are slight variations on this
de nition according to the reference. We will denote by R the R-genus of Gillet-Soulé.

Theorem 7 (Arithmetic Riemann-Roch). Let f : X !'S be a projective, at morphism of
arithmetic varieties which is generically smooth ande be a Hermitian vector bundle onX . Consider
a Kéahler metric g on Xc. We have the following equality

& xsEo, = f ME®T © [OchEWEIRTNYD 2 H ()

where éh(E; h) the arithmetic Chern character of (E;h), and byt’é T¢ is the arithmetic Todd
class of the tangent complex endowed witlp

This type of theorem holds in a more general setting than Deligne's result, though it is less re ned,
as it does not give information on the determinant line bundle itself. In a similar fashion, Kéhler

and Roessler proved an arithmetic Lefshetz xed point theorem in [65]. This result was one of the
motivations behind this thesis, as will be explained later.

So far, we have only dealt with smooth metrics, with the exception of the curvature formula
obtained by Takhtajan and Zograf. However, arithmetic intersection theory has been extended, so
as to take into account some singularity on the metrics. This was done by Burgos, Kramer, and
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Kihn in [22], and by Bost in [14]. Throughout these works, the question of obtaining Riemann-
Roch type theorems was left unresolved. This was partially answered by Freixas i Montplet, rst
alone in [45] and then with von Pippich in [47]. In this last article, whose methods will be followed

in this thesis, the case of the trivial bundle is dealt with. It should also be mentioned that in their
respective theses [29, 56], De Gaetano and Hahn derived close results, using methods, unrelated
to those used here, which nd their origin in the work of Jorgenson and Lundelius in [62]. Some
advances for more general surfaces with vector bundles have also been made by Finski, for instance
in [42, 43]. In the following, the Fuchsian groups of the rst kind we work with are without torsion.

1 Survey of the thesis

The purpose of this thesis is to prove a Deligne-Riemann-Roch isometry for a particular class of
arithmetic surfaces X over S = SpecOg , whereK is a number eld. We assume that the structure

morphism X 'S has disjoint sections 1, ...,  such that for every embedding : K, C,
the non-compact Riemann surfaceX nf 1( );:::; n( )gis a modular curve, de ned from a
Fuchsian group of the rst kind . We will further work with a vector bundle E of rank r de ned

by unitary representations  scalar at the cusps for every . This will be detailed below.

Theorem 8. We have an isometry of line bundles oves

12 2.m 1
y-s (B)Z™"

m2r™m

' Ix=s(D);!x=s (D) hdet )™ (D9 ; (det )™ (DOI®" "¢ m¢ ™)

6mr ™ 12m

(detE)™ (D9 ;! x-s (D) IC,(X;E ™ (DY) D
Os;c(gm™™ o ()™

where g denotes the genus of any modular curv¥ (C), and the metric on Os is c(g;r) times the
trivial metric, this last constant being given byc(g;r)=r(1 g)(1 24 °( 1)).

1.1 Framework

Let be a Fuchsian group of the rst kind, which here means a nitely generated discrete subgroup
of PSL;, (R), whose action on the upper half-plane has a fundamental domain with nite volume for
the Poincaré metric. We assume that has no torsion, and further consider a unitary representation

! Ur (C)

of . The trivial bundle H C'" of rank r on H is then endowed with an action of , given by

(zsv) = ( z, ()V)

and the quotient E = n(H C') is a unitary at holomorphic vector bundle over the modular

curve nH. Let us now describe how we can extendE over the compacti ed modular curve. We

note that this amounts to extending E over the cusps. Letp be one of them. We can describe an

open neighborhoodU,» of p as a quotienthTin (R Ja(");+1 [), whereT is the translation and
a(") = Zi |Og n 1

endowed with the Poincaré metricg. We can also make the identi cation

. ' Ly dej2 .
(Up 5 9) D (0:"): Zrtogiz”
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whereD (0;") is the punctured disk of radius". For each cuspp, we denote by ,, a generator of
the stabilizer , ofpin . The matrix ( ) being unitary, it can be diagonalized in an orthonormal
basis. We x such a basis(ep; ); and write

(pep = e €oj

with ; being de ned modulo 1. Choosing lifts of these real numbers, we set
Spj oz TV € i Zey;

We can use a Deligne extension to get a holomorphic vector bundle over the compacti ed modular
curve. The canonical hermitian metric on C" then induces a metric onE over U+, given by

2 2 i .

Kspj K; = jzj° ™
which is not smooth at p unless all ; vanish. This extension and the associated metric, which is
called the canonical metric h, depend on the choices of lifts. The singularities of both the Poincaré

metric and the canonical metric prevent us from de ning the Quillen metric, and from applying
the Deligne-Riemann-Roch isometry from [32].

1.2 Truncation of the metrics

To circumvent the singularity of the metrics at the cusps, we will take a closer look at the situation.
For every cuspp, under the identi cation of Uy, with the punctured disk of radius ", we note that
every metric considered here depends only on the modulus of the local coordinate We can de ne
the truncated Poincaré metric g and the truncated canonical metric h- as on the drawing below.

jzj <"
Kopi K¢ = 2 7

jdzj?

Figure 1 Truncation of the metrics on a modular curve

Outside the open subsetdU,, the metrics g- and h- are given by g and h respectively. Near the
cusp p, however, we have replacedj and h by the constant metrics described on the drawing. The
metrics thus obtained are only piecewise smooth, and have a global Sobolé*-regularity. Taking
smooth approximations gx and hy of g and h, we have the following isometry

12 ' . - o . 1 EG . 12 .
X (E)Q;k h! itk 3 ek | detE--;k ,detE-';k | Xk IC, (X, E ";k) ;
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where the various bundles have been equipped with the appropriate smooth approximations of
the truncated metrics. The limit as k goes to in nity can be taken on the right-hand side, which
means that an"-truncated Quillen metric can be de ned on the determinant line bundle, yielding
the truncated Deligne-Riemann-Roch isometry

D Ee
x (E)g ' hlye;lxei' detEe;detE: !yt 1C(XEx) ¥

We now want to let " go to 0", which requires a lot of care, since we want to get a precise control
on the metrics on either side.

1.3 Regularization of the isomorphism

The rst step required to take the limit of the truncated isometry is to regularize it, This amounts
to modifying the isometry so as to extract the singularity as" goes to0* and set it aside.

The Deligne pairings. We begin by dealing with the Deligne pairings, which are the rst two
factors on the right-hand side of the isometry. Denoting by D the divisor given by the sum of the
cusps, and using the metric bimultiplicativity of the Deligne pairing, we get an isometry

N
ity * h Ux ()il x (D).i Lxpiily  (GR O]

p cusp

wherej| denotes the usual modulus orC, and j |, is the metric on! x,, de ned by jdzj, =1. This
last choice of metric on! x., originated in Wolpert's work, more precisely in [102], and was named
the Wolpert metric by Freixas i Montplet in [45]. The singular term R, (") is de ned by

logR, (") = hlog2 hlog" 2hloglog" ! ;

with h denoting the number of cusps. The advantage is that the metric on! x (D) induced by
the Poincaré metric on! x and the trivial metric on Ox (D) has anH -regularity, since ! x (D)
is generated aroundp by dz=z, and we havekdz=zk, = logjzj. This manipulation amounts to
allowing some singularity, i.e. simple poles, in order to remove the same amount of singularity
from the metric. We then have the following convergence

hHx (D).;!x (D).i "!! o Hx (D);!'x (D)i :

This allows for the regularization of the rst Deligne pairing in the isometry, and something similar
can be done for the second one, assuming all,; are rational numbers.

The IC, bundle. We proceed to regulare the factorlC, (X;E ). Since we cannot twistE by
a line bundle to allow dierent poles in multiple directions, we need to assume that is scalar
at the cusps, which means that all ,; are equal and rational, with ; = mp,=m. Using the
compatibility of the 1C, bundle with tensor products, we have an isometry

IC, (X E-)2™ " *
" ICL(XE ™ (D%.)2" hdetE)™ (D9). ; (detE)™ (D9.i"" (M@ My
mh,r™ Ym@™ 1)+2(1 1)) N N mp?r™ (@ r)
detEp;kkp !X;p;”p
p cusp p cusp
(CRic, (MiD);



where, for each cuspp, we have considered the Wolpert metric on! ., , and the metric on detE,
is de ned by ksp.;1 * M spy kp = 1. Furthermore, the singular factor is given by

" P 2 .m "
logRic, (") = mhy,” rm (@ r)log":

p cusp

All other factors converge as" goes to0", since the metrics onE ™ (D% and on (detE)™ (D9
induced by the canonical metric onE and the trivial metrics on Ox (D9 and on Ox (D% are
smooth on the compacti ed modular curve.

1.4 Analytic surgery

The Quillen metric for smooth approximations g and hy, which coincide with g and h except near
the cusps, of the truncated metrics is de ned as

— 0 Ok:hk 1=2 -
kkqy = det & KK 2y s
using the Dolbeault Laplacian for these smooth metrics. The convergence of the right-hand side
of the isometry implies that the Quillen metric converges ask goes to in nity, to the "-truncated
Quillen metric. Since the modular curve has nite volume, the L?-metric also converges, which
means we must have convergence ik of the modi ed determinants. This limit should be studied
using spectral geometry. We achieve this goal by using two glueing formulae of Mayer-Vietoris
type. The rst one, proved by Burghelea, Friedlander, and Kappeler in [20] holds for smooth
metrics, and yields

d Q
0 gche — Yoy 0n 9k ihk Ok ;h 9k ;hi
det” 2 - det’N 2 det 2 e det &' .

where X« is the compacti ed modular curve from which we have removed everyJ,, every Lapla-
cian on the right-hand side is with Dirichlet boundary condition, and N is a Dirichlet-to-Neumann
jump operator. The second holds for the singular metricgg ansh, is proved in chapter 2, and reads

va . : .
deto( E, Ejcuspy) = %detONE;P det gl;( Lo

where the Laplacians are associated to the Chern connection, and the left-hand side is a modi ed
relative determinant, which can be thought of as well-de ned quotients of ill-de ned determinants ,
and are de ned by Miiller in [73]. Proving this last comparison is actually done in several steps:
the rst one involves the formula with a parameter and a constant, the second is the computation
of the constant by using asymptotic expansions as goes to in nity. In these formulae, we have
denoted by V the volume of X, and by * the total length of all boundaries @y . The link between
both results is made by using the atness ofE over X- and relating the Chern and Dolbeault
Laplacians using the Bochner-Kodaira-Nakano identity. The convergence irk, followed by the
divergence in" can then be studied, although they involve atruncation constant which can so far
only be computed when all ; vanish. There are leads to Il that gap, using Wentworth's ideas
from [101], and the extension of some of them by Kokotov in [66].

1.5 Computation of determinants

After using both Mayer-Vietoris formulae, the modi ed relative determinant of g and g cusp
is left, and be computed asymptotically as" goes to0* , by introducing an auxiliary Laplacian
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On the modular curve

The rst relative determinant we can deal with is that of g+ and -+ , using the Selberg
trace formula. We prove that the constant term in the asymptotic expansion as goes to in nity
vanishes, and compute the modi ed relative determinant for =0. It is given by

logdet®( e; -)

= Ik( ; )loga(")+log Z(® (1) +log (d!) Zrhlog2+ 1k( ; )log2
P P

+LW0LE 200 1)+ Llog2 1 1 logsin( pj):
AN

We can observe in this formula that the rst order derivative of the Selberg zeta function used by
Takhtajan and Zograf in [93], and by Freixas i Montplet and von Pippich in [47] will be replaced by
the rst non-zero derivative of the Selberg zeta function. Every result pertaining to this paragraph
can be generalized to all Fuchsian groups of the rst kind, even those with torsion.

Around a cusp

The other relative determinant we must take care of is that of g.cusp» + and -+ for real
and positive. In chapter 4, we compute the asymptotic expansion as goes to in nity, and then
the asymptotic expansion for =0 as" goes to0* of the logarithm of this determinant. To do
that, we use explicit computations on model cusps, hypergeometric functions, and the Ramanujan
summation process. Rather than presenting computations without context, let us see one of the
di culties on a toy example. Consider the function

P o
s 7! Y
k>1

for > 0O, which is well-de ned and holomorphic on the half-plane Res > 1=2. We will need to
prove that functions of this type have a holomorphic continuation to a neighborhood of0, and
compute the value of this continuation at 0 as goes to in nity. The typical method to prove that
such continuations exist is to use a Taylor expansion, and to write

P 1p7k+ — S_,_;_,_;P 1 Rae )
o1 Ks+ 2 2k>l ksl =2 0 1+t -

The Riemann zeta function above can be extended near the origin, and the remainder already
induces a holomorphic function there. However, improving the convergence i, so as to get an
absolutely convergent remainder increases the divergence in and we cannot recover an asymptotic
expansion in  of the continuation evaluated at 0. This can be solved using theRamanujan
summation process presented by Candelpergher in [23]. We prove in chapter 4 that we have

Fp -1 Iogdeto( Ecuspr 5 ++ ) = 0 ;

where Fp denotes the nite part, meaning the constant term in an asymptotic expansion. We also
prove that we have, as" goes to0* when vanishes,

" P P 2 " P P 1 "
logdet( gcuspy; ) = 2a(") oi  2a (") pj + 3 hra (%)
pcusp j=kp+l p cusp j=kp+l

P P
+2k( ; )loga(") % logsin p;  3hrlog2+o(1):
p cusp j=kp+1



1.6 A Deligne-Riemann-Roch isometry

Proving theorem 8 is now simply a matter of putting all previous results together. Indeed, the
isomorphism part of it is given by Deligne's result, and getting an isometry can be done by studying
the case whereS is a point, X is a modular curve, andE is a vector bundle such as described
above. First, we use the regularization of all three factors on the right-hand side of the truncated
isometry. We use the combined singular term, denoted byR (") in this introduction, to see that
we can de ne the singular determinant as

0 _ = 1 _get® ¢ .
det” 5 = "I!lrrzj+ r(y det &

the determinant on the right-hand side above being the limit of the determinants for the smooth
approximations. It should be understood that this quantity is not the determinant of an operator,
as the Poincaré metric onX and the canonical metric onE are singular, but an ad-hoc de nition.
Using the glueing formulae discussed in the paragraph on analytic surgery, we can then restate the
limit more conveniently as

log det’ @ = Ce+3k(;)log2+logZ® (1)+log(d)+ 5[g 1]log2
P P
+21v 29 1)+ 1log2 : +1 v log 2;
pusp j=

whereg is the genus ofX , and Cg is the truncation constant. As a consequence of the isometry,
we can get an arithmetic Riemann-Roch formula. The sections; have been assumed to be disjoint
for simpli cation only.

2 Potential applications and future work

Computation of the truncation constant

A part of theorem 8 that still remains to be determined is the truncation constant Cg . So far, it can
only be computed when all ; vanish, in which case the metric onE is smooth, by using a direct
generalization of the Polyakov formula presented in [76], and the same type of arguments as those
developped in [47] to deal with the jump operator. It should be noted that the conformal properties
of Dirichlet-to-Neumann operators have been studied in [55] by Guillarmou and Guillopé. However,
due to the absence of Polyakov formulae for vector bundles and Dirichlet boundary conditions, and
due to the complicated nature of the jump operator when the metric on the vector bundle changes,
the constant Cg cannot yet be computed in general. Here are two possible leads towards achieving
that goal.

1. The rst one is to use a Mayer-Vietoris formula to regroup the terms appearing in the
truncation constant to obtain a determinant on the whole modular curve, and then use
another such formula proved by Wentworth in [101] to break it apart again, this time with
Alvarez boundary conditions As explained by Wentworth, these boundary conditions have the
advantage that a Polyakov formula can be found. Using the methods for nding asymptotics
of determinants of jump operators presented by Wentworth in [101] and expanded by Kokotov
in [66], it stands to reason that Cg could be computed in general.

2. The most satisfying way to solve this problem would be to nd a Polyakov formula for vector
bundles and Dirichlet boundary conditions. Unfortunately, it does not appear that one can
easily be found. Even if such a formula was obtained, one would still need to use the methods
of Wentworth and Kokotov to deal with the jump operators.
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Elliptic points

In this thesis, all Fuchsian groups of the rst kind are assumed to be without torsion, which means
that the modular curve has no elliptic points. The reason for that choice is not very deep. The
computations of relative determinants using the Selberg trace formula have already been made,
though not stated here, even if has elliptic elements, but computations similar to the ones made
in chapter 4 would have to be performed around elliptic points. The same methods, in particular
the Ramanujan summation process, are expected to work, but this will require some time.

Curvature formulae and moduli spaces

Following [93], where Takhtajan and Zograf de ne a Quillen metric on modular curves and certain
endomorphism bundles in order to get a curvature formula, it would be interesting to derive
similar results in the more general setting described in this thesis. This would also lead to a deeper
understanding of the moduli space of parabolic bundles.

Applications in Arakelov geometry and analytic number theory

The rst consequence of the Deligne-Riemann-Roch isometry proved in this thesis is an arithmetic
Riemann-Roch theorem. This formula is stated under the assumption that the sections ; are
disjoint, but generalizing that would only be a matter of taking intersections at nite places into
account. As a result, in the same manner as [47, Sec. 10.2], one could hope to derive an explicit
formula for the rst non-zero derivative of the Selberg zeta function in certain cases. It should be
noted that the behavior of the Selberg zeta function and its derivatives atl is important in the
work of Jorgenson and Kramer, for instance in [61].

Another interesting consequence in Arakelov geometry would be an arithmetic Lefschetz formula,
of the same type as the one proved by Kohler and Roessler in [65]. The original aim of this thesis
was actually to get this formula. It only evolved into nding an isometry when it was realized that
there were essentially no added di culty.

Modular forms with Nebentypus

Let N 2 N be an integer, and consider for a congruence subgroupj.e. a subgroup ofSL; (Z)
containing a subgroup
a b
(N) = c d 2SL,(2); a d 1 modN; b ¢ 0 modN
Both are identi ed to their image in PSL,(Z). Let be a character of , which we assume is non-

trivial. A modular form with Nebentypus of weight 2k with respectto is a functionf :H! C
which is holomorphic, including at the cusps, and such that we have

f( 20 = ()(cz+ d*™f (2)

for any element of . Such a function can be identi ed to a global section of the line bundle! XL
on X, where! is the holomorphic cotangent bundle, andL is the line bundle induced by . We
consider the casek = 1. By Serre duality, we can identify this space of global sectiondd© (X;!L )
toH! X;L ! -. Furthermore, since is non-trivial, the spaceH® X;L ! equals zero. Applying
the arithmetic Riemann-Roch theorem could provide a way to compute the Petersson norm of these
modular forms in terms of special values of Selberg zeta functions.
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Higher dimensions

A natural question also arises from the considerations made in this thesis: are there generalizations
to higher dimensions? The notion of modular curves would have to be replaced by that dffilbert
modular varieties. Even the case of Hilbert modular surfaces is vastly more complicated. The aim
would not be to get a Deligne-Riemann-Roch isometry in this case, as such a result does not exist
for smooth metrics in relative dimension 2, but obtaining an arithmetic Riemann-Roch theorem
could be envisioned. Compared to the case of modular curves, there is an added complication right
from the beginning, which is that Hilbert modular surfaces are not smooth objects. One would
rst need to resolve the singularities, using the work of Hirzebruch in [59]. The truncation of the
metrics, which we perform here, has no analog for surfaces, and there does not appear to be a
simple way around that. It is still a very interesting open question, and it has been conjectured
by Freixas i Montplet, for instance in [46, 48], that special values of ShimizuL -functions and their
derivatives should appear.

Relations to other approaches

As we have already mentioned, several results related to the work presented in this thesis have been
obtained, by Hahn, De Gaetano, and Finski, among others. Though the methods they use bear
no link the ones used here, it would be interesting to see if combining these di erent approaches
could yield better results.
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Chapter 1

Modular curves and unitary
representations of Fuchsian groups

In this rst chapter, the aim will be to present the situation we will be dealing with in this text,
i.e. that of modular curves of Fuchsian groups of the rst kind, and of unitary representations of
such groups. The notations de ned here will be adopted throughout the rest of this document.

1.1 Fuchsian groups

This section is devoted to introduce the notions of Fuchsian groups of the rst kind, and of modular
curves. There are several possible references for a more comprehensive presentation. For instance,
one could follow Venkov's or Iwaniec's work, in [60, 97, 98]. Although the context is slightly

di erent, as it only deals with Fuchsian groups of a stronger arithmetic nature, the reader is also
referred to [34]. As we will see, Fuchsian groups are a particular type of subgroups &SL; (R),
which will later be divided into two kinds. We will take some time to review these notions.

De nition 1.1.1.  The special linear group SL; (R) is de ned as
( " # )
a b
SL(R) = M = d 2M3(R); detM = ad bc=1
c

The standard topologyon SL, (R) is the topology inherited through its canonical inclusion in R*
obtained by sending a matrix as above to(a; b;c;d.

Proposition 1.1.2.  The center of the special linear group is given by
Z(SL2(R)) = f I25120:
The standard topology onSL, (R) is compatible with the action on it by the center.
De nition 1.1.3. The projective special linear groupP SL; (R) is de ned as the quotient
PSL, (R) = S|2(R) =f 129 :

of SL, (R) by its center. The standard topologyon P SL, (R) is de ned as the quotient topology
induced by the standard topology onSL; (R).

De nition 1.1.4. A subgroup of PSL; (R) is said to beFuchsian if it is discrete.
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Example 1.1.5. The projective special linear groupP SL; (Z) is Fuchsian.
De nition 1.1.6. A non-trivial element of PSL, (R) is said to be:
elliptic if we have0 6 (Tr )2 < 4
parabolic if we have (Tr )2 = 4;
hyperbolic if we have 4 < (Tr )Z.

This classi cation is also used for any subgroup ofP SL, (R), in particular for Fuchsian groups.

Remark 1.1.7. The square trace of any element ofP SL, (R) is well-de ned, as such elements
can be lifted to the special linear group up to sign.

1.1.1 Action on the Riemann sphere and the upper half-plane

One of the de ning aspects of the groupP SL; (R) is given by its action on the upper half-plane,
and more generally onP* (C), which is the compacti cation of C by adjunction of an in nity point.
Unless otherwise speci ed, we will denote by a subgroup ofPSL; (R).

De nition 1.1.8.  The upper half-planeH is de ned as
H = fz2C; Imz>0g :
It is endowed with the restriction of the canonical topology on C.
Proposition 1.1.9. The Riemann sphere can be partitionned as
PI(C) = Ht Ht P'(R);

with P! (R) beingR tflg , and 1 denoting the in nity point added to de ne P! (C).

Proposition 1.1.10. The group PSL, (R) acts on the Riemann sphere by

PSL, (R) ! S P1(O)
h i
a b az+b
= | | =
c d 7! z 7! z —+d

with the conventions1=0 = 1 and 1=1 = 0. This action preservesH, as well asH and P! (R),
and thus induces one on the upper half-planél.

Proposition 1.1.11. A subgroup of PSL,(R) is Fuchsian if and only if its action on H is
properly discontinuous, i.e. if for any compactK  H, the setf 2 ; K \ K 6 ;g is nite.

From now on, we consider a Fuchsian group .

De nition 1.1.12. A point z 2 P! (C) is said to be:
elliptic with respectto ifitis xed by an elliptic element of ;
parabolic with respect to if it is xed by a parabolic element of ;

hyperbolic with respect to  if it is xed by a hyperbolic element of

Remark 1.1.13. The mention with respectto  will be dropped when no confusion can arise.
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Remark 1.1.14. Let 2 , which we write, up to sign, as a matrix

a b

c d

of determinant 1. A xed point z 2 P! (C) is then a solution of the equation
cz2+(d az b = 0:

The solutions of this equation are studied by looking at the discriminant

D = (d a?+4bc = (d+a)?+4(bc ad) = (d+a)? 4:

The number and location of such solutions are then entirely characterized by the trace of the
element , which gives the following proposition.

Proposition 1.1.15. An element 2 is:

elliptic if and only if it has two xed points in P! (C), one in H and another one inH;
parabolic if and only if it has exactly one xed point in P! (R);

hyperbolic if and only if it has exactly two xed points in P! (R).

Example 1.1.16. Let us study the parabolic points for the action of PSL, (Z) on P! (C). For a
parabolic element of this group, the discriminant D of the equation seen above is

D = (r )» 4 = 0;
which means that has a single xed point in P! (R), given by

_ ad :
Z—T2P1(Q).

Conversely, any pointz 2 P! (Q) can be senttol by means of an elemeng of PSL, (Z). Having
11 _ .
01 1 =1 ;
we see thatl , and thus z, is a parabolic point for the action of PSL, (Z). The set of parabolic
points for this group is therefore P* (Q).

Remark 1.1.17. The result presented above forP SL, (Z) still holds for other Fuchsian groups
of great arithmetic interest, like congruence subgroups. However, the same cannot be said for the
more general groups we study here.

Proposition 1.1.18. A point z 2 P! (C) is of at most one of the three types described above.
Proposition 1.1.19.  Let z 2 P! (C). The stabilizer , ofzin is

nite and cyclic if z is elliptic;

in nite and cyclic if z is parabolic.

Proposition 1.1.20. The group is without torsion if and only if it has no elliptic elements.
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Remark 1.1.21. The stabilizer of 1 in PSL,(Z) is generated by the translation
_ 11
T = 01
Proposition 1.1.22.  Let p be a parabolic point for . There exists an elementg, in PSL, (R)
such that we haveg, 1 = p and

_ 11 1.
p_gp 0 1 gp'

Remark 1.1.23. This proposition will be crucial in this document, especially in chapter 4, as it
will allow us to make explicit computations. We will always denote by g, an element ofP SL, (R)
such as in this proposition.

Remark 1.1.24. Note that, in proposition 1.1.22, we get exactly the translation T, and not some
power of it. If  is a congruence subgroup, we can require thag, belongs toP SL, (Z) at the cost
of getting only a power of T.

1.1.2 Limit sets and the two kinds of Fuchsian groups

As we have already mentioned, Fuchsian groups are divided into two kinds, based on the nature
of their limit sets. The topology considered here is the usual one oR* (C).

Proposition 1.1.25. The set of accumulation points in P! (C) of an orbit zwithz2 His
included in P! (R), and is independant ofz.

De nition 1.1.26.  The limit set of the Fuchsian group is de ned as

() = zn z,;

meaning the set of accumulation points of  z.

De nition 1.1.27.  The group is said to be Fuchsian of the rst kind if the limit set () is
the whole real projective line P* (R). It is said to be Fuchsian of the second kindotherwise.

Example 1.1.28. The group P SL; (2) is the most classical example of Fuchsian group of the rst
kind. Some of its subgroups are also of the rst kind. For instance principal congruence subgroups

(N) = g 2SLy(Z); a d 1 modN; b ¢ 0 modN ;

a
Cc

or rather their image in PSL, (Z), are Fuchsian of the rst kind, where N 2 N is a strictly positive
integer. In the same spirit, the image inP SL, (Z) of the groups

1(N) = i 3 2SL,(Z); a d 1 modN; ¢ 0 modN ;
_ a b :
o(N) = c d 2SL,(Z); ¢ 0 modN

are also Fuchsian of the rst kind, and are the most important such groups after the principal
congruence subgroups. More generally, evergongruence groupi.e. every subgroup of PSL; (2)
containing any ( N) is Fuchsian of the rst kind.

Proposition 1.1.29. Let °be a normal subgroup of . The limit sets of and ©are equal.
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1.1.3 The Poincaré metric

The aim of this paragraph is to present a way to measure distances and volumes related to the
upper half-plane, called a metric.

De nition 1.1.30.  The Poincaré metric on H is given in the canonical coordinates by

dx2+dy? _ jdz?

ds2 = :
hvp y? (Im z)2

Remark 1.1.31. This Poincaré metric was de ned using a notation which we must make clear.
For any point z = (x;y) of H, we can consider the tangent space ofl at z, which is isomorphic
to C. In the canonical basis of this tangent space, given by the derivations@=@and @ =@ yve
consider the inner-product given by the matrix

1=y 0
0 1=y
The volume form associated to this metric is given by
| _dx~Mdy |
. hyp - T .

The measure onH de ned by this is thus a density measure with respect to the restriction of the
Lebesgue measure og.

Proposition 1.1.32.  The Poincaré metric is invariant by the action of PSL; (R).

1.1.4 FRFundamental domains

As for every group action, the shape and properties of fundamental domains can be studied, and
yields interesting results here, as it allows us to give a more practical separation for Fuchsian groups
of the rst and second kind. It will also be the occasion to clear up some misconception.

De nition 1.1.33. A subsetF of H is said to be afundamental domain for the action of onH
if the orbit z of any point z 2 H intersects F in one and only one point.

Example 1.1.34. For some explicit Fuchsian groups, a fundamental domain can be computed
explicitely. For instance, here is the usual fundamental domain for the action ofP SL, (Z).

1 1

Figure 1.1 A fundamental domain for the action of PSL, (Z) on H
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As we will see shortly, the fact that P SL, (Z) is Fuchsian of the rst type made it possible to nd a
fundamental domain whose boundary igpolygonal in the sense that its sides are pieces of geodesics
for the Poincaré metric. It should be noted, in this case, thatl is a vertex of said polygon, but
does not belong to the fundamental domain, as it is not a point inH.

Proposition 1.1.35. Two fundamental domains for the action of on H have the same volume.

De nition 1.1.36.  The covolume of the Fuchsian group is de ned to be the volume of any of
the fundamental domains for its action on the upper half-plane.

De nition 1.1.37.  The extended upper half-planeH is de ned as

H = Htf pparabolic for g :
Remark 1.1.38. It can be seen that preserves the set of parabolic points. Thus, its action on
the Riemann sphere induces one ol . The group also preserves the set of elliptic points.

Proposition 1.1.39.  If the action of on H has a fundamental domain with nite volume for
the Poincaré metric, then is Fuchsian of the rst kind.

Remark 1.1.40. Using this proposition, we can see once again thalP SL, (Z) is Fuchsian of the
rst kind. Indeed, denoting by F the fundamental domain from this example, we have

Z,., Z Z -
VolF = Ty = - QL = [arcsin x]1=2 = =
1=2 Pz Y? =2 1 x? 1=2 3

The same domain would of course not have nite volume for the Lebesgue measure.

Remark 1.1.41. The converse to the proposition above is false. Let be a Fuchsian group of the
rst kind without torsion and with nite covolume. We now consider a normal subgroup  © with
in nite index of . The limit sets of %and being equal, as °is normal in , the group ©Cis
also Fuchsian of the rst kind. Since it has in nite index in , any fundamental domain must have
in nite volume.

Remark 1.1.42. Itis often implicitely assumed that Fuchsian groups of the rst kind are nitely
generated, as in [60, Prop 2.3] or in [97, Thm 1.2.1]. Even though this is actually not automatic,
it will be in our framework.

Proposition 1.1.43. Assume is nitely generated. Then s of the rst kind if and only if it
has nite covolume. In this case, there are nitely many orbits of parabolic and elliptic points.

From now on, we will work with a nitely generated Fuchsian group of the rst kind

De nition 1.1.44.  The group is said to be cocompactif its action on H has a compact funda-
mental domain.

Example 1.1.45. The group P SL; (Z) is not cocompact, asl does not belong to the fundamental
domain. It is actually a more general result, which constitutes the next proposition.

Proposition 1.1.46. The group is cocompact if and only if there are no parabolic elements.

Theorem 1.1.47. The group is entirely characterized by the datum of a nite set of generators,
comprised of 2s hyperbolic elementsH,; and H,.;, of r parabolic elementsPy, and of n elliptic
elementsE;. The latter are of nite order, and all these elements are linked by the relation

[HaiisHoil:ii[His;Hos] Pt PrEL i iiEn = 1o
Here, we have denoted by; ] the commutator of two matrices. Furthermore, one can choose a
fundamental domain for the action of on H which is a closed polygon, in the sense that its sides
are pieces of geodesics for the Poincaré metric.
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Remark 1.1.48. This theorem is stated at the beginning of [97, Sec. 1.2], and its rst part can
be reformulated to say that is the quotient of a free group of nite rank by the appropriated
relations between the generators.

1.2 Modular curves

Let be a Fuchsian group of the rst kind. In the last section, we saw what some fundamental
domains for the action of on H may look like. As for every group action, any fundamental
domain is in bijection with the set of orbits, also called the quotient space. In our case, this last
set will be of a great interest.

Theorem 1.2.1. The quotient space nH can be endowed with a structure of Riemann surface. It
is compact if and only if there are no parabolic points.

Remark 1.2.2. As we will see later in this section, this Riemann surface can always be compact-
i ed by adjunction of a nite number of points, called the cusps These play the role of in nity
points , in the same spirit as the compacti cation of the complex plane into the Riemann sphere.

1.2.1 Topology

In order to de ne a structure of Riemann surface on nH, we must rst de ne a topology on it.
Even though the context is slightly more general, we follow the presentation from [34, Sec. 2.1].

De nition 1.2.3. The quotient topology on nH is the nest topology making continuous the
canonical projection

H ! nH
z 7! z
In other words, a subsetU of nH is openif *(U) is open inH.

Proposition 1.2.4. Let z and w be two points inH. There exist two open neighborhood$&) of z
and V of w such that forany 2 , having U \ V 6 ; implies that we have z = w.

Remark 1.2.5. In particular, for any non-elliptic point z, there exists an open neighborhoodJ
of z which is disjoint from its image by any 2

Proposition 1.2.6. The space nH is Hausdor .

1.2.2 Charts

The next step which must be taken in order to turn nH into a Riemann surface is to de necharts
around the image (z) of each point in the upper half-plane. we follow [34, Sec. 2.2] here.

Around the image of points with trivial stabilizers. The easiest type of points to deal with
is the image of non-elliptic points, which have trivial stabilizer in . Let z 2 H be such a point,
and U be an open neighborhood ofz in H satisfying the statement made in remark 1.2.5. The
restriction of the canonical projection

u ! (V)

is then a homeomorphism, and its inverse yields a chart around (z).
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Around the image of elliptic points. Dealing with elliptic points is slightly more complicated.
Let z be such a point. LetU be an open neighborhood of in H such that for every element 2
we have

uvue,; =) 2 ;:

The image of U by the projection is an open neighborhood of (z), given explicitely by

) = ,nU -
We now consider the transformation
. . PY(C) ! Pl (C)
w 7o Wz
W Z

which sendsz to 0 and its complex conjugatez to 1 , and denote by m the order of the stabilizer
of zin . Up to reducing U, we assume it is a euclidean disk of radiug®™™ jim zj, with " > 0
small enough. We then have, for everyw 2 U,

w 7]

6 nl=m .
jw 7] '

Jz(w)j =

The open neighborhood , (U) of 0 in C is then the open diskD 0;"*™ of radius "**™. Fur-
thermore, we see that conjugation by , transforms the stabilizer , into the group ., generated
by the rotation of the complex plane around the origin, with angle 2=m . Thus , induces a
homeomorphism

z vy ! mnD 0Q;"m
The m-th power application
PL(C) ! PL(C)
z 7! m

then identi es the quotient ,nD 0;"*™ to the open disk D (0;"), thus giving an open chart
around (2).

Remark 1.2.7. By extension, the image of elliptic points in nH, which are in nite number, are
also called elliptic points.

Modular curves We have now seen that the quotient space nH is a Hausdor space endowed
with an atlas. This yields the following theorem.

Theorem 1.2.8. The space nH is a Riemann surface, called a modular curve.

Remark 1.2.9. The term modular curve is traditionally reserved for the quotients by Fuchsian
groups of the rst kind included in PSL, (Z). For lack of a better term, this is extended to the
more general case studied here of Fuchsian groups of the rst kind included if® SL, (R). This
choice is for instance made by Zagier in [103].

Remark 1.2.10. The modular curve is compact if and only if there are no parabolic points.
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1.2.3 Compacti cation

In general, the modular curve nH is not compact, as there may be parabolic points. We will now
see how to add them, so as to get a compact Riemann surface. As was already mentioned, the
action of on P (C) preserves the set of parabolic points, and thus acts on it, with a nite number

of orbits, as is of the rst kind. This results in an action of on

H = Htf pparabolicg ;

We will consider the quotient set

nH = ( nH)t ( nfpparabolicg) ;

i.e. the modular curve nH to which we have added nitely many points.

De nition 1.2.11.  The elements added to nH to get nH are called thecusps

Topology. The rst step towards studying nH is to extend the topology already de ned on
the modular curve nH. We follow [34, Sec. 2.4]. We begin by de ning open neighborhoods of
each parabolic pointinH . Let p2 P*(R) be a parabolic point for . We considerg, 2 PSL; (R)
such that we have

o 1
*1 #+
1

1

W W 0o
o
1

p = O Gt = ghlig,?*

We will thus only de ne open neighborhoods ofl in Htflg . Forany 0<"< 1, we set
N TR
a(") = 5 log :

The topology on Htflg is then de ned as being generated by the topology orH and sets of the
foom R Ja(");+1 [tflg . Therefore, we can de ne the topology onH as being generated by
the topology on H and the setsg, (R Ja(");+1 [tflg ).

Proposition 1.2.12.  The quotient space nH , endowed with the quotient topology, is Hausdor .

Remark 1.2.13. The inclusion of H in the Riemann sphere is not continuous.

Charts.  Now that we have made nH a Hausdor topological space, we need to de ne an atlas
over it. The one already de ned for the modular curve nH can be used, and we only need to
de ne charts around each cusp. We will use the last paragraph for that. Up to reducing', we have

(R Ja():;+1D) * pn(e(R Ja(");+1 D)

as a homeomorphism. The transformationg, further induces a homeomorphism
g% : hrin(R Ja(");+1[ ! pn(gp (R Ja(");+1 ) :
The action of T on R Ja(");+1 [ is quite simple, and we note that we have a homeomorphism

HTin(R Ja();+1D ' S* Ja(");+1[;
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with S* being the unit circle, which is parametrized by x 2 [0; 1[. This set is now homeomorphic
to a punctured open disk of radius”, using the application
st Ja(i+1[ D (0:)
(%;y) 7 e )

the center of this disk corresponding to the cusp. This provides a chart around the cusp (p).
This open neighborhood ofp, or rather its image in nH , is denoted by Uy .

Remark 1.2.14. Depending on the situation, it will be better to see Uy~ asS* Ja(");+1 [, or

a the punctured disk D (0;"). We will do so without explicit mention of the homeomorphisms.

Compact modular curves. Using the last two paragraphs, the quotient space nH is a Haus-
dor topological space endowed with an atlas, hence a Riemann surface. There is one crucial
advantage with regard to the modular curve nH.

Theorem 1.2.15. The spaceX = nH is a compact Riemann surface.

Remark 1.2.16. It is common to also call nH a modular curve, with context making clear
whether we consider the compacti cation, or the quotient nH.

De nition 1.2.17.  The punctured modular curve associated to is de ned to be

Z = ( nH)n(fpcuspgtf gelliptic pointg) = ( nH)nfqelliptic pointg ;
i.e. the compacti ed modular curve X from which we have removed both cusps and elliptic points.

Remark 1.2.18. The reason why this punctured modular curve is an important object will be
made clear shortly, and has to do with the nature of the Poincaré metric near those points.

1.2.4 The Poincaré metric on a modular curve

As mentioned in proposition 1.1.32, the Poincaré metric onH is invariant by the action of the
group PSL; (R), and thus by that of . This means that it induces a metric on the punctured
modular curve Z, as metrics may have problems at xed points.

Around cusps.  We have seen that natural open neighborhoods of a cusp are homeomorphic,
and actually di eomorphic, to open neighborhoodsS* Ja(");+1 [of 1 in H. Since the Poincaré
metric is invariant by the action of the transformation g, this homeomorphism between a neigh-
borhood of p and one ofl1 sends the Poincaré metric on itself. This is not the complete picture
of what happens around a cusp, as we can also skl as the punctured diskD (0;"), using the

application

St Ja(m);+1[ ! D ")
(x;y) 71 @ (xriy) !

with S* being once again parametrized by 2 [0; 1[.

Proposition 1.2.19.  The application above induces an isometry

dx2 +dy?2 jdzj?

1 "y ; (izi logizi)?
S R ' (izilogjz))?
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Remark 1.2.20. Using the description provided in this proposition, we see that the Poincaré
metric has asingularity at every cusp, since such a point corresponds to the center of the punctured
disk D (0;"), and we have

1

I|m PTSE = +1
iz 0 (jzjlogjzj)

This represents a loss of control regarding the way to measure distances when reaching the cusp.

Around elliptic points. Let g2 nH be an elliptic point. Having previously described canon-
ical open neighborhoodsUg of g which are di eomorphic, to disk of radii ", we can use these
applications to give the Poincaré metric on this last disk.

Proposition 1.2.21. We have an isometry
1

0
2 2 . .2
Up nfag; C00 B @) Aidz) K

2 _ —
Yy m2jzj2 2=m 1 ] Zj2—m

Remark 1.2.22. The integer m, which is the order of the stabilizer of any lift of q to H, being at
least 2, the Poincaré metric also has a singularity at the elliptic points.

Graphic representation of a modular curve. A modular curve such as studied in this doc-
ument can be represented in the following way.

Figure 1.2 An example of modular curve

The four points at the bottom of this drawing represent the cusps. It should be noted that they are
smooth points, in the sense of di erential geometry. They are manifested in this way to emphasize
the singularity of the Poincaré metric at these points.

1.3 Unitary representations of Fuchsian groups

There are a few more crucial notions we must see before diving into the heart of this text, meaning
that of unitary representations of Fuchsian groups of the rst kind, their associated at unitary
holomorphic vector bundles, and their extensions to the compacti ed modular curve. For simplicity,
we will make an assumption, which will hold in everything that follows: the Fuchsian group has
no torsion, though it is expected that most of this text can be extended to this case.
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De nition 1.3.1. A unitary representation of rank r of is the datum of a group morphism

! U (C) ;
where U; (C) denotes the spacer r complex unitary matrices, i.e. matrices U 2 M, (C) such
that we have tUU = I,.

Remark 1.3.2. There is a well-known result in linear algebra which we will use in the following:
any unitary matrix can be diagonalized in an orthonormal basis. The next proposition is a direct
consequence of this fact.

From now on, we consider such a representation of the xed Fuchsian group

Proposition 1.3.3.  Let p be a cusp, and , be a generator of the stabilizer op in . There exists
an orthonormal basisep;1, ..., €, of C" in which the matrix ( ,) can be written as

2 3
( p) E e % ;

where each ; is a real number, well-de ned modulol.

De nition 1.3.4. The representation , which is often called the monodromy, is said to satisfy
the nite monodromy at the cusps hypothesis if every ,; is rational.

1.3.1 Flat unitary vector bundles

In this paragraph, we will see that to every representation as above, we can attach a at unitary
holomorphic vector bundle E over the punctured modular curve Z.

Proposition 1.3.5. The action of on H and the unitary representation induce an action on
the trivial vector bundle of rankr by

! SH C" _
70 vy 7 z ()]

Proposition 1.3.6. The quotientE = n(H C") is a at unitary holomorphic vector bundle
over the punctured modular curveZ.

Proposition 1.3.7. A section of E over Z can be identied to a function f : Z !  C' verifying

f(C 22= OFO®

for every point z of Z. Similarly, a section of E over an open neighborhoodJp,» of a cuspp can
be identi ed to a function g: R Ja(");+1 [ with

gix+1y) =  (pfxy):

Proof. We will only write the details for the rst part of this proposition, as the second one is
completely similar. By de nition, a section s of E over Z is a function

s : H ! H C'
z 7' (z;f(2)
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which is compatible with the actions of onH and onH C'. This gives

( zf( 2) = s(C 2 = s(z) = (zf@) = ( z (O @)

and completes the proof.
O

De nition 1.3.8. A section s of E over Z is saif to be aconstant section if it can be identi ed,
under the last proposition to a constant vector-valued function

f : H ! Cr
which is compatible with the representation

Remark 1.3.9. Such a function being constant and compatible with , its constant value must
belong to the space(C') of xed vectors. In particular, there can be no constant section if for
every cuspp, no ,; vanishes modulol.

1.3.2 Extension over the cusps

The vector bundle E attached to such a representation has only been de ned over the punctured
modular curve, which here is nH, as we assumed there were no elliptic points. It will be important
in what follows to be able to extend these bundles over the whole compacti ed modular curve.
This extension is not unique, inasmuch as it depends on a choice of branch of logarithm. This
extension is known as Deligne's canonical extension, for which the reader is referred to [31, 77].

Theorem 1.3.10. For any choice of lift ; to Q, where p runs through the cusps ofX andj is
an integer betweenl and r, there is a canonical way to extend the at unitary holomorphic vector
bundleE to X. These extensions are pairwise non-isomorphic.

Proof. The vector bundle E being already de ned over Z, we note that it is enough to extend
it from every open neighborhood U, to the associated cusp. Letp be one, and consider an

orthonormal basis (ey; )jr:l of C" such that we have

(pep = CA €p;j

Here, the rational numbers ,; are only each de ned modulol. We consider particular lifts, still
denoted the same way. Using the description ofjy,. as a vector bundle overS® Ja(");+1 [,
we have a decomposition

Lr
EJUD:" = Lp;
j=1
where the line bundleL; can be de ned as
Lpj = Hrin((R Ja(");+1] Cey;):

Here, T is the translation (x;y) 7! (x+1;y), and the action of the group it generates on the
trivial bundle (R Ja(");+1[) C is given by the character

pj o HTi ! C
T 71 €& w
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We can now sed,; as a free sheaf of rankKl, as it is trivialized by the section

Spj - (xy) 7V eF o W)

Seeing nowU,: as the punctured diskD (0;"), we have an isomorphism of sheaves

Lpy " O b (0"Spj
where Op (o) is the sheaf of holomorphic functions on the punctured disk of radius’. The
extension is then de ned as

Lo " O pomSpi

and we extendE by taking the direct sum of these free sheaves.
O

Remark 1.3.11. The extension ofE de ned in the proof above depends on the lifts ,; as the
sectionssy;j used to trivialize Ly; do. The resulting vector bundle E is in general no longer at.

De nition 1.3.12.  For any extension of the vector bundleE as in theorem 1.3.10, the choices of
lifts p; are called theweights of the vector bundle.

Proposition 1.3.13. Consider an extensionE of a vector bundle associated to a unitary repre-
sentation . We have an isomorphism

HO(X;E) ' (C") ;

where the right-hand side denotes the space of xed vectors, and the one on the left is ®¢h
Dolbeault cohomology space, describing global holomorphic sections.

Proof. This result constitutes proposition 1:2 of [69].

1.3.3 Singular metric on the extensions

In this last part, we will see that any of the previously de ned extension has a canonical metric
de ned on it, which is in general singular, in a way to be de ned. Let E be such an extension,
with weights ;.

Proposition 1.3.14.  The canonical hermitian metric on C" induces a hermitian metric on E
over Z, so that the sectionss,; form an orthogonal frame, with

kSp;j ki = ij2 pi
Proof. To prove this reuslt, recall that we have de ned s,; by

Spj 1 (xy) 7V €A e (V)
which then gives

jsej OGY)2 = e (ki) 2w

26



Going from the interpretation of Up as the productS! Ja(");+1 [ to the one as the punctured
disk D (0;") then yields the result.
O

Remark 1.3.15. We say that this metric is in general singular at the cusps, since we have

8 ,

2 0 if pi = 0
. 2 H — .
ZI|!mO kspj K, = S 1 if =1

+1 if <0

though some authors prefer the termdegeneration when the limit is zero. We will only use the
term singularity to simplify. The only way not to have any singularity is for every weight p; to
vanish. This does not necessarily imply thatE is the trivial bundle of rank r however.

De nition 1.3.16. This metric on E is called the canonical metric.
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Chapter 2

Analytic surgery

This chapter is devoted to the study of a set of techniques regrouped under the term analytic
surgery . The objective is to understand how determinants of certain Laplacians vary when either
the object on which they act, or the metric by which they are de ned are themselves variable.

2.1 Background in di erential and complex geometry

Before concerning ourselves with the speci c situation we are studying in this text, we will rst
review some facts about di erential and complex geometry. The reader is referred to [6, 7] among
others, for a more detailed introduction to these notions.

2.1.1 Connections on the tangent bundle

Let M be a Riemannian manifold, whose tangent bundle is denoted by M. The cotangent bundle
of M, denoted by T M, is the dual bundle of TM .

De nition 2.1.1. Let U be an open subset oM . A smooth vector eld overU is a smooth section
of the tangent bundle TM over U. Namely, it is the datum, for every point x 2 U, of a tangent
vector X« 2 TMy of M at x, depending smoothly on the point.

De nition 2.1.2. A smooth metric g on the manifold M is the datum, for every point x 2 M, of
an inner product gy on the tangent spaceT My, so that the function

g(x;y) U ! R
X 7! Ox (Xx: Yx)
is smooth for every open subset) of M, as well as every smooth vector eldsX and Y over U.

De nition 2.1.3.  Let U be an open subset oM . A smooth di erential 1-form over U is a smooth
section! of the cotangent bundleT M. In other words, it is the datum, for every point x 2 U, of
a linear form ! , on the tangent spaceT My, varying smoothly with respect to the point.

Remark 2.1.4. Similarly, a smooth dierential k-form on U is a smooth section of thek-th
exterior power XT M of the cotangent bundle.

De nition 2.1.5. Let U be an open subset oM . For any smooth di erential 1-form ! on U and
any smooth vector eld X on U, we denote by! (X) the smooth function on U de ned by

L(X) : U | R .
X 70 T, (Xy)
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De nition 2.1.6. A connection on M is a collection of linear operators

rv : G U;TM) ' C T (U,TM TM)

which are compatible with restrictions, and satisfy Leibniz's rule, meaning such that we have

rU(fX)= fruX+d X

for any smooth function f on U, and any smooth vector eld X over U.

Remark 2.1.7. Out of convenience, all these operatorg  are denoted byr . Given the re-
quirement that r be compatible with restrictions, it can readily be interpreted as a morphism of
sheaves, with the added condition that it satis es Leibniz's rule.

De nition 2.1.8. A connectionr on M is said to becompatible with a metric g on M if we have

dg(X;Y) = g(r X;Y)+g(X;ryY),;

for any smooth vector elds X and Y over any open subsetU, where the inner-products gy have
been extended so as to have

g(X; YY) = g (XY);

for any smooth di erential form 2 C! (U;T M).

De nition 2.1.9. Let X be a smooth vector eld over an open subsetU of M. We de ne the
contraction operator x to be

x ¢ C(LTM) I C tu)
! 70 1 (X)

De nition 2.1.10. Let X be a smooth vector eld over U. We de ne the covariant derivative
with respect to the vector eld X to be

rv« = x r = C((UTM) ' C 1 (UTM) :

Proposition-De nition 2.1.11. AssumeM is endowed with a smooth metriog. There exists a
unigue connectionr which is:

1. compatible with g;

2. without torsion, i.e. such that we have

r MOy r M9 = XY

where the term on the right-hand side denotes the Lie bracket of any two smooth vector elds.

This connection is called the Levi-Civita connection associated toqM;g), and denoted byr (M:9)
or by r 9 if no confusion on the manifold can arise.

Remark 2.1.12. One of the aims of this chapter being the study of operators as the metrics
themselves change, it will be important to keep an explicit mention of them in the notations.
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De nition 2.1.13. For any smooth function ' and any smooth metricg on M, we denote byg
the smooth metric on M de ned by
g = €g9:
The metrics g and g are said to beconformally equivalent or simply conformal.
Proposition 2.1.14. Let' be a smooth function onM, and g be a smooth metric onM . The

Levi-Civita connections on M respectively associated to the metricgy and g are related by

ryY = rgY+X(C)Y+Y ()X gXY)grad(') :

Proof. This result is a consequence of a computation made using the Koszul formula for the Levi-
Civita connection. The reader is referred to [8, Thm 1.159].
O

2.1.2 Connections on holomorphic vector bundles

From now on, we will assume thatM is a complex manifold, above which we consider a holomorphic
vector bundle E of rank r. The notions presented below, similar in aspect to those presented in
the last section, are presented so as to insist on the di erences between the real and complex cases.

De nition 2.1.15. A smooth hermitian metric h on E is the datum, for every point x of M, of
a hermitian product hy on the complex vector spaceEy, so that the function

h(s;t) : U ! C
X 7! hy (Sx;tx)

is smooth for every smooth sections;t 2 C! (U;E) of E over U.

De nition 2.1.16. Let U be an open subset oM. A smooth dierential 1-form over U with
values in E is a smooth section! of the tensor product T M E. Similarly, we can de ne smooth
(1; 0)-forms and smooth(0; 1)-forms, both with values in E.

De nition 2.1.17. A connection on E is a collection of linear operators
rv : C(UE) ' C ' (UTM E)

which are compatible with restrictions, and satisfy Leibniz's rule, meaning such that we have

ru(fs) = frys+d s;

for any smooth function f on U, and any smooth sections of E over U.

Remark 2.1.18. Again, mention of the open subsetU will be omitted, and such a connection
will be denoted by r . A de nition using the language of sheaves could be made.

De nition 2.1.19. Let h be a smooth hermitian metric onE. We say that a connectionr on E
is compatible with h if we have

dh(s;t) = h(rs;t)+ h(s;rt)
for every smooth sectionss and t of E over any open subsetU of M.
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Remark 2.1.20. In the de nition above, the hermitian products hy have extended, so as to have

h(s; t)y = h(s;t) :
The dierence between this de nition, and the one that was given in the last section is that
hermitian products are sesquilenar, and not bilinear.

Proposition-De nition 2.1.21. AssumeE is endowed with a smooth hermitian metrich. There
exists a unique connectionr on E such that:

1. it is compatible with the metric h;

2. its (0; 1)-part, meaning its composition with the projection on the space of0; 1)-forms with
values in E, coincides with the Dolbeault operator@: .

This connection is called the Chern connection associated t¢E; h) and denoted byr Eh .

Remark 2.1.22. The (1;0)-part of this connection is denoted byr E;S .

Remark 2.1.23. The reader is referred to [99] for information on the Dolbeault operator@: .

Remark 2.1.24. The fact that the (0O;1)-part of the Chern connection is prescribed to be the
Dolbeault operator, which does not depend on the metrich, means that the (1; 0)-part bears the
information related to h.

De nition 2.1.25.  For any smooth metric h on E, and any smooth section of the endomorphism
bundle End E, we denote byh the smooth hermitian metric on E de ned by

h (s;t) = hes)et

for any smooth sectionss and t of E over U.

Remark 2.1.26. These changes of metric on the holomorphic vector bundl& may at times be
called conformal changes, so as to mirror the changes of metric on the tangent bundle. We will
now see how the Chern connection varies under such changes of metrics Bn

Proposition 2.1.27. Let be a smooth section of the endomorphism bundEEndE, and h be a
smooth hermitian metric on E. The Chern connections associated t¢E; h ) and (E;h) respectively
are related by

rh = e e 1l e e+@;
where the adjunction is taken pointwise with respect to the hermitian produchy.

Proof. Let s andt be smooth sections oE over an open subselJ of M. We have

h e e rfg e e+@ sst+h s;e e g1l e e+@t

he@set+hrff e est+hese@t+hsri) e et

= h@s; e et +hrfy e est

+h e es@t +hsrig e et

I
Q@
=0
w
®
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Q@
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Having obtained the compatibility of the connection we study here with the metric h , we now
note that its (0; 1)-part is given by the Dolbeault operator. The unicity in the de nition of the
Chern connection then yields the result.

O

Remark 2.1.28. Considering a metric on the manifold is not needed to de ne the Chern connec-
tion, which is why we have not considered any conformal change on the tangent bundle. This will
not be the case in the next section, where we considdormal adjoints.

2.1.3 Formal adjoints

We will now investigate the conformal behavior of the formal adjoints of the (1;0) and (0; 1)-parts
of the Chern connection. This time, we also need to take into account a change of metric on the
manifold to get the full picture. The term formal adjoint refers to the adjoint for the L?-hermitian
product on global sections ofE, as explained in [99]. From now on, and unless otherwise speci ed,
we assumeM to be a Riemann surface.

Proposition 2.1.29. Let' be a smooth function onM, and be a smooth section of the endo-
morphism bundleEnd E. The formal adjoint of the (1;0)-part of the Chern connection, relative to
the metricsg on M andh on E, is related to that linked to the metricsg on M and h on E by

E;h 2 r E:h i

g h YO gn -

Proof. Let s be a smooth sections oE andt be a smooth di erential (1;0)-form with values in E.
Assuming both these sections have compact support in the interior of the manifold. We have

(Eh ). — (Eh e
Fo 'Strwmeg n = €Ty 'Set oy gy oy
M;g M:g
D (E;h) E D (E;h)
_ ; . _ ia 2 ;
= e rio. € eset oy, = se r 1o ten
M;g Mg

This completes the proof of the proposition.
O

Proposition 2.1.30. Let' be a smooth function onM, and be a smooth section of the endo-
morphism bundleEnd E. The formal adjoint of the Dolbeault operator, relative to the metrics g
on M andh on E, is related to that linked to the metricsg on M and h on E by

_ _ ” _
@g.;h—ee e @g;hee

Proof. Let s be a smooth sections oE and t be a smooth di erential (0; 1)-form with values in E.
Assuming both these sections have compact support in the interior of the manifold, we have

D E
@sittm gg n = e @sietrwv ey n T S @ ygyen © €U e
M;g - M:g M;g
D E
_ a2 =
B s,e” € € @ (Mig):i(Eh) € et ’\EAih
g

This yields the required formula.
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2.1.4 Laplacians

Having seen how both the holomorphic and the antiholomorphic parts of the Chern connection
behave under conformal changes of metric on the Riemann surfadd and the vector bundle E,
we turn our attention to the Laplacians built from these components.

Chern Laplacian. Among the Laplacians we will de ne, the most natural is the one correspond-
ing to the usual Laplacian for the trivial bundle. We will call it the Chern Laplacian, as it is built
from the Chern connection. Letg and h be smooth metrics onM and E, respectively.

De nition 2.1.31.  The Chern Laplacian is de ned by

gh  _ ‘h h) .

gh = [ (E )g;hr(E )
meaning it is the connection Laplacian associated to the Chern connection, acting on smooth
sections ofE, which are compactly supported in the interior of M .

Proposition 2.1.32.  As an operator acting on smooth sections o, whose compact support is
included in M, the Chern Laplacian is a symmetric positive operator, whose_?-adjoint has the
following domain

n (0]
H2 (M;g);(E;h); ¥" = f2L2((M;0);(E;h);  E"f 2L2((M;9);(E;h)

the Laplacian appearing on the right-hand side being considered in the distributional sense. The
Friedrichs extension of the Chern Laplacian yields a de nite-positive self-adjoint operator de ned
on the intersection of Sobolev spaces

Dom &" = H2 (M;g);(E;h); " \ H (M;g);(E;h); 2"

If M is without boundary, this domain is reduced to the appropriateH ?-space.

Remark 2.1.33. If the boundary of M is non-empty, the Laplacian de ned above is said to be
with Dirichlet boundary conditions, insofar as it acts on functions vanishing on@M

Remark 2.1.34. The notation used here for the Sobolev spaces is quite cumbersome. This is
due to the fact that we may allow M to be non-compact, which means that every elliptic operator
tends to de ne a Sobolev space. Under certain assumptions, comparisons can be made between
these spaces. This is the aim of [39, Sec. 1.3].

Holomorphic Laplacian. Instead of considering the full Chern connection in the de nition
of the Chern Laplacian, we can de ne a Laplacian by only taking the (1; 0)-part of the Chern
connection, as well as its formal adjoint. Letg and h be smooth metrics onM and E, respectively.

De nition 2.1.35.  The holomorphic Laplacian is de ned by

g:h - (E;h) (Esh) .
o - 1o - M0 5

acting on smooth sections ofE, which are compactly supported in the interior of M .

Proposition 2.1.36. As an operator acting on smooth sections o, whose compact support is
included in M, the holomorphic Laplacian is a symmetric positive operator, whosé ?-adjoint has
the following domain

n (0]
H2 (M;g);(E;h); Eh, = f2L2((M;9);(Eh));  EM.of 2L2((M;0);(E;h)
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the Laplacian appearing on the right-hand side being considered in the distributional sense. The
Friedrichs extension of the holomorphic Laplacian yields a de nite-positive self-adjoint operator
de ned on the intersection of Sobolev spaces

Dom &%, = H2 (M;g);(E;h); g \ HE (M;g):(Eih); &%,
If M is without boundary, this domain is reduced to the appropriateH 2-space.

Dolbeault Laplacian. The third Laplace-type operator we consider here is built from the last
remaining piece of the Chern connection, which coincide by de nition with the Dolbeault operator.
Accordingly, it will be called the Dolbeault Laplacian though it is sometimes referred to as the
anti-holomorphic Laplacian. Let g and h be smooth metrics onM and E, respectively.

De nition 2.1.37.  The Dolbeault Laplacian is de ned by

w - @ @ ;

@ gh

acting on smooth sections ofE, which are compactly supported in the interior of M .

Proposition 2.1.38.  As an operator acting on smooth sections oE, whose compact support is
included in M, the Dolbeault Laplacian is a symmetric positive operator, whosé& 2-adjoint has the
following domain

(o]

n
H? (Mig)i(Esh): &' = f2L2((Mig);(Eh):  &'f 2L2((M;9):(E;h)

the Laplacian appearing on the right-hand side being considered in the distributional sense. The
Friedrichs extension of the Dolbeault Laplacian yields a de nite-positive self-adjoint operator de ned
on the intersection of Sobolev spaces

gh  _ 2 . . . . gh 1 . . . . gh
Dom @ = H (M,g),(E,h), @ \HO (M'g)’(E’h)’ @

If M is without boundary, this domain is reduced to the appropriateH ?-space.

Conformal changes. We will, in this paragraph, see how both holomorphic and the Dolbeault
Laplacians vary under conformal changes of metrics on the Riemann Surfadd and the holomor-
phic vector bundle E. Let g and h be smooth metrics onM and E, respectively.

Proposition 2.1.39.  Let' be a smooth function onM , and be a smooth section oEnd E. The
holomorphic Laplacian associated to the metricggy on M and h on E is given by

. h , . .
g = e? rEMW e e rEM e e
L 0 g ,

Proof. This formula is obtained bu putting together propositions 2.1.27 and 2.1.29.
O

Proposition 2.1.40. Let' be a smooth function onM, and be a smooth section oEndE. The

Dolbeault Laplacian associated to the metricgg on M and h on E is given by

gh  _ 2 = = .
= e ‘e e @g;he e @ :

Proof. This formula is obtained by putting together propositions 2.1.27 and 2.1.30.
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Remark 2.1.41. When no change of metric has been e ected on the vector bundl&, one notes
that these two results agree with the better known formulae related to variations of Laplacians
under conformal changes of metrics on the Riemann surface. Here, as we will later see, the presence
of factors lodged between the formal adjoints and the relevant parts of the Chern connections,
although not surprising, will complicate our study a great deal.

Proposition 2.1.42.  The kernel of the Dolbeault Laplacian is invariant under conformal changes
of metricson M and E.

Proof. Let u be in the kernel of the Dolbeault Laplacian %&;h . We have
eZe e @g_he e @u = 0 ;
which then gives
@ gn € € @u = 0:
Taking the L2-product of this section with u, we get
D B E o,
0 = @ g;h € e @uu L2((M;g);(E:h)) - e @u LZ((M;g);(E;h)):

This proves that the sectione @ u vanishes, and the same must be true o@ u. The Dolbeault
operator being independant of the metrics, we have the result.
O

Remark 2.1.43. This result depends entirely on how the Dolbeault Laplacian varies under confor-
mal changes of metrics and does not hold, in general, for the holomorphic or the Chern Laplacian.

Relations between these Laplacians. The three Laplace-type operators we have just de ned
being built out of the Chern connection, it is natural to wonder what relations might exist between

them. In the case of the trivial bundle, this amounts to using the well-known Kéhler identities.

We will use extensions of the Kahler identities, as well as theBochner-Kodaira-Nakano formula.

For more information on this matter, the reader is referred to [33, Sec. 7.1].

Proposition 2.1.44.  The Chern, holomorphic, and Dolbeault Laplacians are related by

gh _ g:h gh .
E;1;0+ @

Proposition 2.1.45 (Bochner-Kodaira-Nakano identity). The holomorphic and Dolbeault Lapla-
cians are related by

o= Bl (B

where is the formal adjoint of the operator L taking a di erential form u to ! ”~ u, with ! being
the Kahler form, and ( E) is the curvature form of (E; h).

Proof. This is theorem 1:2 and corollary 1:3 of [33, Sec. 7.1].

Corollary 2.1.46. The Chern and Dolbeault Laplacians are related by

2 3 = P+ (E)]
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In particular, if the hermitian bundle (E;h) is at, then the formula above becomes

2.1.5 Boundary trace operator

We will now de ne the boundary trace operator which is an extension of the notion of restriction
to the boundary of a manifold. In the case of the trivial bundle, this notion is very well-known.
Since it is less common for sections of a vector bundle, we will spend time reviewing it. In this
section, we consider a Riemann surfachl , not necessarily compact, with a smooth boundary@ M
and a holomorphic vector bundleE over M .

De nition 2.1.47.  We denote by the inclusion of @Min M. The restriction of the holomorphic
vector bundle E to @Mis de ned by the pullback

Ej@M = E :

Remark 2.1.48. Pulling back E to @M has the e ect of removing the complex structure from
the vector bundle, as the boundary @Mis not a complex manifold. Since is the inclusion, the
restriction of E is the vector bundle over @Mwhose ber over x 2 @Mis given by E.

De nition 2.1.49.  The boundary trace operatoris de ned as

em : C(M;E) !' C ' @M;Egm
S 7! Siem

where ;g denotes the restriction of a smooth section.

Proposition 2.1.50.  The operator gu is surjective, and continuous when the norm orC! (M;E)
is the H-norm, and the norm on C*  @M;Egwm is the L2-norm, relatively to smooth metrics g
on M and h on E. It thus extends to a continuous surjective operator

em © H' (M;g);(E;h);r &M 71 L2 (@M;9; Ejem;h

Proof. The continuity of the boundary trace operator g for the norms mentioned in this propo-
sition stems directly from Stokes' formula.
O

Remark 2.1.51. The notion of Sobolev spaces can be de ned using either connections or elliptic
operators. It can be noted that the Sobolev spaces associated to the Chern connection or the
Chern Laplacian are the same.

Remark 2.1.52.  We will later need to consider, in some sense, the adjoint operator ofgu. Using
the proposition above, this would yield an operator

ow * LE(Mig);(E;h)) 7t HY (Mig);(E;h);r (EM)

which is not to our advantage, as we prefer to work withL 2-adjunction. We could consider gm as

a densely de ned operator between the appropriate_?-spaces, whose domain would be the Sobolev
space written above. This construction certainly ts into the de nition of the adjoint operator for

a densely de ned operator between Hilbert spaces. However, since the boundary tracgywm is not
continuous for the L2-norms, we would have no control over the domain of the adjoint.
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Proposition 2.1.53.  The kernel of the boundary trace operator gum is given by

ker @m = HE (M;g);(E;h);r EM

i.e. the H1-closure of the space of smooth, compactly supported in the interior d¥l , sections.

2.1.6 Poisson operator

The last kind of operator we will need to de ne in this section is the so-calledPoisson operator.
Their aim is to provide a way to extend sections of the restricted bundleE;gy de ned over the
compact boundary @M of a (possibly noncompact) Riemann surfaceM .

Poisson operator for the Chern Laplacian. The idea behind this rst type of Poisson oper-
ator is to take a sections of E;gy over @Mand to solve the following Dirichlet problem

g:h —
g tzv =0

@MV = S

for sectionsv of E over M which are regular enough, where the rst equality is to be understood
in a distributional sense. The resolution of this problem will be done in a way similar to the one
presented by Burghelea, Friedlander, and Kappeler in [20, Sec. 2.7].

De nition 2.1.54. Let z be a complex number lying inCnR . We de ne the application , by
. 1 HZ (Mig)i(Esh); " 1 L2((M;g)i(E;h))  H32 (@M:Q; Ejgumih
Y 7! (M:ig)(Eh) 4 7 vV, @mV

As can be gathered from the statement of the Dirichlet problem we aim to solve, the rst step will
be to prove that every ; is bijective.

Proposition 2.1.55.  For any complex numberz 2 CnR , the application , is an isomorphism.

Proof. The fact that , is linear directly stems from the de nition. We now note that , is
injective, as anH2-sectionv sent to 0 by , solves the problem

Such a section then belongs to the intersection of Sobolev spaces
D = H2(M;g);(E;h); &" \ H§ (M;g);(E;h);r (En)
which is the domain of the Chern Laplacian with Dirichlet boundary conditions. The operator
f+z 0 D 1 L2((M;g);i(Esh)

being invertible, the section v considered above has to be zero, which yields the injectivity of ;.
We now move to prove the surjectivity of this application. To do that, we consider an element

(u;w) 2 L2((M;g);(E;h)) H32 (@M;d; Ejgm:h
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In order to prove that this pair is reached by ., we rst need to consider an extensione of w to
the whole Riemann surfaceM , meaning a sectiong 2 H? (M;g) ;(E;h); %‘h such that we have

emM® = W

This is possible, since the boundary trace operator is surjective. We can then consider the image
of w by + z, which yields a section

(+ 2w 2 L2((M:g):(E;h)) :
The distributional Laplacian considered here was denoted by instead of E;h so as to di erentiate

it from the Chern Laplacian with Dirichlet boundary condition. We can then take the inverse image
of the section written above by g“ + z, which yields a section

¢hyz T (+ 2)w 2 H2(M;g):(E;h); %" \ HL (M;g);(E;h);r EM)

We then set

e = w M4z '(+ 2w 2 HZ (Mg)i(Esh); &

This section satis es

(+ e = (+ 2w (+ 20 ¥+z "(+ 2w = 0

and its image by the boundary trace operator gwm Yields w, which means going fromw to e has
not caused the boundary value to be changed. We further note that no loss of regularity has
occured, and that we have actually gained information on the image by + z, which is relevant
here. However, this elemente is not the one whose image , will give (u;w). To remedy that
problem, we set

v = e+ ez Tu o2 HE(Mg):i(Eih); 2"
This modi cation of e has still not modi ed the boundary value, as the inverse image is taken

relatively to the Chern Laplacian with Dirichlet boundary condition, which means that the resulting
section vanishes on@M The di erence is that we now have

(+ 2v = (+ 20e+(+ 2 gE;h+z u = u:

The image ofv by , now yields the pair (u; w), which is exactly what remained to be proved.
O

De nition 2.1.56. Let z2 CnR . The Poisson operator P (z) is de ned to be the restriction

of the isomorphism ,?! to the subspacefOg H?3*? (@M;Q; Ejgm;h . This yields a linear
operator de ned between Sobolev spaces

P(2) : H¥2 (@Mig: Ejguih ! HZ(Mig):i(Eih); E"

Proposition 2.1.57. The family of Poisson operatorsP (z), depending onz 2 CnR , is weakly
continuous for the L2-norms.

39



Proof. Let f and g be elements ofH 3% (@M;J; Ejem;h andL2((M;g);(E;h)), respectively.
Now, let z be a complex number inCnR , and h be another complex number of modulus small
enough so that we havez + h2 CnR . We have

H(+( z+h)(P(z+h) P@)Egdi o mg)En)
= R+ z+ )P @+ Mgl qugyeny N+ DP@FGimg)En)
htP (2) £91 1 2(mg)En)

Taking instead of g the particular function ( + 2z)(P(z+ h) P (2))f, we get

K(+( 2+ (P (z+h) P@) K qugyeny = Ii°KP @K qugyeny :

Noting that P (z+ h) P (z) is H? and satis es the Dirichlet boundary condition, we see that
the image of this section by the distributional Laplacian +( z+ h) is the same as its image by
the Laplacian with Dirichlet boundary condition g;“ + (z+ h). The latter is invertible, and its
bounded inverse induces a holomorphic family of operators, in the sense of [63, Sec. 7.11]. We get
2
k(P (z+h) P (2)) TK 2 ((mg )iy
2
C M+(z+h) (P(z+h P(@))f
et ) (P ) (2) L2((Mig):(Esh))
Cihi* kP (2) T2 mg ey

where C > 0 is a constant, independant ofh. This completes the proof, as we have

lim k(P (z+h) P (2)Tkeoqmgyeny = 0

Proposition 2.1.58.  The family of Poisson operators

P(z) : H%? (@M;9; Ejgwh ! L2((M;9);(E;h))

depending onz 2 CnR is holomorphic, with respect to theL ?-norms.
Proof. Using the same notations as in the proof of the last proposition, we have

Lh+ z)(P(z+hh) P(2) 90 2mg):Eny)
= & N+ z+ )P @+ WRgimg)Eny
hEP(z+ M giz(mgyeny N+ 2P @G (mg)iEn)
= hPE+MEgimgyEny [}, NP @RGI(mg)En)

by a previously shown continuity. Using the fact that we have

D E
1 ghiz (P@z+h) P@)f; +z !
" - ¢ e D) e : ‘9 L2((M;g);(Esh)) E

ez P ez (P(z+h) P(2)fig

=gl

L2((M;g):(E;h))
= ghP(@z+h) P@)Fgieqmg)eny
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we now deduce that we have

r!i!mo %NP (z+h) P() f;giLZ((M;g )i(Esh)

D E
= lm X %"+z (P@z+h) P@)f; "+z *
R (P £ ) P@) . L2((Mig );(E:h )
= P(2)f; h+z !
b (@) 3 gEL2(<M;g);(E:h)>

= sh vz P (2)F; ;
E @fg L2((M;g );(E;h )

This proves the proposition, and further gives the formula

o

P gh ! .
~ = Btz P(z).

O

Remark 2.1.59. Each and every one of the results given above can be extended to complex
numbers z with  z not in the spectrum of the Laplacian with Dirichlet boundary condition g’h.

Proposition 2.1.60.  The Poisson operatorP (z) takes a smooth section oE over @ Mto a smooth
section of E over M.

Proof. This result stems from the elliptic regularity of the Chern Laplacian, and the bijectivity of
the application ,, which must then induce an application between the spaces of smooth sections.
O

Poisson operator for the Dolbeault Laplacian. We will need another Poisson operator, this
time related to the Dolbeault Laplacian. Every statement made in the last paragraph can be
adapted, using the Dolbeault Laplacian instead of the Chern Laplacian. We get an operator

Pg (@) © H32 (@M:;3; Ejgwih ! H2(M:;g);(E;h); &

which solves the same kind of Dirichlet problem as before, with the Dolbeault Laplacian being
used, and not the Chern Laplacian.

2.2 Application to the case of modular curves

We now aim to apply the constructions detailed in the previous section to the speci c case we are
concerned with. This will be the occasion of making notations clear for what will follow. LetX
be a compacti ed modular curve arising from a Fuchsian group of the rstkind ,andE be a at
unitary holomorphic vector bundle of rank r coming from a unitary representation

2.2.1 Laplacians

We will rst concern ourselves with the de nition of the various Laplacians we need, for the Chern
connection and the Dolbeault operator, and associated to several regions of the modular curve.
When such a part of X has a boundary, we will impose Dirichlet boundary conditions.

On the punctured modular curve. We begin this list of Laplacians with those de ned on the
punctured modular curve meaning the open subseZ = X nfcuspg built by removing the cusps.
The reason we have to consideZ instead of X is that the metrics we will deal with may have
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singularities at the cusps. Letg be a smooth metric onZ, and h be a smooth Hermitian metric
on the vector bundle E over Z. We attach to the latter the Chern connection r (Eh),

De nition 2.2.1. The Chern Laplacian on the punctured modular curveZ is de ned as the
Laplacian given onZ by de nition 2.1.31. It yields a self-adjoint positive operator

gh . H2 (Z;g);(E;h); 0 1 L2((Z;9);(E;h)) :

De nition 2.2.2. The Dolbeault Laplacian on the punctured modular curveZ is de ned as the
Laplacian given onZ by de nition 2.1.37. It yields a self-adjoint positive operator

9L HZ (Zig)i(Eh); W 1 L2(Zig):i(Eih) :

Remark 2.2.3.  When the metrics g and h are smooth on the whole modular curveX, we can
replaceZ by X in the de nitions above. In the case whereg is the Poincaré metric onZ and h is
the canonical metric onE over Z, meaning the metric induced by the canonical hermitian product

on C", the Chern Laplacian is denoted by g and its Dolbeault counterpart by @ -

On the compact part. Recall that we have de ned the compact part of the modular curve to
be X from which we have removed a disk of radius' > 0 around each cusp and elliptic point. The
resulting set is denoted byX-, and is a compact Riemann surface with smooth boundary.

De nition 2.2.4.  The Chern Laplacian on the compact partX- is de ned as the Laplacian with
Dirichlet boundary condition on X given by de nition 2.1.31. It is a self-adjoint positive operator

2o 1 HZ (X-19)5(Ejh); 9\ HE (X-50);(Esh); on
b L2((X+50);(Esh))

De nition 2.2.5.  The Dolbeault Laplacian on the compact partX - is the Laplacian with Dirichlet
boundary condition on X- given by de nition 2.1.37. It is a self-adjoint positive operator

H? (X+:9)i(Esh); " \ HE (X+9)i(Esh); o

! L2 ((X;9);(E;h)):

g:h
@ "0

Remark 2.2.6. When g is the Poincaré metric on X+ and h is the canonical metric onE, the
Chern Laplacian above is denoted by g o, and the Dolbeault Laplacian by g, ... .

Around the cusps. Let p be a cusp. Using previously introduced notations, we denote byJ,.-
the open neighborhood ofp in X which is isometric to a disk of radius".

De nition 2.2.7.  The Chern Laplacian near the cuspp is de ned as the Laplacian with Dirichlet
boundary condition given on U, by de nition 2.1.31. It yields a self-adjoint positive operator

o 1 HZ (Upeig)i(Esh): 90\ HE (Uprig)i(Esh); of
! L% ((Upr:9);(E;h)):

De nition 2.2.8. The Dolbeault Laplacian near the cuspp X- is the Laplacian with Dirichlet
boundary condition given on U, by de nition 2.1.37. It yields a self-adjoint positive operator

H2 (Upr:;0);(E;h); 9N\ HE (Upesg);(E;h); 90

! LZ((Upr:9); (E;h)):

g:h
@0

42



Remark 2.2.9. In caseg is the Poincaré metric onX- and h is the at metric on E coming from
the canonical hermitian metric on C', the Chern Laplacian above is denoted by g, , and the
Dolbeault Laplacian by & -

2.2.2 Boundary trace operators

We will now apply the constructions pertaining to the boundary trace operators to the situation
we are concerned with. To begin, let us note that we have

B B F
= ex = p cusp F?{lzal-}

De nition 2.2.10.  The boundary trace operator on the compact part - ¢ is de ned as the operator
given on X« by de nition 2.1.49 and proposition 2.1.50. It yields a surjective continuous operator

wo ¢ HY (Xe50);(E;h); o0 70 L2 (+;0); Ej .:h

Remark 2.2.11. The partition of - considered above then gives an orthogonal decompaosition

L
L2 ( »;9); Ej .;h

L2 ( pr:0); E o oD

p cusp

Thus, the boundary trace - gives a section de ned on each connected component of-, corre-
sponding to each cusp.

De nition 2.2.12.  The boundary trace operator near the cuspp, denoted by ., is de ned as the
operator given onUp; by de nition 2.1.49 and proposition 2.1.50. It yields a surjective continuous
linear operator

pt - H! (Up;9)5(E; ) gih 7! L2 ( p:9); E; o ih

De nition 2.2.13.  We denote by - the glued boundary trace operatorgiven by the collection of
operators -, and - q.

2.2.3 Poisson operators

We now turn our attention to clearly de ning the various Poisson operators we will later use, as
well as some of the properties that will be required.

On the compact part. The rst Poisson operator we will be concerned with is the one de ned
on the compact part of the modular curve X-. As before, we will need a version of the Poisson
operators for the Chern Laplacian, and one related to the Dolbeault Laplacian.

De nition 2.2.14. For z 2 CnR , the Poisson operator on the compact partP..?g1 (2) is the
operator on X~ given by de nition 2.1.56. It yields an operator

P (2) @ H¥2 (.;9); Ej .sh 1 H2 (X+;0);(Esh); of
Similarly, the Poisson operator on X~ associated to the Dolbeault operator is an operator
P%h,,,_o(z) © H®¥® ( +;09); Ej ;h ) H2 (X-;9);(E;h); 9h
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Around the cusps. We now move on to de ning the Poisson operators near a cusp.

De nition 2.2.15. For z2 CnR , the Poisson operator near the cuspp, denoted by P,?S (2),
is the operator on Uy~ given by de nition 2.1.56. It yields an operator

PSM(2) © H®? (pri); By osh 1 HZ (Upeig)i(Esh); o

Similarly, the Poisson operator onU, associated to the Dolbeault operator is an operator
P . @ ¢ H® (pigi B ch 1 H? (Upr;9)i(Esh); 9"

Glued on the whole modular curve. Finally, we can glue all the Poisson operators de ned so
far into a global one, whose aim is to extend a section de ned on -. As we will see, there are some
subtleties regarding global regularity, as well as the number of times each connected component of
the hypersurface - is actually to be considered.

De nition 2.2.16.  The glued Poisson operatorfor the Chern Laplacian is de ned as the operator

L
PIN(z) : H32 ( +;9); Ej .;h H32 ( p:0); Ej L. ;h
p cusp
L
I H? (X+509)i(E;h); 90 H? (Upr;0):(E;h); o

p cusp

given by ng (z) on the compact part, and Pgi.“ (z) near every cusp, for everyz2 CnR .

Remark 2.2.17. As mentioned before, we could de ne this glued Poisson operator for any complex
number z such that z is not in the spectrum of any Laplacian with Dirichlet boundary condition
we have considered so far. This is the reason we worked with2 CnR . For technical reasons,
we will actually need at some point to use these results foe in a neighborhood of0. It will not
matter how small that open neighborhood is.

Remark 2.2.18. The Sobolev space, or rather the sum of such spaces, on whie¥" (z) is de ned
can actually be understood as
L
H32 ( +;9); Ej .;h H32 ( pr50); Ej . 5h

p cusp

=  H¥*? (.;9); E .;h

since the connected component of - are pairwise disjoint. The same cannot be said for the sum
of Sobolev space in which this glued Poisson operator takes values, B -distributions cannot in
general be glued into a globaH ?-section, or even into anH * section. Under certain circumstances,
we will be able to get some regularity, which we will see below.

De nition 2.2.19.  The glued Poisson operatorfor the Dolbeault Laplacian is de ned as was done
in de nition 2.2.16, using the Dolbeault Laplacians instead of their Chern counterparts.

De nition 2.2.20.  We de ne the sum operator as

L
H®2 ( +9); Ej .:h H¥2 ( pr50)s Ej . sh

p cusp

I H%2 (19); B .ih

u; (up)p 7! y;

p:" + Up p
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Proposition 2.2.21.  The L2-adjoint of the sum operator is the doubling operator

H3=2 ( «;d); Ej .;h
L
I H32 («;09); Ej .;h H32 ( pe50); Ej . sh
p cusp

[ Cu
u 7! uou e,

Remark 2.2.22. One can note that these operators, for related reasons, are used by Burghelea,
Friedlander, and Kappeler in [20], when the double cover is considered.

Proposition 2.2.23.  For any sectionf of H3*2 ( -;g); E; .;h , we have

PIh(z) f 2 H! (Z;9);(E;h); oh

Proof. This result is a consequence of the jump formula, or rather its direct generalization to the
sort of distributions we consider here.
O

Remark 2.2.24. The presence of the doubling operator means we are actually considering the
most natural Poisson operator, which is the one that extends a single section de ned on - to
all sides of the hypersurface. How far this section is from beindd ? will actually be quanti ed by
the jump operator, also called theDirichlet-to-Neumann operator.

2.2.4 Normal derivatives

We will now de ne the notion of normal derivative along the hypersurface -, which intuitively is

@s = hrs;ni ;

with n being the normal unit vector, relatively to . However, the de nition of this vector eld

is not entirely obvious, and can only be done close to the hypersurface in question. In order to
avoid using notions such as tubular neighborhoods and parallel transport in a general setting, we
will use the fact that the situation we study is explicit.

Around cusps. Let p be a cusp. We will de ne two normal unit vector elds relatively to the
connected component - of -, pointing to either side of it. For that, we will de ne the normal
unit vector eld on Uy, relatively to either side of ». As usual, we see the neighborhoodl;.,-
of p as the product St Ja(2");+1 [, endowed with the Poincaré metric.

Proposition 2.2.25.  The normal unit vector eld pointing outward on U, relatively to . is

n, = (0y)

at the point (x;y) 2 S* Ja(");+1 [. Furthermore, the normal unit vector eld pointing inward
on Up.2» nUp relatively to - is, at the point (x;y) 2 St Ja(2");a(")[,

n, = (0; y):
Proof. This result stems directly from a computation using the explicit description of the open

neighborhood Up;»+ of pin Z.
O
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Using the explicit local description of the Chern connection, we can now de ne more explicitely
the notion of normal derivative near a cusp. Recall thatUp,» can also be seen as the quotient of
the product R Ja(");+1 [ by the action of the stabilizer of 1 . Sections ofE over Uy can be

identi ed to functions dened on R Ja(");+1 [ and compatible with said action.

Proposition 2.2.26.  Let s be a smooth, compactly supported section d over Uy, seen as a
vector-valued functions: R Ja(");+1[! C" compatible with the representation. The normal
derivative of s is given by

@s = Y6
Proposition 2.2.27.  The normal derivative operator @; extends to a linear operator
@, : H? (Upi@i(Esh); 97 1 HI (Upeig)i(Eih)ir BN
Proposition 2.2.28. Let s be a smooth, compactly supported section d& over Up~, seen as a

vector-valued functions: R Ja(2");a(")[! C' compatible with the representation. The normal
derivative of s is given by

@s = Y&
Proposition 2.2.29. The normal derivative operator @p extends to a linear operator
@, H2 (Up2- nUp-;0);(E;h); 9h 1 HY (Up2 nUpe;0);(E;h);r BN

Remark 2.2.30. Getting an H !-regularity in the normal derivative was important, as we will
later compose the resulting operator with the appropriate boundary traces.

Glued normal derivative. Much like we did for the Poisson operators, we will de ne a glued
version of the normal derivative operators.

De nition 2.2.31.  The glued normal derivativeis de ned as the operator

@ : H? (X5Qi(Eh): Sh M2 (Upig)i(Eih); 90

p cusp
L
! H? (Up:0);(Esh); 9" H? (Upz nUpr;9);(E;h); 9h
p cusp
Sy T @rSU Uy @, S

Remark 2.2.32. Inthe same way as before, this glued normal derivative operator can be composed
with the glued boundary trace operator, and then with the sum operator in a transparent way.

Remark 2.2.33. The notion of normal derivatives has only been de nied wheng is the Poincaré
metric, and h is the canonical metric onE. Only its behavior near the hypersurface - isimportant,
as it will always be composed with the boundary trace. Thus, the normal derivative operators we
could de ne for metrics g and h coinciding with the Poincaré metric on X and the canonical metric
onE near - coincide with @. and @ near

2.2.5 Jump operator

In remark 2.2.24, we saw that composing the glued Poisson operatd?.9™" (z) with the doubling
operator  vyields a global H *-regularity, not an H?2-one. It is then natural to quantify this gap.
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Using the jump formula, this is done by looking at the rst order derivatives and at the way they
behave when crossing -. The value on - being prescribed and with su cient regularity, there
can be no jump in tangential derivatives, which means we need only look at the normal derivatives.
Let g be a smooth metric onZ, and h be a smooth metric onE over Z, which coincide with the
Poincaré metric and the canonical metric onE except possibly on open subsetd),, with <" .

De nition 2.2.34.  The jump operator, also called theDirichlet-to-Neumann operator, associated
to the Chern Laplacian, is dened forz2 CnR by
NEY(z) © H32 (+;09); Ef.;h ' HY¥2 (.;0); E .:h
f 7! ~@PIN(2) f

Remark 2.2.35. The reason why we used the normal derivative operato@, and not one de ned
using the metricsg and h, is that it is composed with the boundary trace operator -.

Remark 2.2.36. The sign convention chosen in the de nition above will be justi ed later, but it
amounts to inverting the direction of the normal unit vector eld.

Proposition 2.2.37. For any z2 CnR , the jump operator induces an operator

NE'(@z) : C(E) ! C ()
Proof. This is a direct consequence of proposition 2.1.60.

O

Proposition 2.2.38.  For any complex numberz 2 CnR , the restriction of the jump operator
to smooth sections ofE over - induces a holomorphic family of pseudo-di erential operators of
order 1 and weight2 with respect to the parameterz.

Proof. As indicated in [20, Sec. 3.13], this proposition can be seen as resulting from more general
results about Green operators, and more importantly theorem3:3:2 and corollary 2:7:8 of [54].
O

De nition 2.2.39.  The jump operator, also called theDirichlet-to-Neumann operator, associated
to the Dolbeault Laplacian, is de ned for z2 CnR by

Ngéh;,, (2) : H*¥ (9, E .;h ! H¥*2 ( «;9); Ej .;h
. g;h
f 71 @rd" () f

Remark 2.2.40. There is an analog of propositions 2.2.37 and 2.2.38 for the jump operator related
to the Dolbeault Laplacian.

Remark 2.2.41. Even though these jump operators are de ned on -, and the normal derivative
operators were only considered for metrics which coincide with the canonical ones around-, the
fact that they involve the Poisson operators means that they depend on the metrics everywhere.

Proposition 2.2.42.  Let f be an element ofH3*? ( -;g); E; .;h . We have
PSN(z) f 2 HZ (Z;9)i(Esh); " (0 NE'(@)f =0:

Proof. Once again, this is a direct consequence of the jump formula.

We have an analogous result for the jump operator associated to the Dolbeault Laplacian.
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Proposition 2.2.43.  Let f be an element oH3=2 ( -;g); E; .;h . We have
g;h 2 . . . . gh g:h - .
P@;,, (z)y f 2 H® (Z;9);(E;h); 0 N@;,, (2)f 0 :
The main result about jump operators, which will be crucial in what follows, is the following.
Theorem 2.2.44. For any complex numberz2 CnR , we have

gh 1 _ 1 gh 1=2 gh , o 1=2 .
NET@) P = e BTz RS ,

where the adjunction is taken with respect to the inner product of-? ((Z;g) ; (E; h)).

Remark 2.2.45. In this theorem, we had to restrict ourselves toz 2 CnR , which means we had
to exclude 0, since we need g + z to be invertible.

De nition 2.2.46. For any smooth sectionu 2 Ct ( -;E), we de ne the distribution u . by

u . G (ZE) ! C _
' 7! Cho (U@ (@) d ¢(2)

Lemma 2.2.47. For any complex numberz 2 CnR , and any u 2 C* ( -;E) we have the
following equality of distributions on Z, where 9" is the distributional Chern Laplacian,

oh+z PS"(2) u = NE'(2)u
Proof. We rst note that both distributions in the equality we wish to prove vanish when evaluated
on smooth sections whose compact support stays away from the hypersurface.. Thus, we only

need to work with smooth sections compactly supported in an open neighborhooty; > nU,.  of
the connected component ,.-. We have the following local decomposition

over Up:o» nUp. , which gives an orthogonal decomposition
G (Upzr nUp; SE) = . G Upze nUp; ;L

It is worth recalling that L; is a line bundle related to the diagonalization of ( ,), where  is a
generator of the stabilizer ofp in . We then need to prove that we have

WMtz Toany o () = NE@u . () forany ' 2CF Upz nU, 5L

We consider such d , identi ed with a smooth functionon R Ja(2");a( )[, compactly supported
in the second variable, which is compatible with the representation in the following way

Cxtly) =@ et (xy)
Here, we denoted byT a distribution associated to an L 2-section, for clarity. We now set

v = PSh(z) u ; w = PSh(z) u

jUp; 22 nUp;» jUpy nUy, ;

48



and we make the same type of identi cations onv and w as we did on' . Both functions v and w
are then sections which are smooth up until ,-. We get

NEY(DQu = a() § G

these functions having been restricted to .. Hence, the result we need to prove becomes

WMtz Tow) () = a() %; %\;/V o ()

where (v; w) denotes the function onUp.2- nUp,.  obtained by glueingv and w. The argument we
use here is slightly adapted from [68, Lem A.1]. We set

R Ja(@");a( ) ! ?
QV . H "

, | 9v(x:y) ity a()
(X’ y) 7! @W /(- @V(y- n @W /(.- " ; "
eyt gxa() gGa() if y>a(")
We note that , like v and w, is compatible with , so it induces a section oflL; over Up.>» nU, .
It is further continuous, smoothon R Ja(2");a(")] and R [a(");a( )[, but not smooth on the
totality of the set on which it is de ned. Moving on to the computation at hand, we have

Wtz Tuwy () = Tew oh+z
R, R,/ R, R

_ 2 ' 1 Ta(") @ 1 Ma( ) @
= V& z Tuw ()* o s oy Gydvdx+ o ) G & dydx

R, D Paey N Fa( )

S @ oy @
v (X; + w(X; dx
0 xY) @y a2") xY) @y a)

R, .
' l L} .
= V& 2 Taw) () o aeh S5 (xy)dy dx
R, h ey P20 Ry Ra() g e

+ . 2 (xy) ot & 5y, o a¢) S (xy)dy dx

R, Ry S Ri R

yz@%i)@ z Tww) (1) Ol aa((2")) %' (x;y) dy dx 01 aa((")) %&V' (x;y) dy dx
+ %;(x;a(")) %‘;,V(X;a(")) " (x;a(") dx

= T

' " @ @w vy
yz@@fz z (viw) yz%y( )+ al) @y @y o ()

We will now prove that the rst term on the right-hand side above vanishes. For that, we note
that, if the support of ' is included in Up,>- nUp,+, we have

g:h ) ' = ! " @V QW ')
N Z{7T(V’W) ( ? T 2 &z (vw) yz%y( )* | a(") @y ?Zy o ;
=0 %
Furthermore, if the support of ' is included in Uy nUp. , we have
gh . ! = ! " @V QW )
+ Z_{;T(v,w) ( ? T y2 gz 2 (vw) y? %y ( ) + | a.( ) @y @Zy o ( ; :

=0
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This means that the function

R Ja@");a()[ ! C
(%;y) 7! & +z (viw) v g

which is square-integrable, vansihes almost everywhere. Thus, the associated distribution equals
zero. Therefore, we have

gh tz T(V;W) (‘) = a(") %}5 %\;’V p"

as distributions on Up.o>» nUp,. . This completes the proof of the lemma.
O

Proof of theorem 2.2.44. The rst point to note is that, since the punctured modular curve Z is
without boundary, the operator

$hy+z . & (ZE) ! C L (ZE)

has a dense image. Let now be a smooth, compactly supported section oE over Z, which is in
the image of the operator above. We have

‘H . _ ‘h ‘h :h - 1,
PN (z) u () = gh+zpPIh(z) u 2N+ z
D _ 1 E
= N@ui - ez T g
D 8 E
— h . h 5 192 h o 1=2,
= NE@ui e ez T oger
D E
= 1 ghyg ¢z 2ONEM (U
2 E E £’ ©oL2zE)
This gives the following equality of distributions
PSh(z) u = 1 "4y 2L ghy g P NEY (2)u ;
and using the de nition of the Poisson operators, we get
u = % u = % «pgih (Z) u
— h 1=2 o, 2 h .
= 1 2N+ z ez NE (z) u:

The proof of the theorem is now almost complete. For any complex numbez 2 CnR , we set

A, : L?( «;E) ! L2( - E)
1=2 gh 1=2 ;

v 701 ghag ez v

which is a bounded operator, of adjoint given by Ay. When restricted to smooth functions, it
further yields a surjective operator

A, : C(E) ' C t(E)

50



as it is right-invertible by the computation we have seen earlier in this proof. Going back toA,
seen as an operator betweenh 2-spaces, we see that its image is dense in® for every complex
numberz 2 CnR . We then have

(kerA,)’ = ImA; = L2( -E);

which means that A, is injective for all consideredz, and thus gives the bijectivity of the operator

A, : C(E) ! C t(E):

The jump operators, restricted to smooth sections, are then invertible, seen as operators

NE'(z) : CC(E) ¢ C Y (=E):

Their inverse is then precisely given byA,, which completes the proof of the theorem.
O

Corollary 2.2.48. For any real number > 0, the operator A is self-adjoint positive-de nite,
seen betweerl 2-spaces.

Proof. Let > 0 be a strictly positive real number. The fact that A is self-adjoint stems from
the fact that it is bounded and symmetric. We will therefore only prove that it is positive-de nite.
Let ' be an element ofL? ( -;E). We have

1=2
L - 1 gih 1=2 g;h "
S T 2 E t E ¥t ;
L2( ~E)
2
1=2
= 7 &+ ' :
L2(ZE )

Remark 2.2.49. Every result stated in this section admits a completely similar counterpart for
the jump operator associated to the Dolbeault Laplacian. The analog of theorem 2.2.44 is stated
below for further reference.

Theorem 2.2.50. Forany z2 CnR , and any smooth sectionu of E over -, we have

h 1=2

+ 7 :h 1=2

+Z u,

«

EN
@\_.
«Q

g;h 1 -
N@;,, (z) "u =

() |

where the adjunction is taken with respect to the inner product of-? ((Z;g) ; (E; h)).

2.3 Mayer-Vietoris formula in the compact case

This section is devoted to the statement of the rst of several analytical formulae we will later
need. Except for the content of the last paragraph, everything here can be found in [20]. The
aim of the formula presented here is to relate the determinants of various Dolbeault Laplacians
de ned so far, when the metrics on the modular curveX and the vector bundle E are assumed to
be smooth. This comparaison will also involve a jump operator.
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2.3.1 Parameter-dependent formula

We will work step by step in this paragraph, presenting rst the Mayer-Vietoris formula for the
Dolbeault Laplacian with parameter > 0. This result will involve a constant, the computation
of which will be taken care of subsequently. In this section, we assume that the metricg on X
and h on E are smooth, and coincide with the Poincaré metric onX and the canonical hermitian
metric on E, respectively. We make the following de nition in order to shorten the statement of
the main result of this section.

De nition 2.3.1. The Dolbeault Laplacian with Dirichlet boundary condition along - is the
operator de ned by the following glueing

g;h . g;h

@ ;" o’ @ P pcusp

p'e
|

of the various Dolbeault Laplacians with Dirichlet boundary conditions.

Theorem 2.3.2. For every real number > 0, we have

det 9"+
h .
= g% " = detNZ" () :
@ ;"

Proof. Using theorem A from [20, Sec. 3.19], there is a constaniK > 0 such that we have

h

«

det 2" +
o gf‘% " = K detN?g@fh:,,( ) :
@ ;"

Taking the logarithm of both sides, we now get

g:h g:h - g:h .

log det & + log det @ + = log K +logdet N@;,, ();

and the constant K can be computed by looking at the constant terms in the various asymptotic

expansions as goes to in nity. Using the information found in [20, Sec. 3.12], we then note that
we haveK =1, This completes the proof.

O

2.3.2 Coe cient for =0

We now wish to let go to 0" in theorem 2.3.2. The apparent problem is that the Dolbeault
Laplacian on the whole modular curve and the jump operator may have non-zero kernels, which
means that the limit of both sides of this theorem may vanish. To remedy that, we will once again
take the logarithm of each side of the theorem above, and then compare the constant coe cients
in the asymptotic expansions as goes to0, which is how the modi ed determinant is de ned.

Proposition-De nition 2.3.3. As goes to0*, we have the following asymptotic expansion
g;h — 0 gh .
log det e " = dlog +logdet e o(1) ;

whered is the dimension of the kernel of the Dolbeault Laplacian, andiet’ is the modi ed deter-
minant of an operator, i.e. the determinant of its restriction to the orthogonal of the kernel.

Remark 2.3.4. The prime used in the notation of the determinant will always stand for the mod-
ifed determinant, built from the spectral zeta function involving only strictly positive eigenvalues.
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We now need to de ne a similar notion of modi ed determinant for the jump operator

N )

g:h — g:h .
@; N@;" ©) :

Proposition 2.3.5.  The kernel of the jump operatorNgéh_,, is of dimension d.

Proof. We will prove that the kernel of this jump operator is isomorphic to that of the Dolbeault
Laplacian. First, recall that we have

f2 kerNgé“,,, 0 PN f 2 H2(XE) :

We can then apply the Dolbeault Laplacian to this Poisson extension, and the result vanishes.
This gives an a linear application

g:h | g;h
ker N@ P ker &
f 7! pgh  f

which is injective, as one can see by applying the operator -. Conversely, a sectioru 2 H? (X;E)
in the kernel of the Dolbeault Laplacian is a smooth section, by elliptic regularity, and thus isH 2.
Its restriction to  « then produces a section which is in the kernel of the jump operator. This
completes the proof of the proposition.

O

Proposition 2.3.6. For any real number > O, let (), ..., g+1 () bethe rst d+1
eigenvalues of the jump operator with parameter in ascending order. These functions  ( ) are
continuous near 0", and we have

_ Coo it i d
lim ()

Lo > 0 if i=d+1

Proof. This proposition is a consequence of the continuity of the family of jump operators.
O

Proposition 2.3.7. As goes to0", we have the following asymptotic expansion

. R .
g:h — ) Opy gih .
IogdetN@;,,( ) = log i()+logdet N@;,, +0(1) ;

where det® is the modi ed determinant.

Remark 2.3.8. Note that the de nition of the modi ed determinant of the jump operator does
not take into account the asymptotic behavior of the eigenvalues that will collapse to0 as goes
to 0" . This will be the object of the next proposition.

Proposition 2.3.9. Let 41,..., 4 be an orthonormal basis of the kernel of the Dolbeault Lapla-
cian, which consists of smooth sections oE over X. As goes to0*, we have the asymptotic
expansion, where the determinant equalé by convention if the integerd is O,

R . .
. log i() = dlog logdet h j; Pz o) L d+ o(1) :
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Remark 2.3.10. It should be noted that the smoothness of the sections ; in this proposition
is a consequence of elliptic regularity. This is important, as it allows us to restrict them to the
hypersurface - in the most natural way. The argument that follows relies on theorem 2.2.50, and
is related to the proof of theoremB in [20, Sec. 4.9].

Proof of proposition 2.3.9. Using the fact that the Dolbeault Laplacian is a self-adjoint operator,

which can then be diagonalized, we consider an orthonormal family ,-)J. of eigensections of this
operator, whose rst d terms are the sections already considered, with ; associated to the eigen-
value ;. We now recall that, using theorem 2.2.50, we can extend, for any > 0, the inverse of
the jump operator restricted to smooth section as a bounded operator

NG () 't L2 -E) 1 LP( -iE)
For any section! 2 L?( -;E), we now have
p D E

- 1=2 . 1=2
g,h LT ! = " gh .t I i j
@ ; ; @ ; L2(XE )

_ 1 C )
= 2 P=—"H; i g j:

Using the formula obtained for the inverse of the jump operator, we get

Ng;h ll _ & H: H +P H: : .
@;"() T (=1 v oilez ey i>d S gl ey v

This operator acting on! can be seen as a continuous, bounded perturbation of

P : L?( «;E) ! L2( «;E)
R .
! 7! H; jILZ( “E) i
j=1
Denoting by i1, ..., 4 the non-zero eigenvalues oP, we then have () = j+o()as

goes to0*, for every integerj 2 J1;dK We nally note that we have
log i = logdet h; i ) ;
i=1 g ] g 1 ] |_2( “E) 10 d

which completes the proof of the proposition, since we have, as goes to0",

&
- log j() = dlog logdet hi; ji . .gy ~ +to0(1):
j=1 18 d

Theorem 2.3.11. We have the following comparison of (modi ed) determinants

deto g;h
@ _ L onygh .
det %@h det hii jlie e 1 ddet NG

where the determinant equalsl by convention if the integerd is O.
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Proof. We begin by using theorem 2.3.2, which gives, after taking the logarithm of both sides,

log det %@Ejh + log det 9@;“;,, + = logdet Ng;"( ) :

The glued Dolbeault Laplacian with Dirichlet condition along - being invertible, we have

; gh — gh |
|!II13+ log det & - log det &

and we can then use propositions 2.3.3, 2.3.7, and 2.3.9, to get the following comparison of asymp-
totic expansions, as goes to0",

dlog +logdet® &' logdet I,

- 0pj gih o .
= dlog +logdet N@:,, logdet h j; iz g L d+ o(1):
The divergent terms cancelling each other out, we get the theorem.
O

Using proposition 2.1.42, we can now compute the determinant that appears in the theorem above.

Proposition 2.3.12. The sections 1, ..., ¢ are constant sections ofE over Z, meaning that
they can be identi ed to constant vector-valued functionsH !  C" which are compatible with the
representation . In particular, the constant value taken by any of these function is a vector xed
by the representation.

Proof. This result comes from propositions 2.1.42 and 2.1.45, as well as propositidn2 of [69].
O

Remark 2.3.13. Let s and t be constant sections ofE over Z. Assuming that the metric h
coincides, near every cusp, with the canonical metric in directions corresponding to vanishing
weights, the following function is constant
h; ig 2 | C
z 7' h( (25 @)

Proposition 2.3.14.  For any integersj and k betweenl and d, we have

his wdiecgy = v ks

where j denotes the Kronecker symbol, and/y, = denote the volume ofZ and the length of -
for the metric g, respectively.

Remark 2.3.15. We assumed that the metric g coincided with the Poincaré metric except on
some small open neighborhoods of cusps and elliptic points of radii strictly smaller thari, which
means that the length ™ of - is independant ofg.

Proof of proposition 2.3.14. We rst recall that 1, ..., ¢ form an L2-orthonormal basis of the
kernel of the Dolbeault Laplacian, which gives

. ~ H N R 1 .
hj; kILZ( CE) = hj; kig = v, z hj; kIEZ d g(Z) = Vg Ik
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Theorem 2.3.16. We have the following comparison of (modi ed) determinants

h

Q

det®

vd .
= L det’™NI"
det d @;

@_‘P:;@\

2.4 Mayer-Vietoris formula in the singular case

The purpose of this section is to get asingular Mayer-Vietoris formula, relating determinants of
Laplacians, in a way to be de ned, associated to the Poincaré metriqg on Z and the canonical
metric h on E over Z. The presence of singularities of the metrics prohibits the use of [20]. We
will instead draw inspiration from [25], though the proof below is di erent in many aspects.

2.4.1 Parameter-dependent formula

As stated above, the Mayer-Vietoris formula we wish to prove aims to relate determinants of
Laplacians for the Poincaré metric onZ and the canonical metric onE. However, such determinants
are not de ned, due to the presence of singularities. We will make use of the notion ofelative
determinant, presented in [73], which gives meaning to certain well-de ned quotients of two ill-
de ned determinants. Following the last section, we will rst prove the Mayer-Vietoris formula
with parameter > 0, which will involve a constant. The computation of this constant will again
be done by nding asymptotics expansions as goes to in nity. The results of [20] cannot be used
for that, and these problems will constitute one of the aims of chapters 3 and 4.

Determinant of the jump operator. Even though this type of determinant has already been
used, let us recall how the determinant of the jump operator is de ned. The spectral zeta function
of the jump operator associated to the metricsg and h is de ned on Res > 1 by

Nee zy @ S 7V Tr Nex(2) °

where the complex powers are de ned on this half-plane by

R
Nep @ ° = ¢ °(Ner (@ ) "2 ;
and the contour Cis associated to the spectral cut# = . For a more exhaustive review, the reader

is referred to [85, Sec. 1.4.2]. The meromorphic continuation of this spectral zeta function to the
whole complex plane is holomorphic arounds = 0, and the determinant is given by

logdetNg- (2) = Ne- () 0)
As a function of z, the spectral zeta function .. () (S) is holomorphic onCnR .
Relative determinant. In this section, we will need to use arelative determinant. This notion

was developped in [73], and can be thought of as a well-de ned quotient of two potentially unde ned
determinants. We will have to use several results which proved in chapters 3 and 4.

De nition 2.4.1.  The Chern Laplacian with Dirichlet boundary condition along - is the operator
de ned by the following glueing of the various Chern Laplacians with Dirichlet boundary conditions

E" = Er o ( Epr )p cusp
for the Poincaré metric on Z and the canonical metric onE.
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Proposition 2.4.2.  The relative spectral zeta function

oz S TLT (e+2) 5 (g +2)°

is de ned and holomorphic on the half-planeRes > 1. It has a meromorphic continuation to a
domain of C which contains 0 and is holomorphic at that point.

De nition 2.4.3. The relative determinant associatedto g + zand g~ + z is de ned as
logdet( e +2z; e +2) =  ° ., .. ., 00 :

Mayer-Vietoris formula with parameter. We can now state the Mayer-Vietoris formula for
the Chern Laplacian associated to the Poincaré metric and the canonical metric or .

Theorem 2.4.4. There exists a constantK > 0 such that, foranyz2 CnR , we have

det( g+2z, g~ +2z) = KdetNg- (2) :
The proof of this result will be done step by step, beginning with the following proposition.

Proposition 2.4.5.  For any complex numberss such thatRes> 1andz2 CnR , we have

_ 1 dNg-
8. () = STt Ng () ° 1@

Proof. By continuity of the trace and the integral, we rst note that we have

@ = T R N 1
@z Ner (2) (s) = T ¢ 4 dz( er (2) ) 2

onfs2 C; Res > 1g. The derivative of the resolvent of the jump operator is given by

IMNer (@ ) = (Ner (@ ) "M B (New (20 ) T

We then get, with [; ] being the commutator of two operators,

R 2 dN
O (® = T ¢ S (Ner () 2By
h i

H RC oS Ner @ ) "N Ner (@ ) 2

Since the two operators involved in this commutator are pseudo-di erential of order 2 and 1
respectively, we can interchange trace and integral, yielding

R 2 dN
@@Z Nee () = Tr ¢ L (Ner (2) ) " =5 @z

We can extract the derivative from the integral, and then integrate by parts, which yields
h R

i
1 5 dNEg-~
c #St(New () )tz WM

sTr =7

& New () ()

(Z) S 1dNE (Z)

I
n
=
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Corollary 2.4.6. The determinant of the jump operator is given by

LlogdetNey (z) = Tr Ner (z) ' Ng 2

Proof. Recall that proposition 2.4.5 yields

dN g
O N (8) = ST Ngp () ° * 9N 2

We note that the family in s of operators considered in the trace, without the factors, is a gauging,
in the sense of [85, Sec. 1.5.6.1], of a pseudo-di erential operator of order2 acting on the compact
manifold - of dimension 1, which is trace class. The function

s 70 Tr Ngy(2) ° '@

is then holomorphic around O, which means that we have

— 1 dNg~
Sys0 Gane (9 = T New (2) PGP

Interchanging the two derivatives then gives the corollary.
O

The following theorem is the most important point of this section, as it allows us to go from an
operator acting on the compact curve -, in which case being of trace class is very well understood,
to an operator acting on the non-compact punctured modular curveZ.

Theorem 2.4.7. For any complex numberz2 CnR , we have

h i
QlogdetNe» (z) = Tr (e+2) ' (e +2) '
Proof. Using corollary 2.4.6, we have
LlogdetNey (z2) =  Tr Ngp (z) " Ne @

The rst step towards deriving the theorem will be to compute the derivative of the jump operator,
using its de nition, as well as the formula yielding the derivative of the jump operator. We have

Ner (2) = ~@P-(2)

where the notation for the glued Poisson operator has been lightened, as we only consider it for
the Poincaré metric onZ and the canonical metric onE, and we then have

dN g dp- 1
TE2 = @Y = -@( g+ P

Since the operator( g + 2) ! sends anL2-section to an H2-one, which has then no jump in

normal derivative at the hypersurface -,wehave - @ ( g 2) 1p. (z) =0. Thus, we can
add this to the derivative of the jump operator, giving

h

i
W@ = @ (e+2 " (e *2) " P
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The advantage of having added this term is that we can now express this di erence of resolvent in
another manner. More precisely, we have

(e+2) " (e +2)" = P(@ «(e+2)

and inserting this in the previous equality yields

h i
Me@ = @ P@(e+d) ' PO

= i @P@ 1 -(e+2 'P(2
= INer (@ (e+2) 'P(2)

This computation holds as operators between the appropriate Hilbert spaces. Restricting to smooth
sections, we can now invert the jump operator, thus giving

Ner (2) 'S5 ® = § . (e+2) 'P (D

as operators acting on smooth sections dE over .. Combining the result obtained so far, we get

dlogdetNe~ (z2) = iTr .« ( e+2) P (2
The idea is now to interchange two groups of operators within the last trace, which will naturally
give rise to an operator acting on smooth sections ot over the punctured modular curve Z.
Unfortunately, the fact that Z is in general non-compact (it would be if and only if there were
no cusps) implies that some care must be taken. Though this operator will not be considered
outside this proof, we will need to consider the Laplacian .. associated to the Poincaré metric
restricted to - and the canonical metric h over the restriction of E to . We have
h 3=4 li h 3-4i
&logdetNer (z2) = 3Tr ( .e+1)™" «(e+2) " P (2 ( .+l ~

We will now work towards interchanging the two operators appearing in the trace above, which is
delicate, as non-compactness is involved. To that e ect, we begin by noting that the operator

( e+D™ (e+2) " 1 LAZE) ! L?( -E)

is bounded. We will now prove that we have

P(z) ( .g+1) ¥ 2 s, L2( -;E);L2(Z,E) ;

where this space denotes the rst Schatten class, and the operator considered here is bounded.
The rst step towards that goal is to compute the L2-adjoint of this last operator. Let u and v be
two smooth sections ofE over -. Using the proof of theorem 2.2.44, we have

D
P. (2 e +1) Fuv
(@2 ( e+l L2(ZE )
- 1D 1=2 1=2 ¥
= 1 E+z " et+Z NE;" (2)( “E +1) u, v L2(ZE )
- lDu;( e+ TNer (@ - oerz ] ] :
5 ; ; L2(ZE)
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By density, this proves that we have
P2 ( e+ ™ = 3 e+ TNer @ (e+2)’
To prove that the operator we consider belongs to the rst Schatten class, we note that we have

P(z) ( .e+1) ¥ P(@ ( .g+1) >

= %(n£+n Ner @ 0 etz T (e+D Y Ner @( g+
- 1 3=4 3=4,
i }N45? @ Nep@ f_egd
order 3=2 order 1 order 3 order 1 order 3=2

This operator, restricted to smooth sections ofE over -, then induces a pseudo-di erential op-
erator of order 4. Its square root is then of order 2, and acts on (sections of a vector bundle

over) a manifold of dimensiond, so is trace class. The operatoP- (z) ( .. +1) >*is then
in the rst Schatten class S; L2( -;E);L?(Z;E) , showing that the operator
P@ ( e+ ™ e+)™ (e+! = P@  (e+2)’
= 2@ (e*+2) " =2 (e+2) ' (g +2) "

is also trace class as a linear endomorphism &f? (Z; E). This completes the proof, as we have

T (e+2) ' (er+2) "
h i h i

I (e +)T o (e+2)t P2 ( .e+1)

& logdetNg: (2):

Proof of theorem 2.4.4. Using theorem 2.4.7, we have

dlogdetNes (z) = Tr (e+2) ' (e +2) '

In order to prove the theorem, we will show that the right-hand side above equals the log-derivative
of the appropriate relative determinant. We have

d% logdet( e +z; g +2) = FPs=o @@ @@ EtZ Er tZ (s)
1 1
= @@SSZO S etz, g t2Z (S + 1) = Tr ( E + Z) ( E;" + Z)

where we have denoted byFp the nite part at a point of a meromorphic function, i.e. the constant
term in its Laurent expansion at that point. The two equalities stated nally give

Llogdet( g +2z; g +2) = LlogdetNg; (2) ;

and integrating with respect to z yields the full result.
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Computation of the constant K. As we did in the last section, the computation of the
constant K in the Mayer-Vietoris formula will be done by taking the logarithm of both sides and
looking at the constant terms in the asymptotic expansion as the parameter = z goes to in nity
through strictly positive real values. The di erence here is that, although results stated [20] can
be applied to deal with the jump operator and the part of the relative determinant having to do
with the Laplacian with Dirichlet boundary condition on the compact part X-, the presence of
cusps brings di culties. We will also denote by Fp the constant term in the various asymptotic
expansions as goes to in nity.

Theorem 2.4.8. As goes to in nity, we have

Fp _, ; logdetNg~ () = 0 :

Proof. Since the jump operator acts on a compact manifold, this theorem is a direct consequence
of the work of Burghelea, Friedlander, and Kappeler, more speci cally [20, Sec. A.17].

O
Theorem 2.4.9. As goes to in nity, we have
Fp —,, logdet( g+ ; g+ ) = 0:
Proof. This theorem is a direct consequence of theorems 3.5.6 and 4.9.1.
O

Comparing these asymptotic expansions in theorem 2.4.4, we get the following result, which is
called the Mayer-Vietoris formula with parameter.

Theorem 2.4.10. In theorem 2.4.4, the constantK equalsl, and we have, for everyz2 CnR ,

det( g+ 2z, g~ +2z) = det Ng~ (2) :

2.4.2 Coe cient for =0

Much like we did for the Mayer-Vietoris formula in the case of smooth metrics and the Dolbeault
operator, we now want to let = z go to 0* in theorem 2.4.10. This will result in considering,
once again, modi ed determinants. We denote byV the volume of the modular curve, by * the
length of -, and by d the dimension of the kernel of the Laplacian g.

Theorem 2.4.11. We have

det®( e; er) = Y% det’Ngs

Proof. The same argument as the one we used to get theorem 2.3.16 can be applied here.
O

Remark 2.4.12. In theorem 2.3.16, note that the length of - did not depend on the metrics,
as it was assumed that they coincided with the Poincaré metric onX and the canonical metric
on E near the hypersurface. This part of the coe cient is thus the same in both Mayer-Vietoris
formulae. However, the volume heavily depends on the metric chosen on the modular curve.
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2.5 Determinants for the truncated metrics

In this last section related to analytic surgery, we will aim to give meaning and derive a formula
yielding the determinant of the Dolbeault Laplacian associated to the truncated metricsg- on
the modular curve and h- on E, which have been de ned in the last chapter. Throughout the
following, we will denote by g the Poincaré metric on the punctured modular curveZ and by h
the canonical metric on E, meaning the one built from the canonical hermitian metric onC".

2.5.1 Mayer-Vietoris formula for the truncated metrics

The rst step in obtaining the required formula is to de ne what the determinant of the Dolbeault
Laplacian associated to the truncated metrics means, since these metrics are not smooth.

Remark 2.5.1. As previously explained in de nition 2.1.13, for any smooth function' on Z, we
denote by g the metric on Z de ned by

g = €&€g:

Furthermore, recalling de nition 2.1.25, for any smooth section of End E, we denote byh the
metric on E over Z given for any smooth sectionss and t by

h (s;t) = h esjet

We can extend these de nitions to the case where and only have an H -regularity. Such
metrics on the tangent bundle have been extensively studied by Bost in [14], although the Sobolev
space is there denoted by 2.

Remark 2.5.2. From now on, we denote by’ and the function on Z and the section ofEnd E
over Z, respectively, such that we haveg: = g and h- = h . The metrics g and h being singular,
these sections and must be as well at the cusps (unless, for , if every ,; vanishes).

De nition 2.5.3. We say that a sequencege of smooth metrics onX converges inH *-norm to
the truncated metric g if there is a sequence oH *-functions '  converging to O for that norm
such that we have

& = € kg :
Remark 2.5.4. A similar de nition can be made for the metrics on the vector bundle E.

For the remainder of this section, we consider sequencegy), and (hy), of smooth metrics con-
verging to the truncated metrics g- and h-, respectively, with g« = g- and hy = h- on the compact
part X- of Z. As a consequence of the Deligne-Riemann-Roch isometry, we have the following
result, which constitutes proposition-de nition 5.3.11.

Proposition-De nition 2.5.5. We de ne the (modi ed) determinant of the Dolbeault Laplacian
for the truncated metrics to be given by the followilimit

0 gh = 0 gkihk |
det @& k!|n+11 det &

which is well-de ned and independant of the sequencag and hy.
De nition 2.5.6.  The truncation function C (") is de ned by
" ! #
c() = lm O gt wn det’N &

kil +1 p cusp @ ;p;"
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Remark 2.5.7. This function is well-de ned since, by proposition-de nition 2.5.5, the limit does
not depend on the chosen approximations, as long as they coincide witg and h on the compact
part X-. If this last requirement is not assumed, we need to add the determinants oiX-.

Theorem 2.5.8. We have the following comparison of (modi ed) determinants

d

. V,
det® 2" = C(") <L det

g:h :
@ @0

2.5.2 Combination of Mayer-Vietoris formulae

It is now time to combine all the Mayer-Vietoris formulae in order to get an expression for the
determinant of the Dolbeault Laplacian associated to the truncated metrics onX and onE. We will
rst decompose further the relative determinant we used in the singular Mayer-Vietoris formula.

Remark 2.5.9. The singular Mayer-Vietoris formula can then be restated as

vd .
det’( &; Ecuspr) = -~ det’Ngr (det g o)

Looking at both Mayer-Vietoris formulae, we note that the Laplacians on X are not the same.
One is attached to the Chern connection, the other to the Dolbeault operator. Fortunately, the
hermitian metric h on E over X~ is at, which gives g 0=2 g .., Using proposition 2.1.45.

Proposition 2.5.10.  On the compact part X+, the determinants of the Dolbeault and Chern
Laplacians with Dirichlet boundary conditions are related by

det g0 = 28029 Zdet g ;

where h is the number of cusps andy is the genus ofX.

Proof. We will work directly on the spectral zeta function. Using transparent notations, we have

@roS = 7 Enos = 2° (eng9);

det 5., = 2 (enoOdet guy:

Since the spectral zeta function is the Mellin transform of the heat trace, the special value above is
the constant term in the small time asymptotic of the heat trace. Using [50, Thm 3.4.1], we have

hRr R i
( E;";O; 0) = ﬁ X +2 @X k 1

where denotes the scalar curvature ofX-, and k is the geodesic curvature of@X. The scalar
curvature being twice the Gaussian curvatureK , we thus get, using the Gauy-Bonnet theorem,

hRr R i
( E;" 0s 0) = ﬁ X o K+ @X k = %r (X) ,

where denotes the Euler characteristic. It can be computed in terms of the genus of the modular
curve, since there are no elliptic points and the genera oK~ and Z are the same. We have

X:) = 2 29 h;
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with h being the number of cusps, which is the same as the number of connected components of
the boundary @ X. Putting these results together, we get

det g .o = 26029 Zdet gy

This completes the proof of the proposition.

Theorem 2.5.11. We have the following equality of determinants

d
. he

" V,
: _ c r - . :
det? %@ = SN (N!)E 2slh+2g 2] ng det’( e; Ercuspr) -

Remark 2.5.12. The behavior of the rst factor as " goes to0* on the right-hand side of the
theorem above is only fully understood when the canonical metridh on E is smooth at the cusps,
which happens if and only if all the weights |, vanish. This is because we do not have to change
the metric h in this case, and the conformal behavior of the determinants of Laplacians and of the
jump operators are known. The Deligne-Riemann-Roch isometry will however give the divergence
of this factor.

Theorem 2.5.13. The modi ed relative determinant of g and g;cusp; is asymptotically given
by, as" goes to0*,

log deto( E; Eicusp”)

P P
= log" ! pi &  &thlog" >+ 2k( ; )log2+log Z® (1)
pcusp j=kp+l '

+log(d)+ 2rv 29 1)+ log2 1 +o0(1):

Proof. This is a combination of theorems 3.5.10 and 4.9.2, remembering that we have

a(") = stlog" '
O

Corollary 2.5.14. As " goes to0", the determinant of the Dolbeault Laplacian for the truncated
metrics is given by

. " P P
che c " "
log det’ " = log oo +log " 1 i 2  irhlog" !
' p cusp j=kp+1

+1k( ; )log2+log Z( (1) +log (d!) + dlog -

+501v 29 1)+ 3log2 7 + £[h+2g 2]log2+o0(1):

Proof. This is a direct consequence of theorems 2.5.11 and 2.5.13.
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Chapter 3

Determinants on a modular curve;:
the Selberg trace formula

The purpose of this chapter is to compute the modi ed relative determinant

det’( g; )

this notion having already been studied, where - is a one-dimensional Laplacian de ned near
each cusp, and trivially extended to X, as was done in [47, Sec. 2.1.3 & 8]. As before, we denote
by g the Laplacian associated to the Poincaré metric onZ and the canonical metric onE. In
order to deal with the structure of E over X, we will need to use theSelberg trace formula which
has been studied extensively in literature. The reader is referred to [97, 98], where Venkov presents
everything we need. This chapter will also follow the work of Fischer, which can be found in [44].
Many other references exist, sometimes dealing with a situation that is not general enough for our
purposes, but which may still be of use to the reader, see for example [57, 58, 60].

3.1 Description of the framework

3.1.1 Hyperbolic Laplacian E

Identi cation between Laplacians. As explained in the last chapter, a unitary representation
L U(©)

where is the Fuchsian group of the rst kind de ning the modular curve X, induces a holomorphic

at vector bundle E of rank r over the punctured modular curve Z, for which we can consider its
Chern connectionr E and its associated Laplacian

e : @ (ZE) ' C t(zZE)

acting on smooth compactly supported sections o over Z. The Friedrichs extension process
then yields an L 2-selfadjoint positive-de nite operator

e : H?(@ZE) ! L2(Z;E) :

In order to fully apply the results regarding the Selberg trace formula given for instance by Venkov
and Fischer, we will need to interpret this Laplacian dierently. The resulting operator, being

65



naturally identi ed with the Laplacian we have considered thus far, will be denoted in the same
way. This shift of de nition will be done throughout the rest of this text.

De nition 3.1.1.  Let F be a fundamental domain for the action of onH. We de ne C (F;C")
to be the space of smooth vector-valued functiong : H! C" which are square-integrable onF
with respect to the Poincaré metric, and which are compatible with , that is satisfying

f( 9= ()f@®@
for every element of and every pointz in H.

Remark 3.1.2. The complex vector spaceCt (F;C") can be endowed with the hermitian product

R
f9) = ¢ (F(@2:9@)c d (2);
where is associated to the Poincaré metric.

Remark 3.1.3. The Laplacian associated to the Poincaré metric acts orCt (F;C") by

f = y2%+@%f:

The resulting operator : C' (F;C") !C ! (F;C") yields a selfadjoint positive-de nite operator,
after Friedrichs extension, whose domain is denoted by, and is still denoted by . When acting
onC! (F;C"), both this Laplacian and g, coincide in a natural manner, and we identify them,
even after the extension.

Kernel of the resolvent. Before moving on to the de nition of the auxiliary Laplacian, a quick
remark is in order here, regarding the kernel of the resolvent of g. Denoting by k(; ;s) the
kernel of the operator ( S) ! the kernel of( g ) ! seen as actingCt (F;C"), is given by

k. (z;2%s) = P ()k(z; z%s) .
5 ;

for z and z%in the chosen fundamental domainF . This series is furthermore absolutely convergent
on the half-plane Res > 1.

Remark 3.1.4. In a way, this new kernel is an average ofk, though it does not involve any
coe cients, as they are implicitely included in the domain on which the operators act. To see that
more clearly, let us make an informal computation, where is temporarily assumed to be nite,
even though that cannot be the case, and equals1l. We will see that the Laplacian g can be
thought of as an average, in a more classical way, of twisted Laplacians. We have

(e 9'f @ = RF k. (z;2%9)f (29 dz°
= %P Rpk; (z; 2%s)f (29 dz°
= ? RF k. (z;2%9)f (29 dz°
= %R:k; (z:2%5)f (29 d2°
P

e , ( )RHk(z; z2%9)f (29 dz°

& () 9t f (2:



This allows us, at least formally, to make the following identi cation
(e 9" = 4#& () 9

and the operators appearing on the right hand side are resolvent of Laplacians which have been
twisted by the isometry induced by the elements of the group . Such twists, in di erent contexts,
have been studied by Donnelly and Patodi in [35] and [36], and by K&hler and Roessler in [65].

The assumption that should be nite cannot hold. However, one can imagine that the kernel
of is of nite index in . As noted by Iwaniec in [60], near the end of sectior2:1, a subgroup
of nite index of a fuchsian group of the rst kind is itself fuchsian of the rst kind, which means
that one can construct a modular curve out ofker . Similar considerations as those made above
then justify the fact that the Laplacian associated to on nH can be thought of as an average of
twisted Laplacians on the intermediary modular curve ker nH.

Proposition 3.1.5.  The kernel of the operator( S) YonHis given by

2
k(ziz%s) = (29 ° + HLF ssi2si—2y

where the function is de ned by

o,
. _ ]z z°J .
) = Fmrww

and F stands for the modi ed Bessel functions of the second kind.

3.1.2 Auxiliary Laplacian

As will be proved in this chapter, the previously constructed Laplacian g does not behave well

in general, insofar as it can have an absolutely continuous spectrum. This prohibits the de nition

of the determinant through a -regularization process. For this reason, we will not de ne the
determinant of g, but rather the relative determinant of g and of another operator  yet to be
introduced. The introduction of this operator is based on [47, Sec. 2.1.3], the main di erence being
the higher dimension of the vector space we consider, as well as the presence of a representation. In
order to be coherent with the notations used by Venkov in [97, Sec. 1.2], we will rst setv = C'.

Let p be a cusp, and , be a generator of the stabilizer , of pin

De nition 3.1.6.  The xed subspaceV, of V is de ned as
Vo = fv2V; (p)(v)=vg:

Remark 3.1.7. This subspace does not depend on the choice of the generatog.

De nition 3.1.8.  We de ne the auxiliary Laplacian - acting on the spaceG (Ja(");+1 [;Vp)
of smooth, compactly supported functions in the interval Ja(") ;+ 1 [ with values in V, to be

Remark 3.1.9. This operator, after having undergone the Friedrichs extension process, yields a
self-adjoint positive-de nite operator

HZ0a(");+1 [Vp)\ Hg(a();+1 [Vp) & L2(a():+1 Vo) ;
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where self-adjointness is to be understood in the.?-sense, and the intersection appearing in the
domain of this operator re ects the Dirichlet boundary condition y = a(").

Proposition 3.1.10.  The kernel of the heat operatore ' * onJa(");+1 [2 is given by
h w2 i
Ke (y1:yait) = a%e t:4pm e log(yi=y2)?=(4t) o (log(y1y2) log(a(")?)) =(41)

1 L t

Remark 3.1.11. When V is of dimension1 and the representation is trivial, this result is ref-
erenced in [47], near the beginning of sectio®:1, as well as in [1], at the start of section1:5:3,
where Aldana refers the reader to either Carslaw's and Jaeger's work in [26], or, for a more detailed
solution that is applicable to the current situation, to Muller's computation in [72, Sec. 6]. The
proof is absolutely similar here, as can be noted after having chosen an orthonormal basis .

De nition 3.1.12. The operator - is extended as an operator acting on functions de ned on
the product R Ja(");+ 1 [ with values in V, by trivial exntesion in the rst variable. We further
extend it to functions with values in V after de ning by 0 its image on functions taking values in
the orthogonal V7 of V, in V.

De nition 3.1.13. The operator - is extended over the whole punctured modular curveZ by
requiring it to act as 0 outside the considered open neighborhoods of cusps.

Remark 3.1.14. The kernel of this last Laplacian can be obtained from proposition 3.1.10, and
is in particular zero except when both variables are near a certain cusp.

3.2 The continuous spectrum of the Laplacian E

The Laplacian g having an absolutely continuous spectrum, we cannot de ne its determinant.
To remedy that, we will study this part of the spectrum further, using Eisenstein series.
3.2.1 Eisenstein series
Following [97, Sec. 3.1], and de nition 1:5:3 of [44], we have the following de nition.
De nition 3.2.1. Let p be a cusp, andv be a vector belonging toV,. We de ne the Eisenstein
series associated top and v by
P — P 1 S 1
E(z;s;p;v) = Im g,*z () “v.

7
2 ,n

where g, is an element of PSlz (R) sending both the cuspp and its stabilizer to the in nity, and
the subgroup of PSL, (R) generated by the unit translation.

Proposition 3.2.2. For any p and v as above, as well as any 2 H, the function

s 7! E(z;s;p;V)

which is well-de ned and holomorphic on the half-plandRes > 1, has a meromorphic continuation
to C, whose potential poles' location and order do not depend on. Moreover, this function has no
pole of real part 1=2.

Proposition 3.2.3.  For any cusp p and any v 2 V,, the Eisenstein seriesk (z;s;p;V) is abso-
lutely convergent in the half-planeRes > 1 for any point z of the upper half-planeH, and hence
holomorphic in s there. As a function of z, it satis es the following properties:

1. forevery 2 ,we haveE (z;s;p;v)= ( )E(z;s;p;V);
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2. the function E (z;s;p; V) is smooth on a fundamental domainF for the action of on H;
3. we have E (z;s;p;Vv)= s(1 s)E(z;s;p;V) as distributions.

Remark 3.2.4. The second condition above does not imply that Eisenstein series are smooth in
over the whole upper half-plane, as there can be problems at boundary points &f. As we will later
see, these series are not square-integrable, which means that the third condition above does not
mean that s(1 s) is an eigenvalue of the Laplacian g, as those must be positive, ands(1 s)
covers a good portion of the complex plane.

Remark 3.2.5. There is an important point worth noting here. Though the Einstein series are
de ned relatively to a cusp, the invariance condition (the second point in the proposition above)
states that they each induce functions on open neighborhoods of the other cusps. This can be
summed up by saying that cusps have a long range in uence . A similar observation is made by
Bunke, albeit in a di erent context, in [19], right before theorem 3:6.

De nition 3.2.6.  Let p be a cusp. We lete,, ..., € be a basis ofV which diagonalizes ( ),
meaning that for every integerj betweenl and r, we have
8
< &y for j 2 J1; koK
(&) = . . ;

e? rigy for j 2k, +1;rK
where each real number p; belongs t0]0; 1[.

Remark 3.2.7. We will now follow closely Fischer's presentation, detailed in [44, Sec. 1.5].

De nition 3.2.8.  For any cuspp, and every integerj betweenl and k;, we set

z 7' E(z;sipigy)

Proposition 3.2.9. Let p and g be two cusps, which may or may not be distinct, angl be an
integer betweenl and k,. The restricted Eisenstein series

R Ja(");+1[ ! C
z 7! Epj (04z:9)

is then 1-periodic in the rst variable, and its zeroth order Fourier coe cient is given by

8

< Priia (S) yl S+ p:q yS €p;j if kp >0
Upjq (Y:8) = . . :

-0 if ky=0

for any y belonging toJa(");+1 [ and any s a point where E; (z; ) is holomorphic.

Proof. This is proposition 1:5:6 of [44], for which Fischer refers the reader to [58].
O

Remark 3.2.10. It should be noted that the Kronecker symbol .4 is to be understood as a
condition on whether or not the cuspsp and g are the same.
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3.2.2 Scattering matrix

Having de ned the Eisenstein series associated to each cusp, we can now turn to the notion of the
scattering matrix, which measures the in uence that cusps have on each other. Once again, the
notations and results that follow are taken from Fischer's work, more precisely from [44, Sec. 1.5],
the only di erence being that the notations for cusps and integers are interchanged from Fischer's.

De nition 3.2.11. For any two cuspsp and g, and any integersj 2 J1; kpKand | 2 J1; kqK we set

" piian (8) = Peqi; P ()1
where h; i denotes the canonical hermitian product onV = C'.
De nition 3.2.12. For any point of holomorphy s of every function from de nition 3.2.11, we
de ne the scattering matrix to be
(s) = " iyt
where(p;j) is the row index, to be read in the lexicographical order, and(q; ) is the column index.
Remark 3.2.13. It is implicitely assumed here that the cusps of the modular curve are ordered.

Proposition 3.2.14.  For any s as above, we have

(9 = (9

De nition 3.2.15. For any s as above, thedeterminant of the scattering matrix is denoted by

"(s) = det ( s):
Proposition 3.2.16.  For any z 2 H, we have the functional equation

P B | _
Epj (z;1 ) = wi)iah @ S)Eqi(z;9) ;
qcusp =1

wheres is a point at which each and every one of the terms above is holomorphic.

Corollary 3.2.17. For any s as in the last proposition, we have

@ 9(s = 1;

wherel| denotes the identity matrix. Furthermore, for everyt 2 R, we have
1 i — .
st it = 1:

3.2.3 Maay-Selberg relations

To conclude this section on Eisenstein series, we must see how théi?-norms behave. As already
stated, these series are not square-integrable over a fundamental domain for the action of
on H, and we will therefore need to apply some truncation, in order to give meaning to an integral.
For this section, we will follow Venkov's work, presented in [97, Sec. 3.2].
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De nition 3.2.18. Let F be a fundamental domain for the action of on H. For any "> 0, and
any cuspp2 F, we setF,(")= go (R Ja(");+1 )\ F and write F as the disjoint union

F
F = Fo(") t Fo("):

p2F

cusp

Remark 3.2.19. This partition re ects the consideration of a small enough open neighborhood
in F of every cusp belonging to the considered fundamental domain. The part away from the
cusps , denoted byF, (") is de ned so that we have the decomposition ofF stated above.

De nition 3.2.20. For any cusp p, and any j 2 J1;k,K the truncated Eisenstein seriesE; is
de ned as

8
< Epj (9 for z2 Fo (")
Epjr (z:9) =
Epj (20S)  Upjq IMgq'zis  for 22 Fq(")

Remark 3.2.21. As can be seen in the de nition of these truncated Eisenstein series, the point
is to remove the zeroth-order Fourier coe cient around each cusp, while doing nothing away from
each cusp ofF. The result yields a square-integrable function onF. We further have

Z 5 Z
Bpjr (z;9) d (2) = KEpj (z;9)K? d (2) :
F Fo(")

where denotes the measure associated to the Poincaré metric. In order to consider the integral
of an Eisenstein series, truncation has to be performed, either on the domain, which results in
considering Fo (") instead of F, or on the series, which means integrating€,,; and not Ep; .

Theorem 3.2.22 (Maay-Selberg relations) Let p be a cusp and be an integer betweeri and kp.
We have, for any non-real complex numbes of real part strictly larger than 1=2,

z

1 s s

P B
S+5S

F gq2F 1=1
cusp

. 2 _ 1 w\S+5 1 ' 2 _
Epjr (zs) d (2) = 51 a() mi)ian (8) ~a(")

1 S 5 S sT———7y
+22am® ® e al® i) ()

Remark 3.2.23. The Maay-Selberg relations can be extended to all complex numbes of real
part larger than or equal to 1=2 by noting that problems on the right hand side can be deal with
by interpreting the appropriate terms as di erence quotients. We will state these extensions below.

Corollary 3.2.24.  For any real number s > 1=2, we have

z

P P
2s

F q2F I=1
cusp

2 § . 2 §
Boir (zi9) d (&) = 4 a()™ ! (eiian (8) “a()t * +2log(a(")
Corollary 3.2.25.  For any non-zero real numberr, we have

z 1 2
By z; 5+ ir d (2)

= 2log(a(")) PR Lair NyoSoir
9 (I HCHY (a:):(pii) 2
g2F 1=1
cusp

1 w\2ir 1 . " 2ir 1 .
+5 al)” i) 2 Fir al) (i)ipi) 2z T
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Corollary 3.2.26. We have

Z 2
Epjr 2z

d (2)

NI =

alog(a(’) Blo o iah Cabieiy L
F oF |z (PII(ED 2 abipi) 2

3.3 The Selberg trace formula

Now that we have stated all preliminary results required in this chapter, we can proceed to the
main ingredient we will use, namely the Selberg trace formula. We will follow [44] here. In order
to be consistent with the situation studied in this text, we will assume that the Fuchsian group of
the rstkind  has no elliptic element.

3.3.1 Spectral expansion for the resolvent

The rst step in getting the most general version of the Selberg trace formula we will need here, we
rst need to have a spectral expansion theorem for the resolvent associated to the Laplaciang.

Theorem 3.3.1. Let s be a complex number whose real part is strictly larger thari, such that
the spectrum of ¢ does not contain = s(1 s). For any function f de ned on H which is both
square-integrale overF and compatible with the representation , we have

1 R
(e ) F = ¢k, Gz)f@)d (29
The function k . (; ; ) is called the resolvent kernel of g assocated to the parameter .

We will now use this kernel k . , also called aGreen's function, to give a slightly more explicit
integral representation, which will separate the in uence of the discrete spectrum from that of the
absolutely continuous part, the latter being fully described by the Eisenstein series.

Theorem 3.3.2. Let ( ,-)J. o denote the eigenvalues of g belonging to the discrete part of its
spectrum, repeated with multiplicity. We further consider a Hilbert basis(f; )J. o associated to this
sequence. Let thens and be two complex numbers of real part strictly larger thanl. We then
have, for every pointz of F,

P

i o

: 2
s%l s) ] %1 ) in (2)j

= (s )RF Tr(k; (zw;gk ; (w;z; ) d (w)

2

PR Ry L L Epj z;i+it
. 4 1 1=4+1t2 s 1=4+t2 p:) )

p2F j=1

cusp

dt;

where the series on the left hand side is absolutely convergent.

Remark 3.3.3. This theorem can be restated in the following way. For any two pointsz; and z,
in F, we have

P 1 1 H f H
o Tsaw Ta oy (@) ()
j
P B R
— 1 T+l 1 1 R R 1oy
B p2F j=1 4 1 itz s@ 9) 2 (1) Ep; 5+ 1t ' Ep;j Z 5t 0t dt

cusp

+(s )RF Tr(k . (zi;w;s)k ; (w;zp; ) d (w):
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It can also be integrated overF, which makes the functionsf; disappear. We have

P

i o

1 1
i s s) i @)

R R
= (s )¢ g Ti(k; w9k ; (w;z; ) d (w) d (2)

P MLRR” L 1 E,. z:l+it 2
4 F 1 L+t2 s(1 s) +t2 1) Pl 12

dt:

As we can gather from this last formulation of the spectral expansion theorem, the second term can
be computed by using the appropriate Maay-Selberg relations, after having itnerchanged the two
integrals. The rst term will require some more work, and is the object of the next proposition.

Proposition 3.3.4. For any s and as before, we have

(s )RF Tr(k; (Zyw;9)k ; (w;z; ) d (w)
= \IAi/r'nZ Tr(k . (z;w;s) k. (z;w; )):

Proof. This result stems from the formulae corresponding to the appropriate resolvents.

Remark 3.3.5. By de nition of k . , we have

VIvilm k. (z;w;8) k. (z;w; ) = Iirln P T ()(k(z; w;s) k(z; w; )
L4 - P PW. z 2
= lim () kz9g9 'w;s k z;gg 'w;, ;
wh z g g2 n

wheref g is the conjugacy class of an element of , and is the centralizer of the element .

Corollary 3.3.6. Forany and ©°as above, we have

(s )RF Tr(k ;. (z;w;9)k (W:ZP; ) d (W)

= lim T () k z;99 *w;s  k z;99 w;
W!ng g2 n

Remark 3.3.7. Using the last corollary, we note that the rst sum can be broken into four parts:
one that deals with the (conjugacy class of the) identity, another one with conjugacy classes of
hyperbolic elements, and a third one with those of parabolic elements. Since we assumedo be
without torsion, there are elliptic elements.

Proposition 3.3.8. For any element of which is not the identity, the series
P P

()k z;99 *w;
f g g2 n

converges uniformly as a function ofw in an open neighborhood of almost (in the sense of the
Poincaré measure) everyz.

Remark 3.3.9. The limit in corollary 3.3.6, for any , can then be computed almost everywhere
term by term. This is enough, as we only require an equality of square-integrable functions.
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3.3.2 Contribution of the identity

We begin the study of the sums appearing in corollary 3.3.6 with the one associated to the identity.
As stated before, the limit cannot be computed term by term.

Theorem 3.3.10. The contribution from the identity in corollary 3.3.6 is given by
lim Tr(k(z;w;s) k(ziw; ) = 2-( (s) ()
w! z !

where denotes the digamma function.

Remark 3.3.11. For reasons that will be clear later, we need to interpret the right hand side in
this computation as a logarithmic derivative, after having integrated over the fundamental domain.

Proposition-De nition 3.3.12. Denote by G the Barnes G-function. The function
; : Cn]1 ;0] ! C
s 71 exp "2 E (slog(2 )+ s(1 s)+log (s) 2logG(s+1))

is holomorphic, nowhere vanishing, and its logarithmic derivative satis es

L(s) = (25 DVOIF 2 (s):

This derivative has a meromorphic continuation to C whose poles are located at negative integers.

Proposition 3.3.13.  The function | satis es the following asymptotic expansion

log /() = “9PF  2jog +12+ log ilog +3ilog(2) 2° 1) +0 2

as goes to in nity through strictly positive values.

Proof. Going back to the de nition of |, we have, for every real number > 1,

log 1 () = "“PF Jog2 )+ 2+ llog(2 )+ 1 log +0 1

2 % D+3log2)+ 32 Llog 22+0 %

- rV20IF 2log + 1 2+ log %Iog +llog(2) 2° 1) +0 %:

Here, we used the asymptotic expansions for the Gamma function and the BarneS-function.
O

3.3.3 Contribution of hyperbolic elements

We now move to the rst non-trivial conjugacy class in , which is that of hyperbolic elements.
As we will see, this is the contribution about which we have the least information. This fact wuill
lead to the de nition of the so-called Selberg zeta function As before, the results that follow are
taken rather directly from Fischer's work. For more details, the reader is therefore refered to [44].

Proposition-De nition 3.3.14. Let f g be a hyperbolic conjugacy class in. We dene N ( )
to be the only real number strictly larger thanl such that we have

N ( )F? 0
0 N () 1=2

= A 1
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for some matrix A in PSL; (R). We then de ne No( ) > 1 to be the only real number such that

y ) 4
S oAl No () 0
o =

0 No() 7

generates the centralizer of in . We call ¢ the primitive hyperbolic element associated to .
Remark 3.3.15. It should be noted in the result above that we haveN ( o) = Ng( ).

Theorem 3.3.16. The integrated contribution of hyperbolic classes in corollary 3.3.6 is given by

P P R
Tr (), kzgg 'z;s kzgg 'z, d (2

fg., g2 n
ihyp p p

f og yp M 1
PP n N(o) "
71 T (o) logN ( o) TN(og ™
fog p, M1
Proposition-De nition 3.3.17. The Selberg zeta function
Z . fs2C; Res>1g ! C
s 71 Q Qdet ln ()No() ™

fg ihyp m 0
is holomorphic, and its logarithmic derivative satis es, on this half-plane,

o P P ms
5 = Tt (o)™ logN (o) 55w
f og yp M 1

Remark 3.3.18. It is always implicitely assume that , is the primitive hyperbolic element in the
considered conjugacy class. Furthermore, the real numbeN ( o) can be seen to be the length of
the closed geodesic associated tq.

Remark 3.3.19. As a consequence of the Selberg trace formula, we will see that the Selberg zeta
function has a meromorphic continuation to C, for whom 1 is a zero of order the dimension of the
kernel of the hyperbolic Laplacian .

Proposition 3.3.20.  The Selberg zeta function satis es
logZ () = o(1)

as goes to in nity by strictly positive real values.

Proof. This computation is in [44], right before lemma 3:2:6. For any real number > 1, we have

_ P P m log N (o) 1 ms
IOgZ( ) - ; Tr ( O) 1 N( O)Om mlog N ( o) N ( O) :
09 ;yp M 1

We can bound this logarithm, by writing

i i P N(o) ™
jlogZ ()i |Tr( & 0)" QN twioT Cm()

f og “hyp
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where C > 0 is a constant, and we have denedm ()=min fN ( ); 2 hyperbolicg, which is
strictly larger than 1. This completes the proof.

O

Remark 3.3.21. The crucial point above is to use either Venkov's lemma4:4:1 from [97], or
Fischer's lemma2:2:2 from [44], which state that the number of primitive hyperbolic conjugacy
classes ogwith N ( o) x is bounded byCx with C > 0 a constant.

3.3.4 Contribution of parabolic elements

Having dealt with the contribution from the identity and the hyperbolic classes, we turn our
attention to the parabolic classes.

Theorem 3.3.22. The integrated contribution of parabolic elements in corollary 3.3.6 is given by

P P R

Tr (), kzgg 'z;s kzgg 'zz d(2
fg par g2 n

P B _R R,

— 1 1 ool 2
T oerja Y F 1 R (e Epj zg+it ~dtd (2)
cusp R ,
1+l 1 1 R
+ i e (e T 5+ it dt
Q @
+5+5 nhlog2 log _ sin( pj) k() s+3
p2F j=kp+l
cusp
1 1
Faa o ke 2
=t=  nhlog2 IogQ . ? sin( pj) k() +
p2F j=kp+l
cusp
1 1
M LR 2
Proposition-De nition 3.3.23. The function
pr 1 Cn 1 ;1 | C
S 71 2 nhs @ @ (sin( pj)) °
p2F j=kp+l
- b () o)
1 7 Mlke ) 7 1 ,
S 77 ’ S+ 3
is holomorphic, and its logarithmic derivative satis es, on the appropriate domain
0
B (s) = nhlog 2 IogQ Q sin( pj) k(;) s+1
e p2F j=kp+l
cusp 1 .
Tl ke 2

Remark 3.3.24. One of the main di erences between this section and the work of Fischer in [44]
lies in the result above, as the reader will note that the function pa we just de ned is simpler
than the one used in corollary2:4:22 of [44]. The reason for this change is that the need to express

1 R+:|.

1 0
4 1 (s 1=2)2+12  ( 1=2)%+¢2

+ it dt

N

as a logarithmic derivative is not as high. It will still be needed at some point however, and we can
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note from corollary 2:4:22 of [44] that the term above is the logarithmic derivative of a function Yy,
de ned on a domainD.

Proposition 3.3.25.  The function p, satis es the following asymptotic expansion

00 () = k(i) log  nhlog2 k(;)+ = logsin( p)

g2 1=Hos
+3 k(;) T3 log 2log(2 )k(;)+O %

as goes to in nity by taking strictly positive values.

Proof. By de nition, we have, for every real number > 1,

Q @
log par () =  nhlog(2) log sin( pj)
p2F j=kp+l
cusp
+2Tr (o i log I k(;)log +13
P P . 1 1
= hnlog2 + logsin( pj) +35 k() Tr 5 log
p2F j=kp+1
cusp
k( ;) 3log2 + log +0 %
P P _
= k( ;) log hnlog2 k( ; )+ logsin( ;)

P2F j=kp+1
cusp

+2 k() Tr 3 log Zlog(2 )k( ;)+0O *:

Once again, we have here used the asymptotic expansion of the Gamma function.

3.3.5 Resolvent trace formula

Now that we have computed every contribution in the integrated form of corollary 3.3.6, we can
put all these results together to state the following resolvent trace formula. Though it appears to
be only a special case of the more general Selberg trace formula, and as noted by Fischer in [44],
right before theorem 2:5:1, the two results are actually equivalent.

Theorem 3.3.26 (Resolvent trace formula). For any complex numberss and  of real part strictly
larger than 1, we have

P R+l

1 1 1 1 1 S
Lo i os@e @ ) 41 ¢ e (e o2t dt
! L h 0 20 0 [ 1 0 70 0 i
= w1 TOFFEF =0 1 TO)FFOF ()
. P P .
= VolF I (9)+ 5ty 2 (5) siyrhlog2 »is e, 0gsinC )
gusp =%
1 . 1 1 . 1
= k() sta targr KGo) T
P P
+VoI F 2 () 25 Z()+ yigrhlog2+ ;1 logsin( p;)
p2F j=kp+l
cusp
Frlok( ;) = ﬁk(;)Tr 1
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Remark 3.3.27. The statement of the resolvent trace formula above slightly di ers from the one
made by Fischer in theorem2:5:1 of [44], insofar as we chose not to explicitely write the Selberg
zeta function, and the part involving the logarithmic derivative of the determinant of the scattering
matrix has been left intact on the left hand side.

Proposition-De nition 3.3.28. The function
fs2 C; Res>1g ! C

S 7! | (S) Z (S) par (S) gpar (S)

satis es the following functional equation (s) = (1 s). The function thus has a holo-
morphic continuation to the whole complex plane. Consequently, the Selberg zeta function has a
meromorphic continuation to C, which is still denoted byZ.

3.3.6 The Selberg trace formula

The aim now is to state the apparently more general version of the Selberg trace formula, as is
done by Fischer in [44, Chap. 4]. This will require us to use special kinds of functions.

De nition 3.3.29. Let > 0. We denote by D the space of functions

h 1 z2Cijimzj< 3+ ! C;
which are holomorphic, and satisfy the following two conditions:
1. for every z in the appropriate domain, we haveh ( z) = h(2);
2. we havejh(z)j = O jRezj 2 asjRezj goes to in nity.

Remark 3.3.30. For any such function h, we can consider the Fourier transform

g : R ! C
X 7! 5> 4, g(uye ™ du

Remark 3.3.31. As is commonly done when presenting the Selberg trace formula, we will reindex
the eigenvalues ; belonging to the discrete spectrum of the Laplacian g as

I R
Unlike what is done in [97], we will not consider here both real numbers; giving the same |,
which is why there is a di erence by a factor 2 between this formula and what Venkov presents.

Theorem 3.3.32 (Selberg trace formula) Let > 0 and h be function in D . We have

P R, : .
h(rj) & ;% h(r) = L+ir dr
i o0
R+1 1 R+1 .
= Vol F &~ ;7 rh(r)th(r)dr k() ;° h(r) (Q+ir)dr
P R
+ T ((0)") et g(logN ()
f og . m=1 (o) N( o)
ihyp

P p
+3zh(0) k( ;) Tr z g(0) rhlog2+ ' logsin( pj)
g5 1
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Remark 3.3.33. The resolvent trace formula can be recovered by considering fdn the function

h(r) =

1 1 .
(s 1=2)%+r2 ( 1=2)%+r2"

3.4 Relative spectral zeta function

We can now study the relative spectral zeta function associated to the operators ¢ and -. This
is done by taking advantage of the fact that zeta functions areMellin transforms of heat traces.
We will also adapt an argument presented by Efrat in [37].

3.4.1 Relative trace of heat operators
Theorem 3.4.1. Foreveryt> O,thedierence e ' = e ' " is trace class, and we have
P

Trete et = e (&
j o

R
+r2)t 1 +1 Lip2)t 01, 1
) 1 e(4 )Tr 5+ r 5 ir dr

+3k( 5 )e =h+ e BT 5+ pa—e B4k( ; )loga("):

Proof. In order to prove this result, we would like to begin by writing the following

RN p BR R
Trete et~ = _ L | Il e (F+ro)t e Epj z;i+ir 2d (2)dr
p2F j=1
cusp

K:.(z:z;t)]d (2)+ P e (G+ri)t.
i o

However, we would rst need to prove that the di erence of the heat operators is trace classij.e.
that what appears in the integral is integrable over F. We will prove that the following limit

R h_ p BR i
lim Lo e ) By e Cdr Ke(zizit) d (2)
Lo "o p2F =1

u

exists, and actually compute it. For any real number such that we have0O< <" , we have

R h. p PR , i
Lo (Gro) Epj zi3+ir 2dr K- (z;z;0) d (2)

Fol) 4 pop ja1 1
cusp h i
P R P P R .
- Fq(")nFq( ) % ' Il e (G+ro)t Ep; z;%+|r dr Ko (z;z;t) d (2)
q2F p2F j=1
cusp cusp h o i
R P R i
te &1 e U Ey e Cdr d (@)
p2F j=1
cusp

We will now compute each of the integrals appearing in the rst term. For any cusp g, we have

R h P PR ’ i
1 +1 Ler2)t 1y 2 -
FoCInFal) 37 o) e (") By zifwir Cdr K@zt d (2)
cusp
P P R, 1, .2y R 2
= 2 gt e Gy FoynFa() Epi Ziz*ir Td () dr
p2F j=1
cusp

FotnFq() Kz d (2)
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and we can now truncate each Eisenstein series to get

R

1y 2
Fa(inFg( ) Epi Zip*ir d (2)
R 2 S > R
— Sl ! 14 a() 1
= Ry B Zptin d@F izt acy y

- Ragy R Ra()
+2 paRe  (piypi) 2 0 ay Y LAy + g a(") %dy:

This decomposition works because the truncated Einsenstein series ak&-orthogonal to the zeroth
order coe cient in the Fourier decomposition of the full Eisenstein series. Furthermore, the limit

. R l - 2
Im e enFe( ) By zi5+ir  d (2)

exists. It is also important to be aware that the open neighborhood of any cusp is always thought
of as a productR ]a;+1 [, wherea is associated to either" or in the usual manner, according
to whether we considerFq (") or Fq( ). The remaining integrals can be computed, and we have

P R P P 1.2 1, 1,

(i )i(aik) Z T = T 1 s+ grir = k()
gq2F k=1 p2F j=1
cusp cusp

Moving on to the study of the auxiliary Laplacian, we note that we have

4R Rl log (&)
F (k) Kr @zi)d (2) = kqpg—e =* :((..))yd (2) kqpi= o O7exp  x? dx:

The rst term of the above will be compensated by others, and we have

Rl log (242) R, .
[ pl 2™ 2 = 1 2 - 1
II!mo KaPZ= o exp x° dx = kepi= o7 exp x° dx = zkg
Hence, we have
R h ., P P R, (1+r)t L2 i
Fo() 4 1 e Epj ziz+ir “dr K-(z;z;t) d (2)
2F j=1
cusp
P Fh FQ+ 1 1, .2 R . 2
= 4L ) 1 € (et Fo( ) L Z?%"‘ ir d (z)dr
2F j=1
cusp
+3-log 33 k()" Te =t k() edre Stog 3
" lelog a( )
+4ilog gé; k( : )p et—4+k( : )pi:e t=4 OFT (59 exp %2 dx
P P R ) .
1 +1 Tt 1 1 2ir
S ()0 A iy 3 a() |
CLZISII:J p=t ' 1 . 2ir
o (i) z T ir a()” dr
P P R . A
1 +1 % t 1 ' 1 : wy  2ir
ta . 1 € (1) i) 2z iroa(”) .
p2F j=1 i
cusp

' 1 . wy 2ir
(i) 2+ ir a()™ dr
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It should be pointed out that the only divergent terms as goes to0 are those appearing on
the second and third line of the last formula above, which cancel each other. This means that
the auxiliary Laplacian - has indeed the same type of absolutely continuous spectrum as the
hyperbolic Laplacian g. We now have

h
P p’ R 2y, R 2
i 1 +1 FHr)t W1
lim T o g e (G+r%) Fo(y Bpir Ziztir d (2)dr
cusp
P P R R 2
= % ' Il e (%+r2)t F @p;j;" Z,%"— Ir d (Z)dr’
p2F j=1
cusp

which we will compute shortly using the appropriate Maay-Selberg relations, and more precisely
corollary 3.2.25. As has already been pointed out, we have

H = RplTl()g(a” =
I|!m0 k(;)ri-e &4 Olexp x2 dx = Zk(;)e F4:

We now need to study the following term

P P R, 1 Lyr2)t 1 h . 1 2ir ' 1, 2ir i
e I e 3 i a() i) z+ir a()” odr

p2F j=1

cusp

as goes to0, which will require us to use a trick presented by Miiller in [72], p274. We have

Ri1 Ter?) 1 1 2r . 1, 2ir
e ) ey 30 a() ey z*+ir a()™ dr
R+ 1 Lyy2 ! i ! i
= 1 e T e 3 iei) 3+ cos(@loga( ) dr

R+1 14,2 ' . ' . .
de )N L i) BT+ (i) 3+ 0r sin(2rloga( ) dr:

We can now compute the limit of the rst term above and show that it vanishes, using the Riemann-
Lebesgue lemma. For the second term, we use results about molli ers, to get

hp B R h
i +1 FreA)t 1 2t 1. 2ir
lim, 1 ¢ (= r)z" (i) 2 Iroa() (i ):(pi) 3 T ir a( ) dr
0 g

_ =4, 1
€ rz
This proves that the following integral exists and is given by

R h P PP R+1 e(%+r2)t |

2
L Bojr z;3+ir  dr Ke(z;z;t) d (2)
p2F j=1
cusp
P P R R 2 ~
= 2 7t e By zleir Td (@dr+ ik(; )e &4
p2F j=1
cusp
P P R . _
— 1 +1 1 t 1 ' 1 . wy 2ir
v2e =T 4o+ Tt e (U L gy § i a)
p2F j=1 .
cusp i

' 1 . uy 2ir .
(i) z T Ir a() dr:
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As anticipated, we will compute the rst term using the relevant Maay-Selberg relations. We have

R 2
e Bopr zz+ir d (2)
P B
— " ' 1 H ' 1 H
= 2log(a(")) - (i 2F 0 @) 30T
gusp -

1 wy 2ir 1 . wy  2ir 1 .
+o- a()” iy zFir o al) (i)ipi) 7T

We now get a more explicit version of the above formula, as we have, after having made the
appropriate cancellation,

RN P B R 2 i
F 4i Il e (irri)t B Z;%+ir dr K-(z;z;t) d (2)
p2F j=1
cusp
P P R 2y, P B
— 1 + 1 (l+r )t ' 0 1 ) , 1 .
-z e ivigny 2T Nipi) 5 ir o dr
4 p2F j=1 1 G@2F I=1 ((HPHCHY Y (aDi(pi) 2
cusp cusp
P P R
+3k( e "+ je ST+ flog@() 1t e Gt
p2F j=1
R 1.2 cusp
= A2 el ofeir Loir dr

+3k(;)e Fh+ e B4 o+ pl—e B4k ( ; )loga("):

N

This completes the proof of the theorem.

Lemma 3.4.2. For any real numberr, we have

0

ir

N

+ir = Tr % 1+ir

N[

Proof. This is a consequence of Jacobi's formula related to the computation of the derivative of
the determinant of a family of matrices.
O

We note that, in this last theorem 3.4.1, we left a sum uncomputed. Fortunately, this can be
resolved by using the Selberg trace formula (see theorem 3.3.32) for the function de ned by
har) = e G

Corollary 3.4.3.  For every real numbert > 0, we have

Tr et e et-

R+ 1
= ple ®%( ; )loga()+Vol F 2~ Tt re Gr)th(r) or

P

T (") groeraiy ==z 9(mlogN ( o))

fog pyp M=1

1 t=4 P P i
p=—e "% rhlog2+ logsin( p;)
4t . k
p2F j=kp+l
cusp

R+ 1
Lk(;) 1t e Gt (1+ir) dr
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Proof. This corollary is obtained by plugging the Selberg trace formula (theorem 3.3.32) into
theorem 3.4.1, and by noting that some terms cancel each other out.
O

3.4.2 Relative spectral zeta function

Mellin transform. The rst point in this subsection is to recall a few facts about the Mellin
transform, which can also be found in [7, Sec. 9.6], whose notations will be adopted in this
paragraph. This particular tool will help us recover the spectral zeta function from the relative
heat trace, which we have already computed.

De nition 3.4.4. Let f be smooth function on]0;+ 1 [, which behaves well at both extremities.
The Mellin transform of f is de ned as

R,
MEIES) = & oot () dt

Remark 3.4.5. The de nition above was intentionally vague as far as the hypotheses orf are
concerned. We now need to see what conditions a and +1 we need to impose so that this
de nition makes sense. These will be slightly di erent than those proposed by Berline, Getzler
and Vergne in [7], although the proofs will be very much the same.

Proposition 3.4.6. Assumef satis es the following asymptotic estimate ast goes to0*

f()y = A t+B Bl+cC plT+D+opf

where A, B, C, D are real constants, and satis es the bound, as goes to in nity,
if (i Ke ' ;

whereK and are strictly positive constants. The Mellin transform
s 71 MI[f](s)

is then well-de ned and holomorphic on the half-plandres > 1. Furthermore, it has a meromorphic
continuation to the half-plane Res > 1=2, which is holomorphic atO0.

Proof. We rst note that the bound at in nity satised by f proves that the function

R
s 70 A e @) d

is entire, that is holomorphic on C. We will now work with an integral between 0 and 1, and we
write the function f on this interval as

f(y = A 1+B ®l+C f+D+g(t)

where g is a smooth function on|[0; 1] satisfying the bound

g KT
with K 9 being a strictly positive constant. We have, for any complex numbers with Res > 1,
R, n log t i h i
1 1 1 — 1 A B C D
& ottt A t+B %gtT+C pl—f+D d = 5 71 G tsamt Y
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which means that the function

R h i
1 1 1 1 log t
s 7' Ay ot A ¢+B ¥+ C e+ D dt
is holomorphic on the half-plane Res > 1, and that it has a meromorphic continuation to the
complex plane, which is holomorphic at0, as the pole induced by the termD=s is canceled by the
pole of ( s). Finally, on the half-plane Res > 1=2, we have

ts 1g(t) tRes 1=2 :

implying, using the dominated convergence theorem (in its holomorphic version), that the function

Rl
s 7V g oo P dt
is holomorphic on every half-planeRes > 1=2+ for any real number > 0, and thus on the
half-plane Res >  1=2, which concludes the proof.

O

Example 3.4.7. For any strictly positive real number , the functiont 7! e ! is indeed smooth
on R, , and satis es both asymptotic conditions set forth in the proposition we have just seen. For
any complex numbers, we further have

R R
Ttetestdt = st exxsldx = S(s);

which means that the Mellin transform of this function is given by

s 7! S

This example illustrates why the Mellin transform allows us to recover the spectral zeta function
of an operator (or the relative such function of two operators) from the heat trace (or the relative
heat trace).

Asymptotics of the relative heat trace. Having recalled the de nition of the Mellin trans-
form, we now proceed to show that the relative heat trace with parameter > 0, given by

TretCer) gtt+) = gt Trelte et~

ts into the formalism from proposition 3.4.6. Note that it can be computed using corollary 3.4.3.
The asymptotics ast goes to0* were modi ed from those in [7] to actually re ect what we are going
to nd here. The versions of theorem 3.4.1 and corollary 3.4.3 using parameters are transparent,
as they only involve multiplication by e ' . This factor will not play any role in the asymptotics
for small time, and will be left untouched for them, as it will be needed later. We will also need to
see what happens when the parameter equals0, although the bound at in nity is not in general
satis ed. We will need to slightly modify it, in order for the proper requirements to be met. The
following de nition is used so that the study that follows is the same regardless of this.

De nition 3.4.8.  For any positive real number 0, we set

= dimker( g+ ):
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Remark 3.4.9. The reader will note that we have =0 except (possibly) when equalsO. This
de nition is made to unify results.

We begin with the asymptotics for large times .

Proposition 3.4.10.  The relative heat trace with parameters satis es the following bound a$
goes to in nity

Tret(E"') et("+) Ce(+)t;

where > 0is a strictly positive constant, independant of .

Proof. Using theorem 3.4.1, we have

Tr etCe+r ) ot -+)
P R
- t it 1t +1
= e . Oe J 4—e 1
J

+3k(;)e = )+ 2e BT § o+ pioe 5 Kk(; )loga("):

1 2 . .
e )t 0 lair 1 oir dr

We rst note that each and every one of the terms above, save for the rst one, satisfy the required
bound quite directly. Then, we see that we have

whenevert is larger than 1, and assuming that the sequencg ;) has been put in acsending order,
so that + is the rst non-zero eigenvalue of g + . This completes the proof.
O

We now move to show that the relative heat trace with parameter 0 has an asymptotic
expansion ast goes to0* of the form presented in proposition 3.4.6. Unlike what we did above,
we will not be using theorem 3.4.1 this time, but corollary 3.4.3. We will deal with each term
that appears in this corollary separately, after having multiplied them by e ' . Similar results are
presented by Venkov, but they will need to be (slightly) improved for our purposes.

Remark 3.4.11. In the various asymptotics ast goes to0* that will follow this remark, we will
leave the factore ' aside, and actually only perform the expansion on the relative heat trace
without parameter. It must be noted that this is not an issue as far as the formalism regarding the
Mellin transform is concerned. It is then implied that, when they are not explicit, the coe cients
of the asymptotic expansions, as well as the remainders, are independant of

Proposition 3.4.12.  As 't goes to0*, the rst term of corollary 3.4.3 satis es
pi—e (= k(5 )loga(") = e' F—k(; )loga(") s+ Of(t)

Proof. This proposition stems directly from the expansion at0 of e ¥4,

Proposition 3.4.13.  As 't goes to0*, the second term of corollary 3.4.3 satis es

R
VolF o7t re G *™ih(rydr = et VoIF 2~ 1+0(1)
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Proof. We note that the core of the problem is to understand the behavior ag goes to0* of

R+1

71 ore Ttth(r) dr

After having performed the change of variablex = rIO t, we get

R R
T ore Ttih(r) dr 2770 xe Xth S dx

1

|E+ R Pt
1 2 +1 2 2x=" t
xe X dX+tg 0 X 1e

_Pe
X2 e 2x="t

l+e 2=t dx =

2 xe o)

ast goes to0*. To do that, we note that a function study yields

P 2 2
%ze 2x= te X )%Se 4 x

on theinterval [1;+1 [. Combined to a bound on][0; 1], this allows us to use Lebesgue's dominated
convergence theorem, which gives the required asymptotic behavior. This completes the proof.
O

Proposition 3.4.14. Ast goes to0", the third term of corollary 3.4.3 satis es

P
Ry 9(mlogN (o) = e o) :

m= 2

T ™

f og ;hyp m=1

Proof. Recall that the function g is de ned as the Fourier transform of the function h, given by

guy = exp § Y
We now note that we have the following bound
exp  Zm? (logN ( 0))> (logm()) ? exp im? (logN ( o))®> (logm()) ?
for t smaller than 1, which then gives
g(mlogN (o)) = exp & Am2(ogm()) ?
exp  Am? (logN ( o))® (logm()) *
exp L Z(logm()) ?
exp  im? (logN ( ¢))®> (logm()) ?
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This, in turn, allows us to bound the hyperbolic contribution, and complete the proof, as we have

T (") groer ais =z 9(mlogN ( o)

f 09 .4 m=1
ynyp h

2 |
exp 7 g (logm()) Tr( (") ot Ny =

f og .y M=1 i

exp  im? (logN ( o))®> (logm()) ?

O
Proposition 3.4.15.  As t goes to0*, the fourth term of corollary 3.4.3 satis es
P P
pi_e @4 ) rhlog2+ logsin(  pj)
4t ) :
gk 174 .
h P P . p_!
= e' p2— rhlog2+ logsin( pj) +O "t :
4t ) .
pP2F j=kp+l
cusp
Proof. This proposition readily stems from the expansion ofe =4.
O

Proposition 3.4.16. Ast goes to0", the fth term of corollary 3.4.3 satis es
k(e e (BN @ain)dr = et A 4B B S
>k(;)e . € L+ir)ydr = e A t7+B E+C+O t
for some real constantsA, B, and C, which are independant of .

Proof. We begin by using the asymptotic expansion for the digamma function, for which the reader
is referred to formula 5:11:2 of [75]. We have

(1+ir) = lOg(1+ il’) % 1+1ir +0 ri? ;

asr goestol . We then have

R R

Il e (F+r)t @+ir)dr = Il e (Grro)t log (1 + ir) % ﬁ+ (r) dr;
where the function is smooth onR and equalsO 1=r?> asr goesto 1l . We now treat every
part of the above integral separately, starting with the remainder. We have

R R R
e G ydr = et (drve ™ et 1 (r)dr:

We will now prove that the second integral above vanishes as goes to0" . We have

R
e ) 1 () dr
R R
= e o1y © to1 o (r) dr+ e =4 11 e 1 (r)dr

The integral over [ 1;1] then satis es

Ry

R
, e to1 () dr 2t 11 (r) dr;
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Using once again the bound above, this time for the integral oveR n] 1;1], we get

et 1 (n) 2c L ;

-

where C > 0 is a strictly positive real constant (without link to the C in the statement of the
proposition). This proves that we have

R+l 1 Zt p* .
1 e (i+1%) (Ydr = A+0 't ;

ast goes to0" . We can now move on to studying the integral

R
1 +1 Lir2)t 1 .
2 1 € (4 ) 1+ir dr :

We rst note that, by using the change of variable r $ r, we have

R R
1 +1 Ot 1 - 1+l 2 .
21 © () wp dr = 21 © () 7 dr s

and a similar argument as the one used above proves that we have

R+1 1 2 p* .
1t e ) Ldr = B+O 't ;

and the last term to be taken care of is

R
ot e (P )iog 1+ ir) dr :
Once again using the change of variable $ r, we see that we have

1

2 R, 2
e G*Niog@+ir) dr = 1 11 e G*Niog 1+ 12 dr
h i

R R R
- 11 r2t 2 +1 r2t 1 +1 r2t
= 5 , € log 1+r° dr+ |~ e log 1+ 7 dr+2 = e logr dr

The rst of these integrals can be seen to converge, asgoes to0" , since the integrand is uniformly
bounded int. More precisely, we have

. Ry 2 R,
t!Ilrg o € "tlog 1+r2 dr = Jlog 1+r2 dr+ O(t) :

A similar result holds for the second integral. The last integral requires more care. We perform
the change of variablex = r2t, which yields

R+1 2 I:2+l X
2,7 efllogrdr = = " % (logx logt) dx

R x R . «
= = o' $-(ogx logt) dx+ 5#- o $—(logx logt) dx

2t 0

It remains to nd the behavior of the second part of the above ast > 0 vanishes. We have

R . «
#: o #5 (logx logt) dx
_ Ry R ¢ » .
= ?Lf o p%(k)gx logt) dx + ?;T 0 eﬁo?—l(logx logt) dx;
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and an integration by parts allows us to compute the rst of these two terms, as we have

R p_ ( R
?% S p%(logx logt) dx = ?;T {Z(K(lbg(x( ‘ogt)ﬁg 2 S p%dx - 4
We further have
Rt e X 1 Rt p_ 4oam ,
e o Eprt(logx logt) dx Ao PX(ogt logx) dx = o 432 = 2t

which then gives

R ¢ «
;%S%(Iogx logt) dx = A %4.5 Q%t 4+0(1)

for constants A and B which can be explicitely determined, though it is not needed. It should be
noted that these constants have nothing to do with those bearing the same name which were used
earlier in this proof. Putting all these results together, we have

R 1 _
%k( ;)et Il e (G+ro)t L+ir)ydr = et A PIT+B I%gtTI+C+O p'[ ;

with A, B, and C three real constants, independant of , whose value is not required here. This
completes the proof of the proposition.
O

Proposition 3.4.17.  The relative heat trace with parameters satis es, ag goes to0" , the following
asymptotic expansion, withA, B, C, and D are real constants which are independant of ,

Tretler) etlt*) = et A $1+B Bls+cC plT+D+Opf

Relative spectral zeta function. The asymptotics for the relative heat trace we have proved
in the last paragraph prove that the function

t 70 TretCer) gt +)

satisfy all hyotheses of proposition 3.4.6, which leads to the following de nition.

De nition 3.4.18.  The relative spectral zeta functionassociated to the Laplacians ¢ and - is
de ned for every 0 on the half-plane Res > 1 as

R
(e; mis) = &5 o 51 TretCer) gt dt :

and meromorphically extended to the half-planeRes > 1=2, which is holomorphic at 0.

Remark 3.4.19. It is worth noting here that this zeta function is smooth in  as long as it stays
away from 0. If ¢ is di erent from O, then this function is not even continuous in  at 0.

Proposition 3.4.20.  For any complex numbers whose real part is strictly larger than 1, we have

R 0
. .. _ 1 1+l 1, dr
(s "158) = B R L — 2t Gy
J
1 . 1 1 1 1
t3k(5) @yt 2 @E e

. 1 s+1=2 ( s+1=2) "y .
+?Lk( D) L+ & 1= 9 loga("):
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Proof. This proposition is obtained by plugging theorem 3.4.1 into de nition 3.4.18. We will do
explicitely part of the computation as a way to illustrate this. We have

Ri1 = "
&5 o0 1 eik(;)e @ doga(") dt

R+1

ﬁk( ; )oga(") , 7 t° 32e (=4 )t gt

-»R
" s+1=2M+1 -
ﬁk( ; )loga(") 3+ o X8 1% le X dx

T E

. 1 st1=2 (s+1=2) " .
k() z+ G 1= 5 oga(’):

O

Remark 3.4.21. From now on, we will forget about , which was introduced as a convenient
way to regroup results valid for the cases > Oand =0. We set

d = dimker g ;

which is also, as indicated in remark 3.3.19, the order of as a zero of the Selberg zeta function. The
form taken by the spectral zeta function in proposition 3.4.20 is also reminiscent of the resolvent
trace formula (see theorem 3.3.26), which we will now use, following a technique presented by Efrat
in [37, Sec. 3]. We should point out that the notations used in theorem 3.3.26 will slightly change,
as we replace thes that appears there by , sos can stand for the variable of the relative spectral

zeta function de ned above. We also set = ( 1). The resolvent trace formula then reads
P 1 1 1 R 1 1 Zoliit dt
i o ( 1:2)2+rj2 ( 1:2)2+r12 4 1 ( 1=2)%+t2 ( 1=2)%+t2 2
) h, o 0 i . h, S0 o i
= 7 O FOF =0 A SO FO 2 ()

where and are compelx numbers of real part strictly larger than 1.

Theorem 3.4.22. There exist real constantsA and B such that we have

) P 1 g Ree o +ir 4=
@9§s=0 jO(( 1=2)%+r2)° 4 1 (C 1=2%+r2)°

N[=

= log 1 ()+logZ()+log pa ()*+AQ 1)°+B;
where is a complex number of real part strictly larger than1.

Proof. The idea behind the proof of this result is to di erentiate with respect to the parameter
Since the appropriate functions are smooth, we will be able to interchange the various derivatives,
meaning that we have

h i
4 1 de Py aRa ey e
d 2 1 d @ys=0 i 0 (( 1:2)2+rj2)5 4 1 ' 2 (( 1:2)2+r2)s
h P
= @ @ _1 -
@gs=0 @ 2 1 (2 1)Sj o (( 1:2)2+rj2)S+1
R+1 + 0 I
s 1 i dr
+(2 )y~ 7 — z+ir

(C 1=2)%+r2)°"
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We can then further compute the derivatives with respect to , which yields

h i
d 1 doe Py aRa e e
d 2 1 d @gs=0 i o (( 1:2)2+rf)s 4 1 T2 (( 1:2)2+r2)S
P
= @ -1 _
@350 ST 1)J. o ( 1:2)2+r5)5+2R i
s el o0 gL e
. (2 1) 4 1 ' 2+ Ir (( .1=2)2+r2)5+2
= 2 1 P2 aRa o Ly —4dr g
o (€ 1=2%+rp)* 4 2 2 (( 1=2%+12)"

This last expression can be linked to the left hand side of the resolvent trace formula, as we have

P 1 LR’fl 2Ly dr
i o (€ =222 41 2 (( 1=2)%+r2)?
hp
- 1 d 1 1
2 1d i o ( 1:2)2'”12 ( 1:2)2+rl2 i
R
1 T+l 1 1 R
4 1 ( 1=2)2+12 ( 1=2)Z+tz2 " §+It dt
h o i
_ 1 d 1 i z°
= a2 TOPFOF 20
This gives
h [
i
d 1 de Py aRae o e
d 2 1 d @gs=0 i o (( 1:2)2+r1-2)s 4 1 ' 2 (( 1:2)2+r2)5
h 0 i
- i 1 i AO par
- d 21|()+z()+ par()

and integrating with respect to then yields the required result.
O

Remark 3.4.23. It should be noted in this proof that the parameter does not really play a role,
as a di erentiation with respect to  is considered. We have chosen to explicitely write it so as
to recognize more clearly the resolvent trace formula. Although the constants often changed from
one proposition to the next so far, they will now be xed.

Corollary 3.4.24. There exist real constantsA and B such that we have

Seo CEs =i (139
= log | ()+logZ()+log e ()+A@2 1°+B

+3k(:)+T § log  § +k(;)loga() 3}
Proof. This statement is a direct consequence of theorem 3.4.22, the only computations to be made
being the derivative at s = 0 of the last three terms from proposition 3.4.20, for which one only
needs to know that the Gamma function has a single pole a0, with residue 1, and the digamma
function has a single pole at0, with residue 1.

O

We will now work on determining both constants A and B. The way to do that will be to nd the
asymptotic behavior as goes to in nity of the derivative at s = 0 of the relative spectral zeta
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function in two di erent ways: the rst one will use the corollary above, while the other one will
require us to work with the asymptotics ast goes to0* and ast goes to in nity of the relative heat
trace, which, after undergoing the Mellin transform, will yield an asymptotic expansion as goes
to in nity (through strictly positive real values) this time of the same zeta function, which will be
far less explicit than the rst one. By unicity, these two asymptotic expansions will tie together
all relevant constants, and allow us to determine them fully.

Proposition 3.4.25. The derivative at s = 0 of the relative spectral zeta function satis es the
following asymptotic behavior, as goes to in nity,

Qoo (e (19

— rVol F 2 r Vol F 2 r Vol F .
= == I()SJ + - +4A + — k ( ; ) I()g

h p P i
+ k( ;) rhlog2 logsin( p;)+ k( ; )loga(") 4A
_p2F j=kp+l
h j cusp

+ k(i) “¢F log  log(2)k( ;) 3k(; )loga(")
+LWLE Llog(2 ) 29 1) +A+B+o(1):

Proof. This computation is quite cumbersome, although one simply needs to put together results
which have already been proved. As stated in corollary 3.4.24, we have

& (e 5 (139
= log 1 ()+logZ()+log par()+ AR 1°+B
+ % K(: )+Tr % log % +k( ; )loga(") % :

Every asymptotic expansion in this proof will e as goes to in nity. Following proposition 3.3.13,
the contribution of the identity satis es the following asymptotic expansion

log () = "™0F  2log +12+ Jog llog +ilog2) 2° 1) +0 L

The contribution of the Selberg zeta function is stated in proposition 3.3.20, and we have

logz() = o():

We now recall that the contribution from parabolic elements is given by 3.3.25, and yields

0g par () = k( ;) log nhlog2 k( ; )+ P P logsin( p;)

p2F j=kp+l
cusp

+3 k() Tr 3 log log(2 )k(;)+0O 1

Putting these results together, we get the proposition.
O

As was indicated before this proposition, we will use the bound for large times of the relative heat
trace with parameter > 0, which is

Tret(E*') et("+) Ce(+)t;
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whereC and are strictly positive real constants, and the asymptotics ast goes to0* , which read
Treter (D gt + (D = gt D pLl+E WaG beH+ (1) ;

with D, E, G, H real constants independant of , and is a smooth function onR. , which does
not depend on the parameter , and satis es

. . p-
i ()] K t:
around 0. Following Efrat's observation in [37], proposition 1, we see that the bound at in nity for

the relative r}fzgt trace show that is bounded at in nity. Thus, we can bound the absolute value
of (t) by K t, with a possibly di erent constant K, still independant of , onR. .

Proposition 3.4.26. The derivative at s = 0 of the relative spectral zeta function satis es the
following asymptotic behavior

Qo (el =i (19

p

= 2D 2%log +D 2+2[D 2 E] log +2p*[E(2 2log2 )+ G]

p

2P E +Hllog  1D+P[2log2+ JE G]+o():

Proof. We note that the relative spectral zeta function can be written as

h R R
(e ( 15s) = & D0 52t C Ddt+E [ t° 32 (logt)e € Dt
+GRO+1 ts 32 t (1) dt+HRO+1 ts te t O D gt
R, i
+ .0t let O (1) dt :

We will begin by dealing with the term involving the remainder . The function

R
s 71 Lot gs gt (D (p)dt

1 +
(s)y O
is holomorphic arounds = 0, and its derivative at this point is given by

h R, T

1 lat (1
& o tlet Dt 0

1 t 1 .
js=0 (' s) € 9 (t) dt ;

%o

since the Gamma function has a single pole a0, and we have

R R
St letC D ()d ol te tC Dy (v dt
R
K 0+1 e 1O Dt
p K %:

(D

This proves that this derivative goes to0 as goes to in nity through strictly positive real values.
We can now move on to the other terms of the small time asymptotic expansion of the relative
heat trace, which we will compute explicitely. We have

R R
A otrtetChd = A (( 1)t xlerdx = ( (1) °:

93



This term is then indeed holomorphic aroundO, and its derivative at that point equals

R, 1 i
S0 oo tletC Vdt = log( (1) = 2log +o(1);

as goes to in nity. We move on to the next term. We have

1

Ri1 ts 392 t (1) gt

- R
5o Tg (O 1) T o e X

0

( S( S1):2) ( ( 1)) s+1 =2

Here again, this term is holomorphic around0, and its derivative there is given by

h R i
1 1 3=2 1 _ P 1 = P— 1
G550 T o 0 PetC Ddt = ( n 3z = 2 z *o()
as goes to in nity. We now deal with the next integral. We have
1 Ri1 s 3=2 t( 1 1 Ri1 xS 372 X
T o L (logt)e dt = Ts o W(ng log ( ( 1))) e *dx ;

after having performed the change of variablex = t ( 1). We further note that the integral
representation of the Gamma function can be di erentiated, to yield

Rl _
0s 1 = 7 x°32(ogx)e X dx ;

which means that we have

R
) 0+1 ts 3=2(logt)e ' € D dt

+1—2hR+1
ﬁ( (1) 7 7 x® 32 (logx)e * dx
R i
ol x5 %% Xdx log( (1))
&0 )t oos 4 s % log( (1)

&S00 )P s 2 s 3 dog( (1)

This term is holomorphic around s =0, and we have

@ h 1 Ri1 s 3=2 t( 1 i
@ys=0 (9 0 t (logt) e dt
= = 3 3 log( (1)
= 270 )72 2lg2  log( (1)
= P~ 1 15 21092 2log log 1 :
= P ; t+0 % 2 2log2 2log +1+0 &
= 2 h(2 2log2 ) 2log + '+ 1 1+log2+, 1+0 9% |
= 2’7 2109 +@ 2l0g2 ) +log +log2+ 5+ o(1)
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as goes to in nity. We nally move on to the last term. We have

|
.

R R
Aottt Chd = A (1) T gt xs Zexdx o= A ( (1) Tt

[
=

This term is then holomorphic, and we have

R |
@ 1+l s 240t 1
G0 (9 o el Dt

( D+ ( Dlog( ( 1))
2 ?log 2 21log +i+o0(1):

Putting these pieces together, we then nd that we have

Qo CEs = (1)
= 2D 2log +D 2+2[D 2°E] log +2° T [E@ 2l0g2 )+ G
«2[°E +Hllog  iD+P[2log2+ YE G]+o(1)

as goes to in nity through strictly positive real values, which is exactly what we aimed to prove.
O

Remark 3.4.27. Unlike what we saw for the small time asymptotics of the relative heat trace,
it was important here to express the asymptotic expansion as goes to in nity in terms of the
previously introduced constants, in order not to introduce any unnecessary constants.

We will now compare the asymptotic expansions for the derivative ats = 0 of the relative spectral
zeta function as goes to in nity through strictly positive values obtained in propositions 3.4.25
and 3.4.26, which are equal by unicity. This will allow us to determine both constantsA and B in
proposition 3.4.25.

Theorem 3.4.28. The derivative at s = 0 of the relative spectral zeta function satis es
Seo CEs = (19

= log | ()+logZ()+log pa ( )+ 3 k(;)+Tr 3 log

N[

+k( 5 )loga() 3 +log(2 )k(; )+ “E 2°( 1) Llog2

P P
rVol F 1 H i 1 .
S t3 . logsin( p;j)+ 3rhlog2
p2F j=kp+1
cusp

Proof. From propositions 3.4.25 and 3.4.26, we infer that we have

r\/zﬁ 2log + f\aﬁ+4A 24 f\/zﬁ k(:) log
h P P i
tk(5) rhieg2 logsin( ;) + K( ; )loga(") 4A
ES;; J=kprl

zlog2)k( ;) 3k(;)loga()+ “fF 3log(2) 2° 1) +A+B

p

= 2D 2%log +D 2+2[D 2 E] log +2p*[E(2 2log2 )+ G]

p

2P E +Hllog  1D+P[Rlog2+ )E G+ o);

1
2
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which, by unicity of the various coe cients, leads to several equations. The rst we will use require
us to identify the coe cients in front of ?log . It yields

— rVol F .
D - 47 .
Using the coe cients associated to 2 now gives

D = DWF 1A ;

and the value of D, which we have just determined, givesA = 0. Determining B is slightly
more di cult, as we will need to compute both E and G rst. To determine E, we identify the
coe cients in front of  log , which gives

p

2D 4 E = "BE ok(;);

2

and using the value ofD, which we have just computed, we get
E = #k(;):

We now turn our attention to G, for which we identify the coe cents associated to , yielding

p p

2 E (2 2log2 )+2 G

P P
= k(;) rhlog2 logsin( p;)+ k( ; )loga(") A4A:
B2 1=t

Using the values ofA and E, we get

G = #=(k(;) rh)log2 ?LP i logsin( ;)
Bl 1710t
+48=k( ;) + 5#=k( ; )loga("):

We can nally compute the most important constant, namely B. Identifying the constant coe -
cients above asymptotic expansion, we have

pP—
iD+ T[(2log2+ )E @]

= 3log2)k( ;) 3k(;)loga()+ “2E Jlog(2) 2° 1) +A+B

and using the values of the various constants already computed, we get

B = jlog(2)k(; )+ “fF 2° 1) jlog2 §
1 P P i rh
+3 _ logsin( pj)+ 5 log2
p2F j=kp+l
cusp

This completes the proof of the proposition.
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3.5 Relative determinant

We now have everything we need to compute the relative determinant (with parameter > 1)
associated to the operators g + ( l)and -+ ( 1), de ned as

h i
det( e+ ( 1); -+ ( 1) = exp @@qszo (e C 139

Theorem 3.5.1. For any real number > 1, we have
logdet( g+ ( 1); -+ ( 1)

= log 1 ()+logZ()+log pa ()+ 3 k(;)+Tr 3 log

N

+k( 5 )loga() 3 +log(2 )k(; )+ DRE 2°( 1) Llog2

P P
r Vol F 1 H . 1 .
5 t3 . logsin( p;j)+ 3rhlog2
p2F j=kp+l
cusp

Proof. This result is a restatement of theorem 3.4.28.
O

Asymptotic study. In this paragraph, we give the asymptotic expansion of the relative deter-
minant associatedto g+ and -+ ,as > 0 goes to innity. Although this is close to the
asymptotic study as goes to in nity we have already seen, the two are not completely the same.

Remark 3.5.2. For any real numbers > 1and > 0, we have

+p+7.
= (10 = 1w F

We can then rewrite theorem 3.5.1 in the following way

logdet( g+ ; -+ )
= log | I tlogz HTT slog g MOTE
+3k( )+ T L dlog 1+ +k(; )Ioga(")q it *tzlog@)k( ;)
+0LE 209 1) }log2 r\gﬁ'*%P i logsin(" p;)+ 3rhlog2

p2F j=kp+l
cusp

We will now reformulate the asymptotic expansions (as goes to in nity) of the Selberg zeta
function and the various Xi functions given in propositions 3.3.13, 3.3.20, 3.3.25.

Proposition 3.5.3. As goes to in nity, the Selberg zeta function satis es

[
logz ** = o(1) :

Proposition 3.5.4.  The contribution from the identity satis es

| o
log | 2*3* = OE 1gog +3 llog +1i+1Llog2 29 1) +o0(1)

as goes to in nity.
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Proposition 3.5.5.  The contribution from parabolic elements satis es

P
1+ 1+
log par T 3>

. o_ P P . p_
= 1k( :)P-log hrlog2 k( ; )+ logsin( p;)
p2F j=kp+l
cusp
. . . LP P .
17 3 log shrlog2 3 _ logsin( p;)
p2F j=kp+l
cusp
slog(2 Yk( ; )+ o(1):

as goes to in nity.

Theorem 3.5.6. As goes to in nity, we have the following asymptotic expansion

logdet( g+ ; -+ )
= VoL E Jog 4 LVoIF 1k ( ; )p‘Wog
P P . p_
hrlog2 k( ; )+ logsin( pj)+ k( ; )loga(") +0(1):

P2F j=kp+l

cusp
Modi ed relative determinant. The aim of this last paragraph is to compute the modi ed
relative determinant of the operators g and -, de ned as

o h i
det’( g; ) = exp Syo (1 %59
where the relative spectral zeta function ( g; -;s) is given on the half-planeRes > 1 by
R,
(e =8 = g, trTels et  ddj

where d denotes the dimension of the kernel of g, and by its holomorphic continuation on a
neighborhood of0. The formalism of the Mellin transform presented earlier in this section applies
here. We will rst relate the derivative at s =0 of the relative spectral zeta function de ned above
to that of the version with parameter ( 1).

Proposition 3.5.7. We have
h i

@@qs:o ((Ei w9 = lim @@SSZO (g; »; ( 1);s) dlog( 1) :

Proof. For any real number > 1, we have

€40 (€5 = ( 1);s) dlog( 1) dlog
h i
= Sy (& s ( Ds5s) d( (1) ° _
|
. @ L Rt o eter () gtCr (D) get( D g

@gs=0 (s) O

and we can take the limit as goes tol, which yields the result. To actually do that, we only need
to note that this limit, on the right hand side, can be interchanged with the derivative at s =0,

and then with the integral.
O
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Looking at this proposition, we see that the right hand side can be computed precisely using what
we have done so far. We will rst need a few preliminary results.

Lemma 3.5.8. The -function associated to the identity satis es

log 1 (1) = "% Flog2
Lemma 3.5.9. The -function associated to the parabolic elements satis es

P P ,

log par (1) = rh log 2 logsin( ;)
p2F j
Cus|

©
Nl —
-~
—~
~

Tr % log2+k( ; )log2 3k( ; )log :

N

Theorem 3.5.10. The modi ed relative determinant associated to g and - is given by
logdet’( e; -)

= 2k( ; )loga(")+log Z(® (1) +log(d!) irhlog2+ Ik( ; )log2

P
+0LE 200 1)+ Llog2 1 1 logsin( pj):
p2F j=kp+l
cusp
Proof. Using proposition 3.5.7, recall that we have
h i
G550 (E: 59 = lm o Z o (er i (0 1);s) dlog( 1) ;
and we now note that we have
S50 (Ei »i ( 1);8) dlog( 1)

= log | ()+logZ()+log par ( )+ 3 k(;)+Tr 3 log 3
+k( ; )loga(") 2 +Llog2 )k(; )+ “2E 29 1)+ Llog2

P P .

LE 41T logsin( pj) dlog(  1):
p2F j=kp+l
cusp

Before taking the limit as  goes to1, we need to remember thatl is a zero of orderd of the
Selberg zeta function, which means that we have

lim flogz () dlog( 1] = lmlog gz = logZ® (1) log(d)) ;
which is the logarithm of the rst non-zero derivative of the Selberg zeta function at 1. Every
other term of the above has a well-de ned limit as goes to0, and we can use the lemmas stated
before this theorem to get the full result.
O
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Chapter 4

Determinants around a cusp

In chapter 2, we applied several analytical techniques whose aim was to study the determinant of
the Dolbeault Laplacian on the modular curve, attached to the truncated metrics on the tangent
bundle and on the at vector bundle, and de ned in an ad hoc manner. There were, however, two
results that had to be left for later considerations. The rst one required us to know that we had

Fp -, 1 logdet( g+ ; Ecsprt ) = 0 ;

where Fp stands for the nite part, that is the constant term in an asymptotic expansion. The
second one called for the computation of the relative modi ed determinant

deto( E; E;cusp;");

at least asymptotically, as " goes to0*. In order to begin both these studies using the Selberg
trace formula, we had to introduce an auxiliary Laplacian - in chapter 3. Using the fact that
relative determinants, which can be thought of as well-de ned quotients of potentially ill-de ned
determinants , behave nicely with respect to the introduction of an operator, the two problems we
were concerned with were each broken down into two pieces. What remains to be done is therefore
to prove that we have

Fp -, 1 logdet( E;cusp;r + 5+t ) =0
and to (asymptotically) compute the relative modied determinant det’( g cuspr; +). These

problems being of a local nature around cusps, we will take advantage of the explicit description
of the chosen open neighborhoodly, of a cuspp, and of the decomposition

Eju,, = Ly

of the vector bundle over that open subset. More precisely, we have, for any real number > 0,

logdet( E;cuspy + ; + )

P o P

= logdet |, .+ ; -+ + logdet |, . + ;
pcusp j=1 ' j=kp+l '

with | . being the Laplacian with Dirichlet boundary condition on U:-. The fact that the
auxiliary Laplacian is only needed for integersj betweenl and k, for each cusp has already been
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seen in the last chapter, and will be adressed again in this one. We need one more observation.
Let p be a cusp andj be an integer betweenl and r. If we havej > k ,, then the eigenvalues and
eigenfunctions of |, .~ can be found by solving the following spectral problem

y2 %+@% =
% RF i’ < +1 _
% (x+13y) = & (X;y)’
(x;a(") =0

whereU, has beenidentiedto S Ja(");+1 [and sections ofL; over U, to functions de ned
onR Ja(");+1 [ which are compatible with the representation. Whenj lies betweenl and kp,
however, the fact that we need to consider the auxiliary Laplacian means we have to work some
more to nd the right spectral problem. For that, we note that we have

L? 2
LZ(R Ja(");+1D = L3R Ja(;+1D L2 Ja()i+1[; y?g=z

where the rst term on the right-hand side denotes the L2-space, with the added condition

R
si (xy)dx = 0 foralmosteveryy> a:

The associated Laplacian is called thgpseudo-Laplacian rst considered in [27, 28]. Furthermore,
the 1-dimensional Laplacian attached to the second term above is precisely the auxiliary Laplacian.
The appropriate relative determinant can thus be computed through the spectral problem

8
y2 %+ % =
R . 5
£ < +1
(x+13y) = (xy)
% (x;a(") =0
> R
st (Xy) dx =0 for almost everyy > a

with the same identi cations as before. We will study both these spectral problems simultaneously.

4.1 Spectral problem around cusps

As we saw above, the point of this chapter is to study the following spectral problem

8
2 @ @ —
" extey <
R .
el < +1
(x+1;y) = €& (xy)
§ (x;a) =0
R .
st (Xy) dx =0 for almost everyy > a if | =0
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where a > 0 is a strictly positive real number, and ! 2 [0;2 [ is to be thought of as2 ;. We
rst note that, using the change of functions

tey) = e ™ (xy)

solving the spectral problem considered here is equivalent to solving

8
y2 %4_ % - y212 ' 4 2ily 2%
R
E 5" < +1
F(x+13y) = ' (xy)
§ " (x;a) =0
R .
s (xy) dx =0 for almost everyy > a if ! = 0:

By elliptic regularity, solutions to either of these problems will be smooth functions. This last
reformulation is easier to work with, as its solutions are required to be periodic in the rst variable.
Writing such a solution as a sum of its Fourier series

P |
L (xy) = A (y) 2
k2z

the partial di erential equation de ning the spectral problem then becomes

h

|
&+ Rk +1)? ady) = 0

for every integer k, with the exception of k = 0 should! vanish. This exception comes from the
added condition related to the pseudo-Laplacian. For such integers and parameters, we set

Ck = j2k +!j:
Taking into account the integrability over a fundamental domain, the solutions are given by
a(y) = y7Ks 122(Cix y)
where the possible values for = s(1 s) are determined by the boundary condition
Ks 1=2(Cik @ = 0 :

The functions K used here are known as thanodi ed Bessel functions of the second kind The
reader is referred to [74, 75] for more information on them.

4.2 Zeros of modi ed Bessel functions of the second kind

In the last section, the spectral problem we considered was solved using modi ed Bessel functions
of the second kind. However, the possible eigenvalues could not be precisely determined beyond
the fact that they should be compatible with the boundary condition

Ks 1=2(Cix @ = 0 ;
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where we have written = s(1 s). Before we can get information on the spectral zeta function
associated to these eigenvalues, we need to investigate their distribution across real numbers, which
leads us to studying these Bessel functions in more details.

Proposition 4.2.1.  Let x be a strictly positive real number. The modi ed Bessel function of the
second kind
Cc ! c
70 K ()
seen as a function of its order, has zeros of order at most, all of them real (should they exist).

Proof. The argument below is an adaptation of the one given by Saharian in [82]. We begin by
noting that, for real numbers t and u, with u > 0, we haveK; (u) 2 R. The Schwarz re exion
principle, coupled with known properties of Bessel functions, then states that we have

Ki (U) = K i*(U) = Kif(u):

Using the di erential equation satis ed by these Bessel functions, we now have

C ke

UK (u)

u? 2 Ki-(u)  u?kK®(u)
uz 2 Ki (u) u?k(u)

where it should be noted that di erentiation of the Bessel functions is taken with respect to the
argument, and not the order. Hence, we have
ulKi (UK (u) Ki-(uK? (u)]
= 7K (UK (u) K (K2 w2 K- (WK ()
+U2K - (u) K 2°(u)
= 2 K (K- + K- () KPU) K (u)Ki- ()]

If the complex number is neither real nor purely imaginary, we have, for anyv > 0,

Ki MKi-(v) = =5 [Ki WK2() Ki-WKP (V)]
+ =" [Ki-(MKP(V)  Ki (MKi-(v)]:

Integrating for v betweenO and u, and then integrating by parts yields

R ) ) R
o LiKi ()i dv o 1K (V) Ki=(v) dv

= [Ki (WKE () Ki-(uKP (u)]:

If was a complex number such that we had= 26 0, i.e. not real or purely imaginary,
and such that we hadK; (u) =0, then, using previously mentioned symmetries and the equality
above, we would have

Rk WP dv = St K KO K (WKO @] = 0

v

This would be absurd, since the Bessel function, seen as a function of its order, is entire and
non-zero. Hence, the complex number such that we haveK; (u) =0 can only be real or purely
imaginary. However, they cannot be purely imaginary, by known properties of the Bessel functions.
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Therefore, we are left with a discrete set of real numbers such that we haveK; (u) = 0. We
now want to prove that these zeros, if they exist, can only be simple. To do that, we go back
to the formula above, which holds away from both axes, and we apply Taylor-Young's formula to
compute the limit of the right-hand side as goes to a non-zero real number. We get

R, .. _ h i
o SiKi Mifdv = 2 K (W@ KO KP (W& K (u
If was a zero of order at least2, then the right-hand side above would vanish, which would be
absurd by the same argument as before. This completes the proof of the proposition.
O

Remark 4.2.2. In the context provided by the last section, for any integer k, including k = 0
unless! vanishes, the function

s 7' Ks 1=2(Cik @)

can only vanish on a discrete subset of 1=2 + ir; r 2 R g, and these zeros cannot be more than
simple. This shows that the spectral problem we consider gives rise to a discrete set of eigenvalues
which can be written as

) 1 2
k;] = 4+r.

wherer; is a strictly positive real number. However, we lack information on the multiplicities of
these eigenvalues.

4.3 Weyl's law

Having obtained the rst important result regarding the distribution the eigenvalues for the spec-
tral problem we consider, we turn our attention to the second step, which is knowing how these
eigenvalues asymptotically behave with respect tak and j. This will enable us to de ne the as-
sociated spectral zeta function on a certain half-plane, which is essential before we can properly
study its properties. In the following, we will need to assume that! can be written as

=2 0

where m and | are both non-zero integers, and is non-zero. This condition will in practice be
satis ed, using the nite monodromy at the cusps hypothesis. We will see that the apparently
added condition in the case! = 0 is actually implicitely present in every situation. Consider a
solution to the spectral problem in its rst formulation. We have, for almost every y > a,

R PL R P

o (xy)dx = . (x;y) dx = e’ 7 R (x;y)dx = 0 :

0
t=0 t=0

The fact that this equals zero is the added condition if! vanishes, and is automatic otherwise.
The eigenvalues associated to the spectral problem we consider are then in particular eigenvalues
of the pseudo-Laplacian with Dirichlet boundary condition on [0;n] [a;+1 [, with periodicity in

the rst variable. Identifying [0; n] with periodicity to S?, we are led to prove that the pseudo-
Laplacian with Dirichlet boundary condition on S! [a;+1 [ has no essential spectrum, and that
the eigenvalue counting function satis es a Weyl-type bound. For that, we will use a variation of
Colin de Verdiere's arguments, presented in [27, 28]. We will need to use both the pseudo-Laplacian
with Dirichlet and with Neumann boundary conditions. Let us quickly review how they are de ned

105



in this precise situation, using some of the language from [24, Sec. 1.5]. In the following, we denote
by aninterval included in [a;+1 [.

De nition 4.3.1.  The pseudo-Laplacian with Neumann boundary conditionHN on St is
de ned as the self-adjoint positive-de nite operator associated to the sesquilinear form
R -
QY (uv) ! 1 ru(xy)rv(xy)dxdy

de ned on the following domain
DQV = f2H! st ; f=0

Here, we have denoted by : S! ! the canonical projection, and by f the constant
coe cient in the Fourier expansion of f with respect to the rst variable.

De nition 4.3.2. The pseudo-Laplacian with Dirichlet boundary condition HP on St is
de ned as the self-adjoint positive-de nite operator associated to the closure of
R -
Q% 1 (uv) ! st rulgy)rv(xy)dxdy

de ned on the following domain
DQ® = f2¢ st ;=0

Remark 4.3.3.  The domain of the closure of this last sesquilinear form ig1} St \f f =0g

Remark 4.3.4. Both these constructions can be considered when is a nite or countable reunion
of disjoint intervals of [a;+1 [.

Remark 4.3.5. In the following, we will compare self-adjoint operators using the partial order6
de ned by comparing the values and domains of their associated quadratic forms. For more
information on this order relation, the reader is referred to [63, Sec. VI.2.5]. Since the quadratic
forms attached to the pseudo-Laplacian with either Dirichlet or Neumann boundary conditions are
the same, comparing these operators is only a matter of inclusion of domains.

Proposition 4.3.6. Assume we have= [ », and that the measure of n( [ ) vanishes,
where 1 and , are open. We then have the following comparisons

0 6 HP 6 HP,
0 6 HN, , 6 HN:

27

Proof. The comparison of pseudo-Laplacians with Dirichlet boundary conditions stems from the
fact two H} functions on ; and , respectively can be glued into anH} function on . For
the Neumann boundary condition, the comparison is reversed, since aH ! function on  can be
restricted to two H?! functions on 1 and », respectively.

O

Remark 4.3.7. The comparison of pseudo-Laplacians with Neumann boundary conditions still
holds when is split into a countable number of ; as in the proposition above, since restriction
of H! functions still gives H?® functions. However, we canot glue (in general) a countable set dfi }
functions into a global H} function, as such a glued function may not even be. 2.
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Proposition 4.3.8  (Dirichlet-Neumann bracketing). The pseudo-Laplacians with Dirichlet and
Neumann boundary conditions, respectively, can be compared in the following way

0 6 HV 6 HP:

Proof. This result is a direct consequence of the inclusion ofi} in HZ.
O

We can now apply these tools to get a Weyl bound in our situation. Let > 0 be a strictly positive
real number. For any integern 2 N , we set

a, = a+n ;
and we split the intervall [a;+ 1 [ according to these steps. Using the results above, we then have

0 6 H¥

n

N D
St Jan;an+ [ 6 Hsl [a;+1 [ 6 Hsl [a;+1 [ :

Denoting by « the k-th element of the spectrum counted with multiplicity, we get

k HS

Sto[a+1 [ > K H¥

n

N
> k Hsl [a+1 [ S1 Jan;an+ [

By the max-min principle, the sequence( ), associated to a positive self-adjoint operator stops
at the in mum of the essential spectrum.

De nition 4.3.9. Let H be a positive self-adjoint operator and > 0 be a positive real number.
The spectrum counting function is de ned by

N(H; ) = # fk; k6 g:

Remark 4.3.10. In the setting of the de nition above, we have N (H; ) = + 1 for any real
number which at least equals the in mum of the essential spectrum.

Proposition 4.3.11.  There exists a real constantC > 0 such that, for any > 0, we have

N H2

St [a;+l[; 6 C

Proof. Using the inequalities above, for any > 0, we have

N HE w1 p 6 N HE u1p 6 N HY,

n

Jan;an+ [

6 N HYN

n

Jan;an+ [

We will now compare the terms involved in these inequalities to the ones associated to the Laplacian
on S [a;+1 [ for the euclidean metric, which can then be precisely evaluated, using lemma:1
of [28]. We have

R . .2 R . .2
st Jagann [ )N T (6Y)T dxdy » & Jawana )N T OGY)T dxdy
LAY 2 dX dy an LAY

St Jan;an+1 [ IF 5y y? St Jan;ans [ if (x;y)j2 dx dy
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which gives, for the counting functions

N . N . .
N Hsl lan;an+ [? 6 N St Jan;an+ [ ¥ ’
where N here denotes the pseudo-Laplacian with Neumann boundary condition for the euclidean

metric. Using Colin de Verdiére's estimates, we now have

p—

 +
4 a2 an

N 6 if >42a2=4 2(a+n)?

N .
St Jan;an+1 [’ &2

= 0 otherwise.

In particular, we can set an integerM large enough so that the left-hand side above vanishes for
any integer n > M. This proves that, for xed and , we have

P N . w1 .
N Hsl lan;an+1 [ 6 N St Jap;an+ [’¥
n n=0
P 1 P w1 poMP L
® n=0 4 g ¥ &n 6 4 n=0 m B n=0 W

It remains to study both these nite sums. We start with the rst one. We have

1
L NP 1 , 6 . + R+ 1 d% — , + 1
4 n=0 (a+n ) 4a 4 a y 4a 4a
We can now move on to the second term. We have
1 1 _
V= . _ 4 "WIRy 5 'lo p
a+n - ap 1 a+n g 2a
n=1 n=1

Putting these results together yields the proposition.

4.4 The spectral zeta function and its integral representation

4.4.1 De nition of the zeta function

Unless otherwise speci ed, we will denote byl a real number lying in [0;2 [, and by a strictly
positive real number. As previously explained in this chapter, the spectral problem

8
2 @ @ -
Y© @r T oy =
R 2
el < +1
(x+13y) = & (xy)
§ (x;a) =0
st (Xy) dx =0 for almost everyy > a if | =0

gives rise to a discrete set of strictly positive real numbers , temporarily denoted by f ; 9s1-
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Under the nite monodromy at the cusps hypothesis, which was made in the last section, every
real number ; appearsm; times in the aforementioned sequence, and the growth of that sequence
is controlled by the Weyl bound. The idea is now to consider the spectral zeta function with
parameter > 0 associated with this sequence, which we de ne below.

Proposition-De nition 4.4.1. Let! 2[0;2 [and > O be two real numbers. The spectral zeta
function with parameters and!, de ned as
X1 1

r(3s) = Flaj‘f

is well-de ned and holomorphic on the half-planeRes > 1.

Proof. Both parts of the above proposition stem directly from the Weyl type law previously shown.
Rearranging the sequenc¢ ;); in ascending order yields, according to the notations of this section,

1 = = mi < mi+l = = mi+mo <

the Weyl bound can be expressed as follows

;o= m¢ 6 C, foranya2J; 1+1; ;K;
k=1

where the integers ; have been de ned thus for convenience. Note that 5 is constant when the
integer a is chosen as indicated. The sequenc(e,—)j being made of strictly positive real numbers,
the estimate can be restated as

6

1 C C
— — 6 Py foranya2J; 1+1; ;K
J

a

We then have, on the half-planeRes > 1,

X1 1 X1 1 X1 Xi 1
(i+ )5 6 Res = Res
j=1 J j=1 ] j=1 a= ; .+1 @

We can now apply the key estimate, which, since the real part of is strictly positive, gives

X1 Xi 1 X1 Xi C X1 1
Res 6 Res 6 C jRes
j=1 a= j .+1 @ j=1 a= j 1+1 j=1

This last series being absolutely convergent on the half-plan®es > 1, the result is proved.
O

Remark 4.4.2. Using results pertaining to modi ed Bessel functions of the second kind, we can
rearrange the set of eigenvalue$ | g as

n (0]
fji>19 = Z+rg:k2Zj>1 ;

where, for every integerk 2 Z, the real numbersry; are the (simple) zeros of the modi ed Bessel
function of the second kind 7! K; (Cix a) as a function of its purely imaginary order.
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Proposition 4.4.3. Let! and be real numbers, with! lying in [0;2 [ and strictly positive.
In the half-plane Res > 1, we have

8 . P R 1 2 S @ if 1
3 A, e 4 te + 01/09K (Cu @) dt if 160
r(5s) = P R . ;
2 L L, 3 2+ " 8logK((Ck @) dt if 1 =0
k2 Znf 0g

where the contour of integration 4 is de ned so as to include the set of positive real numebeR; .

Remark 4.4.4. The very statement above calls for the de nition of some contour 4, and the
consideration of its rotated versioni . While the proof works for any contour that includes R, ,
we will only work with such 4 as speci ed below.

(a) Integration contour &

(b) Rotated integration contour i #

Figure 4.1 Integration contours

Proof of proposition 4.4.3. We assume, for simplicity, that ! is not zero, keeping in mind that the
only di erence in dealing with this case is that we must remove the cas& = 0 from consideration.
We now use remark 4.4.2. For every integek 2 Z, the zeros of the function 7! K; (Cix a) are
simple, and denoted byry; . The Cauchy formula then states that we have

P 1 _ . R

1 1 1
g+ )S 2i 4 4

T +12+  °QlogK; (Cix @) dr .
j>1 (4 [}

where s is such that we haveRes > 1, and the contour 4 is given by
4 = 160 ;1 et ;

with # being strictly between 0 et =2. The reader is referred to gure 4.1a for more clarity on this.
It is also worth noting that we have implicitely used the last proposition in the equality above,
which implies convergence for the series appearing on the left hand side, and further gives
P P P R
L (Gs) = T = 3 1412+ *QlogK; (Cix a) dr:

14,2 s 2i
k2z j>1 (4T ) k2z *
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A change of variablet = ir, which in particular rotates the contour of integration (see gure 4.1b)
then gives the required formula, which completes the proof of the proposition.
O

442 Lletting #goto 5

In the proposition above, any angle# strictly between 0 and =2 can be chosen. We now want to
let # go to =2, though some care must be taken, as there are convergence problems.

De nition 4.4.5. For any integerk 2 Z, and!; as before, we set

fo,. 1 C 1 C

t 70 §logKi(Cix @) P-— P 10gK (Cic @)
The introduction of this function, which is similar to the one used in [47; Sec6:1], will be just ed
shortly. For now, we note that because of the equality

14 2 S
i a 4 t

which holds for any complex number whose real part is strictly larger thanl, we have

R R
Lo+ 12 % 8logK (Cy ) dt = i+ 12 Ty (t)di:

I g
It should be surprising that removing an integral which vanishes from an integral we want to study
could prove useful. The idea is that taking the limit as # goes to = 2 without this manipulation
would involve two integrability conditions requiring us to have both Re< 1 and Res > 1. Using
this function f ., serves to move the conditionRes < 1 slightly to the right, so that satisfying
both conditions become the same as being in the stril < Res < 2. In order to prepare taking
the limit mentioned above, we note that the main problem lies with the factor

+ t2 % = exp slog i+ 2

Bl

that appears under the integral. Though the complex logarithm, to be understood as the principal
branch thereof, makes perfect sense as long as we stay away from the half-line of negative real
numbers. However, as can be seen below in gure 4.2, lettingg go to =2 will cause part of the
term appearing within the logarithm to collapse onto negative real numbers.

ENI™

+ t2 t 20 4

Bl

Figure 4.2 Variation of t on the contouri
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In order to solve that problem, we will split the contour i & into four parts, according to the values
of 1=4 + t? when't runs through the contour. This can be seen in gure 4.3 below.

Figure 4.3 Modi cation of i 4 and limit as # goes to

) (4)

De nition 4.4.6.  The four paths of integration .7, ..., .’ are de ned as follows:
= t=re®2 41>+ P o= t=re®2 4r< ie
Yoz t=zre®2 yr< ie @ = t=re® 2 4 r> 2+
Remark 4.4.7. 1t is of course readily checked that we have
2 3 4) .
# = [ ;) [ E) [ é) ’
which means that we have, for any integerk 2 Z
R s P R s
FEEASER R F O T LN
with the exception of k = 0 should! equal zero.
Going back to gure 4.3, we note that the parts f) and f) are easier to deal with, as letting#
go to =2 there is not an issue. Indeed, we have
R
i éz) %+ t2 S f (1) dt Rp oy .
R ! p 1y t2 T fy (t)dt = 0 ;
1 2 s #oo I+ 4 ’
+ e 3zt t f (t) dt T2 4

where the last equality stems from the oddness of . . Thus and #(f) are the most interesting
parts of the integration contour 4 are, and we have

8

< @ {2 + on

INTS

is 2 S (4)
e t + on
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This manipulation is represented on gure 4.3 by two dotted arcs. The point of doing this is that
we can now let# go to =2 without having to go to the half-line of negative real numbers. It is
also worth noting that the change of sign within the exponential comes from the choice of branch
for the logarithm, and will be essential in what follows. We have

Rig) e 2 Py ()dt = €8 F?QD I S fo (1) dt
! gs RﬁL 2 14 Sy (1) dt;
#o5 7
for the rst part of 4, and
R_(f) e 2 Py (dt = €8 ngu 2 14 ®fy () dt
! eis L g Ly S (b) dt

1
#o 7t

for the last one. Putting these results together, and using the fact that the integral

R

R R R OK

is constant in #, we get the equality

R

R
Lokt Tfl@®d o= 2isin(s) P 2 i Tf (ot

INTS

One thing must yet be done before we can state the result we have in essence just proved, and that
is saying for which complex numberss these manipulations actually make sense. This will be the
reason why we have introduced the functionf ., , as was hinted at earlier. We have

p

) Co = it terlog Ki(Cu a)n éﬁ%j_p?mgmc!;k a)
@Gy e T T
pt I pl .
I+ (12 (%+ ))S Tt P

We can now recognize in this last factor a di erence quotient, and we have

P I+ t&8logK(Cix a) & Pi—logKi(Cix a)
. n jt= +
fm &
t! %+ t 7t
@ 91 1@
= ow-"T 3t 109K (Cuca)

This means that the functiont 7! t> (1=4+ ) i « (t) is integrable atp 1=4+ ifand only
if we have Res < 2. The integrability condition at +1 has not changed, and is stillRes > 1. We
can summarize this discussion as follows.

Proposition 4.4.8. On the strip 1 < Res < 2, the spectral function , is given by

8 . P Rl S :

3 Mkzz p? 2 1+ fo ()dt if ! 60
L (s) = i PR
' (5s) 3 snts) S Tfa (@dt if =0

14
k2 Znf 0g 4



4.5 Splitting the interval of integration

As we saw in the last section, for every real number > 0 and every! in [0;2 [, the spectral zeta
function , is given by an absolutely convergent sum of integrals on the strifl < Res < 2. We
will now carefully study these integrals and their sum.

De nition 4.5.1. Let and! be as above, andk 2 Z be an integer, which is not zero if!
vanishes. We de ne, on the stripl < Res < 2, the integral | . to be

1 S

: Z+1
sin(s ) S fy (1) dt :

p

I;k =

1
it

Our main focus in the remainder of this chapter will be to prove that the sum of the integrals| .«
induces a holomorphic function arounds = 0, and also to get a precise idea of the asymptotic
behavior of the derivative at 0 of this continuation as goes to+1 on the one hand, and asa
goesto+1 for =0 on the other. One of the key ingredients we will use is the binomial formula

2 1 s _ X1 (S)j }+ ] 1
i 4 t2s+2j ’

which holds for t > P 1=4+ , where the so-calledPochhammer symbol(s)j is de ned by

(s+]))
(s)

for any integer j > 0 and any complex numbers, using the fact that the function has a single
pole at every negative integer. However, it is not enough that this inequality is satis ed on the
interval of integration we are dealing with, as we would also like to interchange the sum ovej and
the integral itself, which means we need to stay at a certain distance from this singularity before
applying this formula. We will thus split the interval of integration, much in the fashion of [47], end
of paragraph 6:1. Throughout the rest of this chapter, we will denote by > 0 a strictly positive
real number, for whom we will give bounds. Each of these bounds will be implicitly assumed, and
will then be any stricly positive real number satisfying them all. We have

h h q h
T+ ;o 20k L+ t 2jkji i+ +1 whenk 6 0

(S)j =

8 iq

h
1 . 1 1 . —
7t 2 7+ t 2 7+, +1 whenk =0

The fact that we do not need to introduce in the casek = 0, which is only to be considered if!
is not zero, stems from the fact that we can consider the associated term on its own, outside the
sum overk, so there is no convergence ok to be improved. We can then split the integrals |
according to this splitting of the interval of integration. This is the purpose of the next de nition.

De nition 4.5.2. For every k 2 Z, and every complex numbers with 1 < Res < 2, we set

8 AN
sin(s) ~ 3kt , 1 s _
% p%+ t 2t fau (t)dt ifké0
L'k (S) = D ;
| i Z Tt s
§ sin(s) 0 {2 %+ fo () dt koo
| o and! 60



for the part of the integral that goes near the singularity, and

8
. +1 s
% sin(s) ot 1, fo ()dt ifk60
2ki © i+ 4
IV';k (S) = Z ;
: +1 s
g sin(s) 0 {2 %+ fo (1) dt if k=0
; 2" Iy and! 60

for the part that stays away from it.

Remark 4.5.3. The splitting for the case k = 0 can actually be performed at any point, since
there is no series involved. It was actually only done as a way to render their study similar to that
of the actual sum.

Remark 4.5.4. The splitting we have performed has been done so as to have

Ik (8) = Lk (9+ My (s)

in the appropriate strip. The study of | . is therefore reduced to that ofL « and M .

4.6 Study of the integrals L

The rst step in the study we must conduct is that of the (sums of) the integrals L .x , which have
been de ned above as

8 p
z i
sin(s) ~ % @ ) 1 s _
% Pr ! i fa () dt if k60
Lk (s) = % sin(s) Zzp%+ L .
P t? Z+ f;k (t) dt if k=0 and! 60

The study will be led in a similar manner as section6:2 of [47], the main di erences being the
parameters and !, which we must keep, and the asymptotics as goes to in nity.

4.6.1 Global study

Similarly to what is done in (6:7) of [47], we begin with the following de nition.

De nition 4.6.1. Forany and! as above, we de ne the functionF .« on C by

Fx (t) = logK{(Cik a) logKP

12 (i+
—©ua) ) 8 P logK (i a) :

1
3

The main point of this section will be to prove the next result, which is done in the exact same
way as that of Corollay 6:4 of [47]. Unlike what is done there, this result will not be su cient for
us. It is nevertheless a crucial step.

Proposition 4.6.2.  For any integer k 6 0, we can write

hq

q
Lv PRy (1) fort2 L+ 2jk

Fa (1) = 2 +

1
1
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where the functionR . is analytic in t and satis es a bound of the type

jRxj 6 C ﬁ ;
on the same interval, where the constan€C > 0 depends only on , and not on eithert or k.
Proof. We rst note that the function F . has been de ned so that we have

q
F« 3+ = F%

q

1 — .
vy = 0:

SinceF ¢ is an even and entire function int, it is of the form F « (t) = h t2 , whereh kIS
entire and such that we have

h .« + = hok %+ = 0 :

Eall

The Taylor-Lagrange theorem then allows us to write

Fa () = hy t2 = 1 ¢2 +  Zheoz

Bl

where . is some real number Withp 14+ 6 + 6 2jkj P

1=4+ . Itis important to note
that we do not know how

+ depends on , t, or k. By di erentiating F. , we get

8
< F% 2th% t?

FR (1)

2h%  t2 +4t2h%Q 12

and these two equalities can be combined to yield

hio 2 = HFR M aF% O = 2 §logK(Cik @) zx §logK . (Cix a)
Therefore, we have
2h i
Fo () = 2 1+ 4%%“: L logK((Cix @) 75 &, , logK(Cix @)

For any real number such that we have

ha q
2 L+ o2k i+

we denote by D the disk of the complex plane centered at and of radius 1=4. The modied
Bessel functionK (z) being entire in  for any positive real number z, the Cauchy formula gives

R
@ - 1 K (Cik )
o= 09Ki(Cw @ = zx—(cim eo ( 7 d

Using the appropriate asymptotics for the modi ed Bessel functions of the second kind, we get

R
1 Ki=2(Cix 3) 1 a( ) az( ) .
7 K ?C!;k a @b ( ) 1+ C;l;k a” (c!;zk a) 2(:Cua) d

Syt 109K (Cix @)

K1=2(Crk @)

1
K (C!;k a) C!;k a + O jkj2 4 32
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For that last point, we have used the explicit expressions ofa; and a,, as well as the following
estimate for the remainder »

Do Lov2
j2(Cual 6 2exp I D 6 2exp UM

which is uniformly bounded in k, but not in . Similarly, we have
%jt: logK: (Cix @) = %ﬁ:ka?) 1+0 ]kj% ;

which means that we have, still on the same interval,

_ Ki-s(Cy @) 1 :
R O = Fwosn O g+

with an implicit constant depending only on , and not on k. Furthermore, the asymptotics for
the modi ed Bessel functions of the second kind show that the rst factor on the right-hand side
above is bounded on the interval we consider, uniformly ink. This concludes the proof.

O

Remark 4.6.3. Note that a similar result holds whenk = 0 and = 0.

As we have stated before, the binomial formula will be an extremely important tool in the study
of the integrals we are concerned with, and we split every integral into two parts so as to be able
to use it on the one that remains far away from the singularity. Since the integralsL  involve
a domain that goes up to this problematic point, the binomial formula should a priori be of no
use to us. The next proposition will show that we can, using the previous result, further break
apart L .« into a part on which the binomial formula can actually be used, and a part which, even
though we hold very little control over it, will not matter, as its derivative at s = 0 vanishes.

Proposition 4.6.4.  For any integer k, and , ! as before, we have, on the stril < Res < 2,
. S
Ly (s) = M) L 1y g 1 T F, 25k i+
w25 Bt e SR (@
4

if k is dierent from 0, and

sin( s ) 1 1 S ql
R,P
w2 B0 tt2 i+ TR oM

)

for the casek = 0, should! not equal zero.

Proof. We will only deal with the case k 6 0, as the other one is similar. Throughout this proof,
we will assume thats is a complex number such that we havel < Res < 2. The idea is to perform
an integration by parts on L ., . We have

4 h i P
La (9 = =222 G+ CFa(®p—
by
Rojkj P 1o
w25 B v r e SR ()

7
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so the only thing that remains to be done is to compute the rst term above. On the appropriate
interval, we have, using proposition 4.6.2,

2 i+ CFa@® = € i+ PRy 4O
1

t! +

Bl

'y

since the real part of s is strictly smaller than 2. This completes the proof, as it yields

. S
La () = =2 & 3+ W § Fu o2k 3+

IS

Ry VT
w28 P4 v le SR () d
x
0

Having broken L  into two parts, we will now study them separately. As indicated before this
last proposition, the part that involves an integral will actually not play any role. Before moving
on to these studies, let us name these parts df .x for clarity.

De nition 4.6.5. For any integer k, and any! and as before, we set

8 " !
sin(s)1 1 T2 107 i L i
— —+ - ; i
g sm(s)?lS %+ F.o 2 %J, if k=0
and! 60
for the integrated part, and
p—
Z gkj " I s 1
25sm(s) g t 2 }4_ Fy (t)dt ifk60
p%+ 4 ’
Bk (s) = p
; Z X — s 1
g 1 i
% 25sln(s) 0 t 12 2t F.o(t) dt if k=0
Iy and! 60

for the other one. These functions are de ned on the stripl < Res < 2.

4.6.2 Study of the terms B
The purpose of this paragraph will be to prove the following result.
Proposition 4.6.6.  For any real number > 0, and any! in the interval [0;2 [, the function

X
s 7! B.x (9);
jkj>1

which is well-de ned and holomorphic on the stripl < Res < 2, has a holomorphic continuation
to an open neighborhood of), and we have

X
@@ B By (s) = 0:
=0 jkj>1
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Remark 4.6.7. The proposition above features an abuse of notation which will be repeated many
times in this chapter. Indeed, the function

X
s 7! By (S) .

jkj>1
has very little chance of being already de ned and holomorphic arounds = 0, so the expression

@ X
= Bk (s) = O:
@ss=0 > 1

is to be understood as the derivative ats = 0 of the continuation of , rather than the derivative
at s = 0 of . This has the advantage of making which term we are talking about, since there will
be many of them.

Proof of proposition 4.6.6. For any non-zero integerk, and any real number

iq q h

t 2 Ly 2jkj

1
it

we can bound the term appearing in the integral de ning B x using proposition 4.6.2, as we have

1.
o

F;k (t) R’k (t) 6 C (tZ (%+t ))Res 1 J'kj214 a

[ SR N S
(¢ () (¢ G+ )"

We now note that the right hand side of this inequality can be bounded uniformly in s on any strip
< Res < < 2

with  and being xed, possibly negative, real numbers, using the following inequalities

8 1
S @ G

1
(2 (G+))

For any such and , the dominated convergence theorem proves that the function

if t2
6

1
(2 (3 )©° " it t2

S

+ YEy () dt

Ro: P—
ki g+ 2 1
s 7! ﬁ%+ Tt 1

is holomorphic on the strip < Res < , which means that, due to the randomness of and
it is holomorphic on the half-plane Res < 2, where we further have

jKi zt 2 1 s 1
5? t2 L4 Fa () dt
Roii & T
C jkj 7+ 2 1 Re s+1
—— Ly
6 jkjz * a2 I+ t 4 dt
h o © T
6 C 1 t2 1, Res+2 ki g+
ikiZ2 4 a2 2 Res 4 T
jkij o
6 C 1, Re s+2 1 1 .
2 Res 4 jk]2 4 32 (4jkj2 1)Res 7.



The dominated convergence theorem then proves that the function

X £ o2jkj p? 1 s 1
s 7! D t t2 2t Fo (1) dt
jkj> 1 it

is well-de ned and holomorphic on the strip

4 2 < Res < 2;

which contains 0 if we have0 < < 1=8, which we may assume. Hence the function

X
s 7! B.x (9
ikj>1
is holomorphic around 0, and we have
@ X
@ _ Bk (s) = O;
=0 jkj>1

because the termB .« involves the product of a function which we have shown was holomorphic
around 0 with the factor ssin(s).
O

Remark 4.6.8. In the last proposition, we have written a sum over non-zero integerk as way to
give a uniform result, which holds for every element! of [0;2 [. The following proposition deals
with that voluntarily created gap.

Proposition 4.6.9.  For any real number > 0, and any! in ]0;2 [, the function

s 71 B.o(s);

which is well-de ned and holomorphic on the stripl < Res < 2, has a holomorphic continuation
to an open neighborhood of, and we have

@

@s-0 B.o(s) = O:

Proof. This result can be proved using the same methods as those of the last proposition. The
argument is actually simpler, as there are no series involved here, only an integral.
O

Remark 4.6.10. The reader will note that putting propositions 4.6.6 and 4.6.9 together yields a
result for the full sum over k when! does not equal zero. Even though there is no new result, we
summarize that in the following proposition.

Proposition 4.6.11. Let and! be real numbers satisfying > 0Oand! 2 [0;2 [. The function

8 p .
% By (s) if ! 60
k2Z
s 7!
3

By (s) if ! =0
jkj> 1
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is holomorphic on the strip

4 < Res < 2;

N

which contains 0 if we have0O< < 1=8, and we have

B=0 1,7

® @

8
E@ XB;k(s)—Oif!:O
E X

|
o
=
0]
o

B (s)
jkj> 1

Q|

$5-0

This concludes the study ofB x as de ned in defnition 4.6.5. We now move on toA y .

4.6.3 Study of the terms Ay

The investigation of the behavior of series involvingA .« is, as we will see below, signi cantly more
complicated. We begin by recalling the de nition of A .« , as given in de nition 4.6.5. We have

8 r !
sin(s) 1 1 P o1 .
i — - . o+
% R jKj 2 Fx 2jkj 2 ifk 60
A;k (S) = . < r |
§ s.n(s)sgs %* F o 2 %+ k=0
' and! 60

Even tough we will be able to use the binomial formula, this advantage will be canceled by the fact
that the derivatives at O will not cancel, which means that we will need to precisely understand
their asymptotic behavior, as goes to in nity for any a, and asa goes to in nity for =0. Let
us state the rst piece of the result we wish to prove.

Theorem 4.6.12. Let and! be real numbers satisfying > 0Oand! 2 [0;2 [. The function

8 p
3 Ay (s) if 160
k27
s 7! p .
2 Ay (s) if 1 =0
Tojkj>1

is well-de ned and holomorphic on the stripl < Res < 2, and has a holomorphic continuation

to an open neighborhood oD. Its derivative at s = 0 satis es, as a goes to in nity for =0,
@ X 1.
— Aok(s) = O = if ! 60;
@ss=0 k2Z a
@ X 1.
— Aok (s) = O — if 1 =0
@0 jkj> 1 a

We will now move on to the proof of theorem 4.6.12. The idea is to use an argument which is
similar to the one used to deal with B ., . Before proceeding to that, we need to perform a small
computation, which is the object of the next proposition.
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Proposition 4.6.13. Let and! be real numbers satisfying > 0 and! 2 [0;2 [. For every
integer k, the function s7! A  (s) is holomorphic on C, and its derivative satis es

s .,..2 S q
Ay = cos(s)z 7+ ki 2 Fua 2jkj Z+

Sl

h,
g (4 +1) JK* F & i+

ki 14 Fy 2kj i+

in the casek 6 0, and, if ! is di erent from zero, we have

8 A o(s) = cos(s)E L+

sin( s ) 1 1 1
——log 3 7+ = 7t F.o 2

Proof. The proof of this result directly stems from de nition 4.6.5.
O

Proposition 4.6.14. Let and! be real numbers satisfying > 0Oand! 2 [0;2 [. The function
X
s 7! Ak (s)
ikj>1
induces a holomorphic function on the half-plane

1
Res > 2 — ;
4

which contains 0 if we have < 1=8. On this half-plane, we can further di erentiate term by
term, and the derivative at 0 satis es, as a goes to in nity,

@ X 1
= AO;k (S) = O a2
@%=-o jkj> 1 a
Proof. For any non-zero integerk, proposition 4.6.2 yields
N --q1 1 1 1 g2 1 2 Res
ki oz Fux 2jkj g+ 6 C i+ ma e K g ;

which, by the dominated convergence theorem, proves that the sum of . over jkj > 1 induces a
holomorphic function on the half-plane Res > 2 1=(4 ), and we can further di erentiate term
by term. Evaluating the derivative of A« at s = 0 yields

q
Ak (9 = Fu 2jki 7+

@
@9s=0
and we can now set = 0 to get the asymptotic behavior asa goes to in nity. We have

@ 1 1 1, _
@s-0 Aok (s) 6 ZC()@ W iKj 2 ;
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and this gives

P P P -
sco Aok = B Ak 6 Prn g K
jkj>1 jkj>1 jkj>1

Sle
IS

Since the series on the right hand side is absolutely convergent, we get

— 1
Sys-0 Aok (s) = O %
jkj>1

As we did for B .« , we will need to deal with the casek = 0 to complete the picture.

Proposition 4.6.15. For any real number > 0, and any ! lying in the interval ]0;2 [, the
derivative of the function Ag.o satis es

@ _ 1
@50 Aoo(s) = O 2

Proof. After evaluating at s = 0 the derivative of Ag.g, we get

r !

@ 1
— A. = F.o 2 -+ ;
@50 .0 () ;0 2
which gives, at =0
@
— Aoo(s) = Foo(D) ;
@s-0 0;0 (S) 0:0 (1)

and we can thus complete the proof of the theorem by making use of remark 4.6.3, which states
that we can have a result similar to 4.6.2 in the case&k = 0 by using similar methods.
O

Now that we have studied the regularity of the sum of A, , and the asymptotics asa goes to
in nity for = 0, we turn to the asymptotics as goes to in nity, for every a > 0. Unlike what
we did with theorem 4.6.12, these asymptotics will be too complicated to fully state right away.
Instead, we will break A  into several pieces, some of which will be too complicated to study
in details. Fortunately, these will cancel other complicated terms that will appear in the next
section. Recalling de nition 4.6.5, we see that we need information on the term involvingF . ,
which, according to de nition 4.6.1, is given for every non-zero integerk by

q
Fa 2jkj 1+ = log K

(Ck @

+

Pr—(Cx a logKP
7

q
2 3% Gy-P e logKi(Cuc a);

2jkj %

and for k = 0, assuming we have 6 0, by

q
F.o 2 1+ = log K,P—('a) logKP+—('a)
2 4

q
2 1+ @@qtzp? logK; ('a):
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The main purpose of this section will be to study the di erence
logK ... P -—(Cix @) logkKP — (Cix a) -
K] 7+ a7+ ’

and its analog for the casek = 0, namely

logK P

—(‘a) logKP —('a) ;

1 1
4 4
while the other terms, which are essentially going to cancel other terms we have yet to encounter,
will be dealt with at the end of this section. The reader is, from now on, assumed to be familiar

with modi ed Bessel functions of the second kind, and is referred to [74, 75] to that e ect.

Proposition 4.6.16.  For every integerk 6 0, any real numbers > Oand! 2 [0;2 [, we have

logK . P —(Cix @)

q
= llog ;  (Cud)’+@ +1)jkj +jkj "

2jkj

[P ¢
T jkj 4 +1
4 +1 Argsh e

2 Y Ci
ilog (Cx @) +@ +1) k" + opiegr U ¥t

1 P . . Cix a .
tawr @ 4 YLK e

whereU; and & are de ned as in [74, 75].

Proposition 4.6.17.  For any real numbers > Oand! 2]0;2 [, we have

q o
0gK,Pr—(la) = ilog ;  (fa)’+( +1+ "4 FTAgsh —7
liog (la)’+@4 +1) +pL1-U pla__
4 ) 7 +1 -1 7 +1
1 Pr—r .1a .
Tt © 4 +1; Pr=r

whereU; and & are de ned as in [74, 75].

Proposition 4.6.18.  For every integer k, assuming! not to be zero for the casé&k = 0, any real
numbers > Oand! 2 [0;2 [, we have

q 5 q
(Ck @+ 3+ + 2+ Argsh

1=4+
Cik a

logK P (Ck @ = 3log

N

1
1+

llog (Cix @)+ 1+ + pL U pSk 2

1=+ t 1=4+

1 1 . &!;k a .
+ 1=4+ Q 4 + ’ T ’

whereU; and & are de ned as in [74, 75].
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Because the aim is to study the part ofA  given by

8
R R Iongjkjp%T(C!;k a) Iong%T(C!;k a) ifke&o
; (s) L 14 ° Iongp%T(!a) Iong%+ (la) ifk=0and! 60

we will split each term according to the expressions given in propositions 4.6.16, 4.6.17, and 4.6.18.
We will then prove that the sum over all integers k, with the exception of k =0 if ! vanishes, of
these terms has a holomorphic continuation to an open neighborhood df, and give an asymptotic
expansion of all derivatives ats = 0 as goes to in nity. As forewarned in remark 4.6.7, we will
often mean derivative of the continuation of by derivative of in order to be able to precisely
keep track of which term we are dealing with. We denote byl a real number in[0;2 [,and by a
positive real number. As much as possible, we will deal with the cask = 0 separately each time,
and we will always assume that we have 6 0 when doing it.

First part. In this rst part of the computation, we are going to prove the following proposition.

Proposition 4.6.19.  The function

sin( s ) 1 1 s1 P 2 1 S 1
s 7! 251 4 + o ]kJ 4 Jk]z
jkj>1 i
pﬁk . Cl-k a
& KIS 5P Far
is well-de ned and holomorphic on the half-plane
Res > = ;
and its derivative ats = 0 satises, as goes to in nity,
. P s
@ sin( s ) 1 1 s 1 2 1
@ys=0 &1 37T - ikj 7
jkj>1 i
1 Pr—ii - _Cua _ :

Proof. The rst point to note is that the asymptotic expansions of the modi ed Bessel functions
of the second kind given in [74, 75] are actually di erent than those stated here. The di erence is
that we need to study the logarithm of such functions, and not the functions themselves. In order
to prove this proposition, we will need to relate the polynomial U; and the remainder & to the
polynomial u; and the remainder , used by Olver in [74, 75]. We have

1 pi P Cikx a
@ @ 4 UK e
— 1 . Cix a 1 P . . Ci.x a
= log 1 pmg Ut Pramg Tawmwe 2 4 TLKG gPee
1 C!;k a
PTG P
The polynomial u; is given by
up(t) = 54 3t 53 ;



and is the function x 7! 1+ x2 >, This function is bounded by 1, and the remainder » is
uniformly bounded, so we can write the logarithm as the sum of its Taylor series, giving

@ +1§jkj2 & pﬁjkj ; jkjc’al‘k4a+1
=l . h i
T = @ 2 i GAET P Paeng n
trmmr U P
Aoy Pr+Tik ; 2 o1 cua '
by N @K 2 Mo wPar Pao Tk
b 2 DA T G

We need to work with the estimate on , given by Olver, which is

h i
P . C.. .
ﬁ 2 4 1]k ; ikj 'Hk4a7+1 6 42+1 exp ig42+1 Vo; (u1) Vo (u2) ;

where Vy. denotes the total variation of a function on the interval

hO Cix a ! .
’ T +1jKj ’
and u; is the polynomial
up (x) = ﬁ 81x2  462* + 385x°®

We now note that the exponential in the last inequality above is uniformly bounded in  and k,
since the function is bounded by 1, giving

P Vo (U1) 6 2Voa (up) ¢

Furthermore, we have

2 4 6
1 Cik a Cix a Cix a
) e : + ; + i
Voy (U2) 6 1152 81 W 462 W 385 W
6 81+462+385 . Cix a 2 6 Cix a 2 6 (4 + 1) jkj2 .
1152 P T Tk T +Ljk] (Cix a)*"
This gives the following bound
1 Pr—xrn: .. Cyua jkj? )
e A I L A T T

where C = 2exp [2Vp:1 (u1)] does not depend on any of the parameter. We also have

Cik a 1 Cik @ Cik a
; 4 ; + B
U1 T +I1K] 6 3 3 Pragg TO Prog
1 Ci a 1P —— jkj
6 3 Prigq 6 3 4 tlg =
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Combining these estimates, we get

h i
1 Pa—+Tiki - _Cya 6 c P c L a0
@Kz 2 A Cw @? ~ 0 (Cxa’ Fua
h i
C 1 C 1 1 .
6 (C!;k a)z + n C!;k a + § (C!;k a)n !

which holds for integersk large enough in absolute value, independantly of any parameter. For
such integersjkj > Ko, we have

1 Pr——s.: . Cua 1 1
@ @ ALK e 6 a7 CF 2
Hence the function
P 2 s P Cu
s 7V i o jki© 1 wre &Ik g
jkj>

is holomorphic on the half-planeRes > 1=(2 ), and the inequality above further allows us to use
the dominated convergence theorem to prove that its value ats = 0 vanishes as goes to in nity,
since & is uniformly bounded. This completes the proof.

O

Second part. We now need to take care of the other term involving a remaindere, which is
the purpose of the following proposition.

Proposition 4.6.20.  The function

0, 1
. s 1 X S
s 71 Sn(s) 1 1, K2 L1 e@ .. &wadna
45 4 - 4 4 1,
jkj>1 4
is well-de ned and holomorphic on the half-plane
Res > 2
and its derivative ats = 0 satis es
q !
i . P s y
R & AR U SR T R O
jkj>1 4

as goes to in nity.

Proof. The proof of this proposition is similar to that of the last one.
O

Third part. Having dealt with the terms involving remainders, we now turn our attention to
the more complicated ones. In this part, we deal with the term indicated in the proposition below.

Proposition 4.6.21.  The function

sin(s) 1 1 s X - 1 s iki
( )475 2t iki> 1 jkj? 4 (Ci @2+ +1) jkj?

s 7!
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is well-de ned and holomorphic on the half-planeRes > 1=, has a holomorphic continuation to a
neighborhood of0, and the derivative ats = 0 of this continuation satis es

. P sq
8.0 L3+ G jkj? % (Cic @)+ (4 +1) jkj?
jkj>1
h (s) s

— 1 1 sin(s) 1 1

=  Za  1a T @@q‘s:o = 3t "
P 1 q 2 2

re Rk +1)"az+ (@4 +1) K

jkj>1 1

Remark 4.6.22. The last term in the asymptotics above is left uncomputed, because it will be
canceled by another term that will appear in the next section. Since a derivative ats = 0 is
considered, we will still need to prove that the term which is di erentiated has a holomorphic
continuation to a neighborhood of 0.

Proof of proposition 4.6.21. We rst note that the function

71 P ikj? 4
S ! JK]
jkj> 1

@k +1)%a2+@ +1)jkj?

Bl

is well-de ned and holomorphic on the half-planeRes > 1= . Using the binomial formula, we have

P o2 1 s 2 2
iKj 7 2k +1)az+(@4 +1)jkj
jkj>1 q
P P
= S F T Sk @k +1)ee(d +1)jk
i>0 jkj> 1

the interchanging of both sums being possible a& is not zero, which means that we have

_1
a8

NI

We can then proceed with the computation. We have, on the appropriate half-plane

P, , sd s —
) Ki© oz 2k +1)%a2+(4 +1)jkj
o
iKj 5 q : _
= e @k ae@ D
jkj>1
1X] P (s), 1 P 1 q >, —
L TR k2 & 1Y Rk +1)a2+(4 +1)jkj":
i>1 jkj>1

We will now expand in 1=jkj the term involved in both sums above at a high enough order so that
the remainder would induce a holomorphic function around0. The nitely many other terms will
be deal with using the Riemann zeta function. For every non-zero integek, we have

q q
2 o 2 o r1 12 1 4 +1 1
@k +1)a+@ +1jki" = 2ajkj 1+= gyt 37 ot g e
hq i
— ilei ! 1 12 1 4 +1 1 ! 1 4 +1 1
= 2ajkj 1+~= kitaz wetazar jpEe 1+5 Wtera kP2
+ 1_'_2!7 1,44 1

kit 8 zar kg
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We will now deal with both sums above separately. We have

P g 2 2
Jk% Rk +1)az+@ +1)jkj
jkj> 1
_ 1 r 1 rz 1 _ 4 +1 1 L1, 4+ 1
‘za.k.>1W 1+- gtaz wtaze rz Ytontesragr T
JK]
1 L1 L 4+l
+2 a i 1 jijS T 1+ 2 JT] 8 232 jk]2 2
IK]>
P hq ; i
_ 1 r 1 ! 1, 4+1 1 L1, 4+ 1
= 2ajkj>1W 1+ = KTaz @t a2z T 1+TW+WW

+2 (2s 1+ L (2s)+ 795 (2 (s 1)+1);

where one should remember that we sum over both strictly positive and negative integers, producing
a factor 2 in front of the Riemann zeta function. The function associated to the second part of
the above can then be seen to admit a holomorphic continuation to a neighborhood d (whose
precise description is irrelevant here). For every non-zero integek, we further have

! 1 12 1 4 +1 1 ! 1 4 +1 1
1+~ Ktaz otz T 1+ - ikt 8 zaz T
_ 1
-_— '
! 4 +1 2 4 +1
1+ 2Ii ﬁ+ 8 2+32 jkj2 2 1+ = ﬁ“‘ 4‘72 ki2+ 4 2+a2 Jk]21 2
2
to1 121,44 1 o144 1
1+= 55t a7z @t a2 o I+ dg*t sz 5>

We now note that the rst factor is bounded by 1, and thus will not matter much. The second
factor will involve some explicit cancellations, as we have

2
! 1 121 4 +1 1 ! 1 4 +1 1
1+*m+472 kT"‘WW 1+7m 87 i 2
_ ! 1201, 4+ 1 1201 4+’ 1 Lo
= 1+- gtar etaire g 1l a7 oo wmea g 3]
4 +1 1 4 +1 1
4 %7aZ k2 2 832" K 2
- @ +1)? 1 4 +1 1.
64 4a4 jkj4 4 8 332 * jk]3 2
and the full sum yields
p q
1 @2k +!1)2a2+(@4 +1)jkj?
K2 : JK]
ikj> 1
P
= 2a jkajé 1 | 4 41 1 ’ 1. 1,12 1,44 1
jkj>1 W g5t g 2.7 gz z 1+*m+ﬁﬁ+mm
#
(4 +1)2 1, 4+ 1

64 “a%  jkj* 4 832k ?

+2a 2 (2s 1+ @2s)+ 221 @2 (s 1)+1)

4 232
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Since the rst term induces an absolutely convergent series fos in a neighborhood of0, the full
sum induces a holomorphic function around the origing. Its derivative there, after multiplication
by the factor left out at the beginning of the proof is not to be explicitely computed, as it will later
be canceled. Similarly, we have, for the sum involving the integer,

P (s P a
@ ppen @k +1)ai+(@ +1) k]
j>1 jkj> 1
- 2a" ©1 P . -2
. jroa jkjz (sri) 1 L1, 44 1 L1, 12 1,44 1
i>1 jkj>1 o 5t 5727 gz 2z =gtz izt s za2 jkjZz 2
#!
(4 +1)? 1, 4+ 1
64 “at jKj* ¢ 832 K3 ?
P (s
) 1 . | . 4 +1 H
t2a Gt o 2@ (s+i) DH S @2 (s ger @ (s+] D+

i>1

The rst term above induce a holomorphic function around 0, whose value ats = 0 vanishes
because of the Pochhammer symbqls)j . We need to be a bit more careful with the second term.
To study it precisely, we need, as much as possible, to stay away from the pole of the Riemann
zeta function, which here means we should assume thé& is not the inverse of an integer, so that
we never have2j = 1. Once this hypothesis is made, the function

70 2an O L 2@ (st) DL @ (s+]
s 7! a 7@ 2 (s+j) 1) 2 (s+1]))
J>

is seen to be holomorphic around), and its value at s = 0 vanishes, because of the Pochhammer

symbol (s)j . The last part to be studied, namely the function

P v
s 71 2a S A0 2 (s+] 1)+1)

also induces a holomorphic function around), though its value there does not vanish, as, foj =1,
the Pochhamer symbol(s), = s can only cancel the pole that arises from the zeta function. The
value at s = 0 for this term is given by

1 4 +1 1 — 1 1 .
2a 2 82 2 4a t s -

This concludes the proof of the proposition.
O

Fourth part. We continue the study of the series associated with each term coming from propo-
sition 4.6.16 with the one involving Argsh.

Proposition 4.6.23.  The function

S+

[N

X
+ ikj*

jkj> 1

sin(s) 1
43

s S P
L jki 4 +1
jkj Argsh 7&;1( 3

s 7!

(NS
NG
Nl

which is well-de ned and holomorphic on the half-plane

Res > 1+ ;

1
2
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has a holomorphic continuation to a neighborhood o0, and the derivative ats = 0 of this contin-
uation satis es

S

. N o I
@ sin(s) _1_ 1 5 L2 o ikj Paet
I 7+ 2 o1 jKj 7 jkj Argsh e a
!
- @ sin(s) 1 1 s« P 1 ik Pz 1 1
= @550 s 1 2t > 1 KT AIgSh s tza taa
iki
Proof. We rst note that the function
p N s ki P =T
s 7! 4 +1 o ikj i ikj Argsh %
ikj
is indeed well-de ned and holomorphic on the half-planeRes > % 1+ 1 . Using the binomial
formula, we have
R = o s i P—
Pa—1 jki> 1 jkj Argsh M2t
jkj> 1 e
P—— P () P ki Pa=T
= 4+l T3 wee T Argsh e
i>0 jkj>1 K] ! !

the interchanging of sums being possible for similar reasons as in the previous case. On the
appropriate half-plane, we thus have

P o s i P
Pr—=1 jkj : jkj Argsh %
jkj>1 b
_ b—F P 1 iki Pa=T
= 4 +1 e Argsh e
Jk]>1JJ
piP (s); 1 P 1 jkjp4 1
+ 4+1j>lT!' o e AOsh G
jkj>

We will begin by studying the rst term above, which we must show has a holomorphic continuation
to a neighborhood of0. There will be no need for a computation of its value ats =0 as goes to
in nity, since this term will be cancelled by another one later. The computation that follows will
rely on the fundamental theorem of calculus,i.e. a rst order Taylor expansion. For any non-zero
integer k, we have

i Pﬁ
Argsh K PAFC _ ki PasT RN X ikj Pa T dx
g 2k +!1ja - 2k +1ja 0 1+ x2)%2 j2k+'ja
P — Rjkj P 71 P
4 +1 1 T2k *1ja X jkj 4 +1 dx
2a jkjt j1* 2 0 (1+x2)%°2 2k +!ja
| o JE— p— RJkaA +1 P
4 +1 4 +1 1 1 2k +1ja X jkj 4 +1 X dX
2a jkj! 2a jkj' J1* 2 0 (1+ x2)%=2  j2k +1ja '

It will be more convenient at this point to separate the sum overk into two sums, bearing respec-
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tively over strictly positive and negative integers, recalling that we haveC,x = j2k + !'j. Asone
might see in the computation above, we can achieve the same result as changing the signkoby
changing that of ! . For strictly positive integers, we have

i P p p
jkj 4 +1 _ 4 +1 4 +1 1
ArQSh 2k +1ja - 2ak 1! +2ak1 1+ 5 1
k Pz
Rge X kP T g
0 1+ x2)%%2  (k+!)a :
I kK P
= P Pt 1 1 1 ! ex+a X k Pa=r % dx:
2ak 1 2ak 1 l+22!k 2k 0 (1+x2)%*2 Rk +N)a '
_<1_

Taking the sum over strictly positive integers, with s in the appropriate half-plane, we get

p P 1 ikj Par
4 +1  seeswy AgSh e
k>1 ki ! !
- Pg=g PaP L Pr o P 1 1
= 2a K 1 k1+2 (s 1) 2a 2 k> 1 k2t2 (s 1) 1+ﬁ
#
k Pa=r
P 1 Rm X k PaT x  dx
o1 K @s 1D 0 1+ x2)372  (k +!)a
>
— 4 +1 (1+2 (S 1)) 4 +1 LP 1 1
- 2a 2a 2 k22 (s ) 1+ S —
k>1 2k
Kk P
pmp 1 Rm X kp4 +1 X dX
K> 1 k@s 1D 0 1+ x2)32 2k +!)a :

It is now readily seen that the rst term above has a holomorphic continuation around 0, using
classical results about the Riemann zeta function. The second and third term also induce holo-
morphic function around the origin, this time because the series involved are absolutely convergent
there. For this, we simply need to note that we have

CRR Kk PaeT P a1k
2k +1)a X + dX 6 1 +

3
0 (1+x2)%2 @2k +h)a X 2 @k+Na .

We can deal with the sum over strictly negative integers in a similar fashion, by noticing that this
change of sign amounts to (formally) changing the sign of . This proves that the function

p P 1 iki Pa=T
s 7t 4+l o1 WTET Argsh Hysrra

has a holomorphic continuation to a neighborhood of0. A precise control on its value ats = 0,
or, equivalently, a control on the derivative at 0 of the function

s+ P 1

s P
WAVQSh ki ~ 4 +1

| sin( s ) 1 1
s 7! 1 4+ 2k +1ja

4z ikj> 1
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is not needed, as there will later be a cancellation. We now turn to studying the function

pip (s): 1 P 1 iki P
i LY

st AL S g ey AOSh s

J 1K=

Using similar computations as before, we get, for the sum over strictly positive integer,

p— P ¢, . P 1 ik Pa T
4 +1.>1T! 4Tk>1WArgsh SIEIANEY
j
P P P
_ 4+ (s); 1 . 4 +1 | (s), 1 1 1
- 2a TJ @ (2 (s+j 1+1) 2a 2 J'!I a k2 (s57 D20 14 5
i>1 i=1 k>1 o
kpi
p74 1 P (s) 1 P R(z‘kf!?a X k P71 x  dx:
. A 0 (1+ x2)%2 2k +1)a ’

We now note that the second and third term above induce holomorphic functions around, whose
value at s = 0 vanishes because of the Pochhammer symbol. The rst series also induces a
holomorphic function around 0, though we will have to be careful in evaluating its value there. For
every integerj > 2, we have

2( D+1 > 1

which means that the sum overj > 2 induces a holomorphic function around0, whose value at this
point vanishes because of the Pochhammer symbol. However, something di erent occurs whégn
equalsl, as we stand too close to the pole of the Riemann zeta function. The corresponding term
is given by

i 1s (2s+1) :

It is still true that this term induces a holomorphic function around 0, though the factor s coming
from the Pochhammer symbol here can only serve to cancel the pole of the Riemann zeta function,
instead of making the whole value atO disappear. Using a Laurent expansion a0, we see that the
value at O of this function is given by

4 +1 — 1 + 1 .
16 a - 4a 16a

We can now deal with the sum over strictly negative integersk in a similar way, or simply by
formally changing the sign of! . This proves that the function

pip (s); 1 P 1 jkjp4+1
s 7! 4+1j>1j7! j_k‘lmArQShm
IK]=

has a holomorphic continuation to a neighborhood o, and that its value at s = 0, or, equivalently,
that the derivative at s =0 of the function

P i P
i 1 1 jkj 4 +1
i a4 @2s+2] 1) AI’gSh 2k +1ja

| sin(s) 1 1 st 3
s 7 it A R R
j>1 jkj>1

45

NG

is given by 52— + z2—. This completes the proof of the proposition.
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Fifth part. We now move on to the next term from proposition 4.6.16.

Proposition 4.6.24.  The function

sin(s) 1 1 SXo o, 18 2 2
1 47 o K® 7 log (Cuc @)™+ (4 +1) k]

s 7!

which is well-de ned and holomorphic on the half-plane

1
Res > >

has a holomorphic continuation to a neighborhood 00, whose derivative there satis es
!

. P s
&0 TG i+ C 0 k? f log (Cik @+ (4 +1)jkj?
jkj>1
!
i P o
= o e dr T el @K+ D @ 1)k
Proof. We begin by noting that the function
1 X, 1 ® L
s 70 jki* 7 log (Cuc @)+ (4 +1)jkj?
jkj>1

is well-de ned and holomorphic on the half-plane mentioned in the statement above. After applying
the binomial formula on this open domain, we get

P s
i ki 1 log (Cix @)°+(4 +1) ki’

2
ikj> 1

k Aelog 2k +1)?a2+(4 +1) jkj’
jkj> 1

ISTS

P ), P 2 jkj?
T T e log Rk +1)7a%+ (4 +1) jki
i>1 jkj> 1

We will deal in detail with the rst term above, the other one being similar. We have

P
L 1 log 2k +1)%a2+(4 +1)jkj?

iZs
ikj>1 K
P i 2 4 +1
= %” ka% 2log(2a)+2logjkj+log 1+~ :+ ;5 S+ 1907 ]kj%
jkj>1
= log(2a) (2s) °@2s)
1 P 1 jog 1+ L L4112 1,441 1 ro1 .
4 o jijS g k 2 k2 4 232 ]kJ2 2 Kk 1
jkj>1
where it is important to note that the term != ( k) introduced in the last sum is not to be

compensated by anything, as we sum over both strictly positive and negative integers, which
produces the appropriate change of sign. We then note that the rst two terms above induce
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holomorphic functions around 0O, following results pertaining to the Riemann zeta function. The
third term requires more care. We have, for every strictly positive integerk,

|2

! 1 ! 1 4 +1 1 ! 1
log 1+~ ¢+ a7 wtaze jEz &
_ Rux e s o R [
0 1+Lt+4!‘22t2+44 +; 2 2
R- 1
1=k ! 12 4 +1 12 !
—t oatt oo (1 )t -
O 1+ be+ 524 27hq2 2 2 %a
{Z }
61
12 1 3 4 +1 .
Sttt Jpit2 2 dt
This allows us to properly bound the di erence studied here, as we have
11 1z 4 +1 1 [
log 1+~ ¢+ 7= wtizar jg7z &
121 4 +1 1 4 +1 1 1 13 1.
6 17 wtiw wrtivee 32 et @

with a similar estimate for strictly negative integers. This means that the function

P 2

1 1 1 L1yt 1,44 1

S 7 4 Kis 1 jijS IOg 1+ K + 4 2 k2 + 4 232 JkJ2 2
Il

-
=

is holomorphic around 0. Therefore, the function

P -
s 7! 1 1 _log 2k +!)%a2+(4 +1)jkj?
L jkj
jkj>1
has a holomorphic continuation to a neighborhood of0. A precise control on its value there is
not needed, as there will later be a cancellation. Using similar computations, we have, on the
appropriate half-plane

P (), P 2 2
i gt a&  gemlog 2k +1)7a+ (4 +1) K]
j>1 jkj>1
P (s . P (s .
= log(2a) G & @ (s+j) T g %2 (s+))
j>1 j>1
P (s), P 2
1 1 1 ! 1 ! 1 4 +1 1 ! 1 .
A e SR - o B B i i i e e S S
i>1 jkj>1

and, as before, these terms induce holomorphic functions around, the only di erence being that
their value at this point vanishes, because of the Pochhammer symbol. This concludes the proof
of this proposition.

O

Sixth part. Unlike what we did for the last terms, we will take care of the polynomial terms,
associated toU;, coming from propositions 4.6.16 and 4.6.18 together.
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Proposition 4.6.25.  The function

¢ 7 Sin(s) 1 1 s X ki 1 3 1 U Cix @
: 2 a PO ¢ p— | PP o p—
4 4 ikj> 1 4 jkji 4 +1 jkj ~ 4 +1

p 1 k@

1+ U 1+

is holomorphic on the half-plane

Res > 1

N

which contains O if we have < 1=2.

Remark 4.6.26. There is no need here for any asymptotic expansion as goes to in nity, since
there will be full compensations later for this term.

Proof of proposition 4.6.25. The proof is similar to that of the last two propositions, keeping in
mind that the polynomial U; is given by

U (t) = & 3t 53 = up(t);

where u; is the polynomial appearing in the asymptotic expansions provided by Olver in [74, 75].
O

Seventh part. Having nished with the terms coming from proposition 4.6.16, we now turn to
the ones associated with proposition 4.6.17, for which we need to assume thatis not zero.

Proposition 4.6.27.  The function

sin(s) 1 1 s
> Z+ Iongp%T(!a)

s 7!

is holomorphic on C, and its derivative at s = 0 satis es, as goes to in nity,

sin(s) 1

@ 11
@9s=0 3 2
= p*Iog +2[2log2 1 Iog(!a)]p* zlog + %log; + o(1):

+  ®logK,P—(la)
7

Proof. Since no series is involved, the result stems directly from the asymptotic expansions of the
modi ed Bessel functions.

O

Eighth part. With the exception of what we did in the second and sixth part above, we have
yet to study the series associated to the terms appearing in proposition 4.6.18. The rst one of
them is taken care of in the next proposition.

Proposition 4.6.28.  The function

sin(s) 1 1 sX o, 1 B , 1
= 2" ki© 2 (Cox @)+ 5+

s 7!



which is well-de ned and holomorphic on the half-plane

Res > L

has a holomorphic continuation to a neighborhood 06, whose derivative there satis es
!

@ sin(s) 1 1 s P L2 g s d 2. 1
@55=0 & 3t jKj i (Cix @)+ 7+
ikj> 1
_ @ sin(s) 1 2( s)(3=2 s) 1 1 (1+ )s 2s 1 1
= @ys=0 o W it (2a) s D2s 2
p—_, 12
+ -a+ o0(1)

as goes to in nity.

Remark 4.6.29. Even though, in this particular instance, the derivative at O left untouched in
the proposition above can be computed precisely as goes to in nity, we have chosen not to do
S0, as this computation will become signi cantly simpler when this term is grouped with another
one that will appear in the next section.

Proof of proposition 4.6.28. We begin by noting that the function

P s @
s T W @kt g
Jkj=>

is well-de ned and holomorphic on the half-plane Res > 1=, which never contains the origin. In
order to prove this proposition, we will use a method known as theRamanujan summation, for
which the reader is referred to [23]. This will allow us not only to extend the function above, which
could be done using a Taylor expansion, but also to get a control of this continuation as goes to
in nity. Let us rst use the binomial formula on the half-plane Res > 1=, which yields

P2 s d 2,1
jKj 7 @k +1)a)™+ 7+
jkj> 1 q
P (s P
= js!J oy ijZ%sm @k +1)a)’+ 3+
i>0 IleJT:)l q
P (s
= ™+ 7 e @k +1)a)’+ 5+
j>0 k>1 .
P , 21,
+ k2 (s+1) ((2k !)a) +Z+ :
k>1

The reason for splitting the sum into two parts is that there will be a slight variation in the
argument we will use. We begin by dealing with the series

p q
I (1‘s+j) (2k +! )a)2+ %'*'
k> 1

for any positive integerj. The rst step towards using the Ramanujan summation process is to nd
a function, regular enough, that interpolates the terms appearing in the series. The only natural
choice is to take, fors xed in the half-plane mentioned above,

q
foj 2z 70 &gy (Qz+1)a)’+ i+
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which is indeed well-de ned and holomorphic on the half-planeRez > 0, since we have

+ +4 222 (Rez)> (Imz)? +41a 2Rez

+12a%+4ia?(2 Rez+!)Imz:

1 2 — 1
3+ tQRz+1)a? = 3

It should be noted that the de nition of the complex power and square root used above is relatively

to the cut along the half-line of negative real numbers. The functionfg; is of moderate growth

in the sense of [23, Sec. 1.3.2], on the half-plane where it is de ned. Furthermore, Carlson's
theorem, presented in [23, App. B], states thatfs; is the only function of moderate growth which
interpolates the terms considered in the series. There are two hypotheses we need to check if we
want the Ramanujan summation process to behave nicely. The rst one is that we should have

which holds, as we have chosess to be in the half-plane where the associated series converges
absolutely, which in particular implies that the terms comprising said series go to0 as k goes to
in nity. The second one is a bit more technical. We need to prove that we have

Rit ty (keit) foy (k i)
ki +1 O e 1 dt = 0

This will be done by using both Lebesgue's dominated convergence theorem, and Taylor's formula.
For any integer k > 1, and any positive real numbert, we have

i R 0 ; .
fo (ke it) = fog (K)+ i g £O (k+ ix) dx;
fs;j (k it) = 1Es;j (k) i (; fgj (k iX) dx:

This gives, after taking the di erence,
. R . 0 . i
fo (k+it) fgy(k it) = 0 o fg (k+ix)+ fg (k ix) dx:

This manipulation allows us to keep the convergence at = 0 in the integral we consider, as it
cancels the singularity induced byl= €' 1 . We further have, on the half-plane Rez > 0,

+ +QRz+1)a:

_ 4a2@2z+! .
& (2) = Ly & patezsl) 2 (5+]) st

1
2265 2 P 7 +1)%a2 4

We need to nd precise estimates on the square roots appearing above. We have

e 4+ (k+ix)+1)a% = 1+ +4 222 kK2 x? +4la %k+ 122
+4ia?x(2k +1);
which gives
2
Lo+ (k+ix)+1)2a2 = 1+ +4 22 k2 x% +41a %k+ 1227
+16 2a%x2(2k + )2

= 1+ 4 222x2 % +8 298x2(2k +1)2+(@2k +1)*a*+2@2k +1)? ;+ a
> (2k +1)*a%:
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This bound then yields

1+ 42 (k+ix)+1)%a2 = e 42 (k+ix)+1)%a2 > (2k +!)a

Note that we also have

q q
1+ 42 (k+ix)+!)*a 6

T+ o+ 2 Prev iz Caz

Finally, we have

(k+ix) 26D = (k+ix) 2 (k+ix) 2°

(k+ix) 2 exp 2 (Res+ilms) Zlog k2+ x? +iarg(k+ix) ;
which allows us to bound this factor, as we have

(j+Re s)

(k+ix) 26 = 242 exp (2 Imsarg (k + ix))

6 exp( jimsj ):

1
(k2+x2) (Re s+j)

We now have everything that we need to properly boundf 31- (k+ix)+ fgj (k ix) as we have

estimates similar to those above when replacing + ix by k ix. Indeed, we have
fo (k+ix)+fQ (k ix)

g 2a’exp(jmsj) o 2 (K2+x?) 7%+

PP P exp( jlm sj )
(k27 x2) @ 551 erena 2 (s e T
. . S g 1 P—— 2
6 4dexp(jlmsj ) a+ (jsji+]) z+ + 2 1+t2+! "a2:

This allows us to use the dominated convergence theorem, which yields

Rit 1y (keit) 1y (k g = 0.
iy o et 1 - .

Using theorem 2 from [23, Sec. 1.4.3], one then gets

A ®) R,
fs (k) = fsj (K)+ |7 s (X) dx ;
k=1 k>1

where the rst symbol on the right-hand side stands for the Ramanujan sum. It should be noted, as
is explained in [23], that this sum depends on the whole functionf;, and not simply its values at
integers, even though, in our case, Carlson's theorem provides unicity for the interpolating function
with moderate growth. The main di erence between the usual sum and this Ramanujan sum is
that, as is mentioned in theorem9 of [23, Sec. 3.1.1], the function

®)
s 7! fsi (K)
k>1

is entire, i.e. holomorphic on the complex plane, as it is a Ramanujan sum of entire functions.
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This allows us to say that the function

. ®)
s 71 snCs) ;oo s fsj (K)
k>1
is entire, and that its derivative at s =0 is given by
" @) # @)
@ sin(s) 1 14 s fo (K - for (K
@9s=0 e ko1 (9 o1 ()

R 1 S
= Moy it @D @D g

We will now prove that the integral above, whose dependence in is hidden within the de nition
of fsj, goes to0 as goes to in nity. We have

q

fj@+it) fj@ it) e 42 @+it)+1)a? e 42 @ it)+1!)a?
a?[(2 (@+it)+1)? 2 (L it)+! )?]

= D
DIy 42 @+it)r1)2at+ L+ +2 (1 it)+!)%a?

— 'n 8a%t@2p*!)
TIv 1@ @rit)r1)Zaz+ LI+ +@2 (1 i)+ !)2az

which means we need only nd a lower bound for the denominator. We have

Lo+ @+it)+1)2a2+ 1+ +@2 (1 it)+!)%a?

h
- P3 3+ 4222 742 +1)+2 it 42322 (2 +1)%a?
1=2 1=2
+16 2a%t2(2 +1)°  + i+ +4 22 4 22%+41a 2+ 122
! #1=2
P 1 2,242 1 2,242 2,2 2 2,2
> ZZ+ 4 “a'tc + -+ 4at+zra+4{§ +!a}
I {z } @ +1)%a2
P >0
> 22 +a
which gives
q

q
v 42 @+i)+1)?a2 1+ +@2 (1 it)+!)’a 6 4 2at

This allows us to use the dominated convergence theorem, and gives

i R4 p%+ w2 1+ ityr 1)%az p%+ @@ e g

|"111 0 e2t 1 - )
Hence, we have
®)

foj ) = 3 3+ +@ +)P&@+o@) = 37 +o@
k>1
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as goes to in nity. What remains to prove is that the function

_ R q
sin(s) 1 1 1 1 1
s 7! —x 77t =i L

1 2.2 .
T @ 1 oo 4Tt +(2 x +1)7a2dx
j>0

which is well-de ned and holomorphic on the half-planeRes > 1=, has a holomorphic continuation

to an open neighborhood of the origin, and get an asymptotic control of its derivative there, as

goes to in nity. For any integer j > 0, we have, on the appropriate half-plane,
R, 1 q
[ it t@x v 1)?adx

q +1
1 1 1 2 2
TN 1 een T at t@x+l)a
1
+ 1 1 R 1 n 4a’?@x+!) dx
2(G+) 1 2 1 XZED T PTG e e
q R
— 1 1 112 52 2a +1 1 1 .
RGN +(2 +!1) a2+ ECH B T dx:

1=4+
1 @2x +1)2a2

We will now compute the integral above using hypergeometric functions, for which the reader is
referred to [74, 75]. We have

R+1 1 1+ %+ 1=2 dX
1 x2 (s+j) 1 @2x +1)%a?
q . 1=4+ q 2 (s+j)+L
- 14 1 @ )2(S+J) lR(zu)?a? 1 14 | (s+]) 1 pdt
4 4a 0 atl=2 4 : t3=2 1+t
- q1+ 1 (pg)2(s+i) 1 1y (sti)+ 3
= 3 7a (22) 3
1=4+ 2 (s+j)+1
@ +1)%2a2 ¢ (s+j) 2 pL p-2 1=2 .
0 t 1+t 1 1=4+ t dt:

We now note that we have, on the interval of integration,

p___
PRt 1=2 n a 1=4+ _ ! .
1=4+ 6 - e+na - ozer < 1o

which allows us to use the binomial formula to expand the complex powers within the integral and
interchange sums and integrals. We thus have

I:2+1 q
1 1 2
1 o it t@x +1)%azdx
1 a 1y 42 +1)2a2+ 2a 1 (pg)2 G+ 1 1y (s+j)+1
2 (s+)) 1 4 ( ') a 2(stj) 1 3a (2a) 4
P R 1=4+ X
2 (stj)tn 1) 1 a"! " @ +1)Zaz ((stiyrn=2 1 1 dt:
- = = —p——dt
nso @ (st D) onlo=4+ )2 0

T+t
The integral remaining above can be computed, using hypergeometric functions and the formula
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provided in the proof of [47, Prop. 6.13]. We get

Rea L | 1 1y2a2d
1 ey o3t t@x +1)"atdx
i 6
— 1 1 2 1 2 (s+j) 1 1 1 (5("’]6
= z@p1 it t@ 1)@+ seng 2a) Loy
P (2 (s*+j)rn 1) 1 anin 1=4+ (stj)+n=2 1
n>0 @ G+ D nt o (1=a+ y=2 (2 +1)%a2
1=2
1o 2 1.1- i —. 1=4+
1+(2 +1)2a2 2 (s+j)+n 2F 55 1; (S+J)+ n_z'm

q

1 1
2 (s+j) 1 4

. P _
2 2 1 2 2
+ +(2 +1)a+ 3(2a) (s+]) 0 ( (2(S+(IS):jl;) ) 2 L
n>

2 (stj)+2 @2 +!)a 1.1. ; . 1=4+
(2 +1)a) nl:4+ ) +!)zazF 2L (s+i)+ 3 (2 +1)%a2+1=4+

q 2 (s+j) 1 P
— 1 1 2 2 2 2.2 (2 (s+j)+tn 2
s it t@ rh)@t 5 2 +!)a 2 (1)
n>0
n
1 ! 1 1. 1. . n. 1=4+
nt 2+l p1:4+ +H2 +1)%a? P2l (s+i)+ 27 (2 +1)%aZ+1 =4+

We will deal with both of these terms separately, assuming for simplicity, that 1=(2 ) is not an
integer, so that no positive integerj could satisfy 2j = 1. After summing over j and multiplying
by the relevant factors,the rst term yields
!
s P14 a 1
it 4 2(st)) 1 1

+ +(2 +!)2a2;
j>0

which induces a holomorphic function around0O, whose derivative ats = 0 is given by

" ] #

@ sin(s) 11, s P 1 1 ql+ (2 +1)2g2

@gs=0 2 2 >0 JU@ 2 (s+)) 1 2 ( 1) a
— q 1 | 2,2 _ p— .
= 7+ +(@2 +1)a = +0(1);

as goes to in nity. We can now study the following term, which is

i h
P () 1 2 2 (s+j) 1 2 +1)2g2 P (2 (s+j)*n 2 1 | n
, jTA 2 +1 ( N a 2 (s+i)) nt 2+l
i>0 n>0
1 1. 1. H n. 1=4+
P [ 28 YD 2 gomm =

We will with this term by breaking apart the sum over n.

For n > 4, we have

(Res+[)+ § § > (Res+)+};

which means that the hypergeometric function
t 70 F L L (s+j)+ it
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is bounded on[0; 1], as it is continuous on[0; 1[ and has a nite limit at 1, a fact for which the
reader is refered to [75, Sec. 15.4.ii], and this bound is furthermore uniform if, as well as ins,

assuming it stays in a neighborhood of the origin. This means that the term

: P 2 (s+j) 1 P ;
sin(s) 1 1 s (s); 1 2 2 2 (2 (stj)tn 2
=& it Tt @ T 2 +!)a R
j>0 n>4
n
1 ! 1 1. 1. H n. 1=4+
nt 241 P +2 +1)2a? Fal (s+h+ 2 @ +1)%aZ+l=4+

induces a holomorphic function around 0, whose derivative ats = 0 vanishes because of the
Pochhammer symbol forj 6 0, and because of (2( s+ j)) forj =0.

For n = 3, we consider

P (s, 1 o 261 2.0 @ (stiy) 1 1 °
o 1T ZaT @ +1)a oy 5 oz
1 1. 1. : 3. 1=4+
P F 20 L (s+j)+ 2) (2 +1)%a2+1=4+

T 1=a+ @2 +1)%a?

For j > 1, we can bound the hypergeometric function above as before, using the continuity on the
interval [0; 1] and the nite limit at 1 given by [75, Sec. 15.4.ii], uniformly in every parameter,

for s in a neighborhood of0, which means that the term

. =) 2 (s+j) 1 :
sin(s) 1 1 S (s); 1 2 2.2 (2 (s+j)+1)
= 7t N I @ + 1) a" ey
i>0
1 ! 8 n 1 F 1. 1 +i)+ 3. 1=4+
6 2+1 T =4+ +2 +1)%a2 2= (s+1) 27 (2 +1)%aZ+l=4+

induces a holomorphic function aroundO, whose derivative there vanishes because ()$)j forj 60,
and because of (2 (s+j)) forj =0.

For n =2, we consider

P (o 2 (s+)) 1 2 2
N @ +1)a 5 oo
]
1 1. 1. ; . 1=4+
P F ol D1 oz

T1=ar +@ +1)%a?
When the integerj is large enough, we have
(Res+j) % > 0

for s in a neighborhood of the origin, and we can bound the hypergeometric function above uni-
formly in every parameter, for s close enough to0. This means that the term

P 2 (s+j) 1
sin(s) 1 1 s (s) 1 2 2.2 1 !
4s Z+ ) j!I a1 2 +1 (2 +!)a 2 2 +!
i>1
1 1. 1. ; . 1=4+
P F 2 L (S+J)+1'(2 +1)%2a2+1 =4+

Tl=ar +2 +1)2a2

143



induces a holomorphic function around0, and that its derivative at this point vanishes, because of
the Pochhammer symbol. Furthermore, the term associated tg = 0, which is given by

sn(s) 1 1, s 2 2% to 2 1 2
45 4 2 +1 ( ') a 2 2 +1
0 1 1.4. . 1=4+
T1=ar +2 +1)%a2 Fails+l (2 +1)%a?+1=4+
also induces a holomorphic function arounds = 0, and its derivative there is
2+ (2 +|)2a2 1 | 2 n 1 F 1. 1 1 1=4+ _ al 2.
2 : 2 2+ T lmar +2 +1)2a2 20 T (2 +1)%a2+1 =4+ - 4
For n =1, we consider
P (s, 2 (s+j) 1
2oL 2 122 1 !
_ T 2 +1 (2 +')"’12(5+i)1 2 +!1
i>0
0 1 1.4. ; 1. 1=4+
Pre = © 20 YD 3 gy

When the integer j is large enough, we have (Res+ j) 1> 0 for s close to the origin, where
we can bound the hypergeometric function uniformly in every parameter. The term

. P 2 (s+j) 1
sin(s) 1 1 s (s)y 1 2 2 .2 1 !
— & 1% U @ 7T @ +1)a gy 7T
j>1
n 1 1. 4. ; 1. 1=4+
P~ 28 DY 3 g

thus induces a holomorphic function around 0, as we have assumed tha?j never equalsi,
whose derivative ats = 0 vanishes, because of the Pochhammer symbol. The remaining term,
corresponding toj =0, is given by

sin(s) 1 1 s 2 2s 1 2.0 1 \
= 3t 2 +1 2 +1)a 5571 747
o} 1 1.1. + 1. 1=4+
T =4y +2 +1)Za F 2’ Ls 27 (2 +1)%a2+1 =4+

It also induces a holomorphic function around the origin, and its derivative there equals

2 41 2.0 | 1 1. 4. 1. 1=4+
2 (2 +!)a 2 +! p1:4+ +2 +1!1)%a2 F 2 L S+E’WW
q 2 p
= L 1=+ +@2 +1)a = P T+0(1)
as goes to in nity.
For n =0, we consider
P, 4 o, 261 (@ +1)%a’ b 1
o 11 W T @ (s+)) D@ (s+1) 2 T 1zar +2 +1)%a?

1. 4. PR 1=4+
F 5L (s+]); @ +1)Zazei=ar
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For j large enough, we have

(Res+j) 2 > 0

for s close to the origin, and we can bound the hypergeometric function above uniformly in every
parameter, still for s in a neighborhood of0, which means that the term

sin(s) 1 1, s P () 1 ) 2 (s+j) 1 @ +1)2a?
45 4 . j! 4 2 +! 2 (st]) 1@ (stj) 2
j>1
1 1.1. Py . 1=4+
p1:4+ +2 +1)2a? Foail (s+0)s (2 +1)%a?+l =4+

induces a holomorphic function aroundO, whose derivative there vanishes because of the Pochham-
mer symbol. The only term left to be studied is the one corresponding tg =0, given by

) 2s 1
sin(s) 11, s 2 S (2 +1)%a® 1 F 11 g 1=4+
45 7 2 +1 @s D2s 2T 14+ +2 +1)%az 20 7 2 (2 +1)2a2+1 =4+

We now need to simplify the hypergeometric function above. We have

1. 1. . 1=4+
F 2l s gomara=

- (s)( s 3=2 1.4.5 . (2 +1)%a?
T (s 1I=2)( s l)F 2Lz s 1=4+ +2 +!)%a2
()@ =2 s) @ +1)%a s 3= 1. . 1. @ 1)
A T e @ Fos s Us simmse =
— 1 1.4.5 . (2 +!)%a?
- SS 3:2F i’l’i S 1=4+ +(2 +!)%a?
1 _ @ +1)%a? s 3=2 1=4+ 1os
tp=(8) B=2 S) gy e TR
_ 1.4.5 . (2 +1)%a
= 533F 2383 S g oo
q
+ph (s) 3= s) 1=+ +(2 +1)%a2(2 +1)a)?* P i+ %,
which then yields
. 2s 1 2.2 —
sin(s) 1 1 S 2 2 +!)%a 1 1. 1. . 1=4+
45 Z+ 2 +! 2s 1)2s 2)pl:4+ +2 +!)ZazF 20 1’ S; (2 +1)ZaZ+1 =4+
- sin(s) 1 1, s 2 2s 1 @ +1)2a? n 1
- 45 4 2 +1 @s D2s 2 T +2 +1)2a2
h
1 1.4.5 . (2 +!)%a?
s32F 2L3 S m@moe s
q
2 2 3 1 s
+62 3 s 1y 42 +1)%a2(2 +1)a)®® % i+
= sin(s) 1 1, s 2 2s 1 @ +1)2a? n 1
= s 4 2 +1 @s D2s 2) Tizar +2 +1)%az

s 1 1.4. 5 . (2 +!)2%a?
s 3=2F 20 L 2 S\ T+ +2 +1)%a?

+ 1 (1+ )s

+sin(s) 1 (s)@ =2 s)
zs i

1 2s 1 1 .
i (2a) s D2s -
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We now note that the second term above, which is to be left untouched, as indicated by the
statement of proposition we aim to prove, induces a holomorphic function around the origin, the
pole induced by the factor ( s) being canceled by the factorsin(s). The rst term also induces
a holomorphic function around 0, and its derivative there, which is given by

-5, (@ +1)%a®
120 1=4+ +(2 +1)%a?

2+!2+|2a2;n 1 2F
2 ( ) 2 l"’1:4+ +2 +1)2a2 3

N[=

goes to0 as goes to in nity. This completes the study of the rst part of the considered series,
that arose from the splitting of the sum over k into one bearing on strictly positive integers, and
another on strictly negative ones. To sum, we have proved so far that the function

P (5) P q 2
SR N 5 oty @k +1)a)’+ 1+
j>0 k>1

s 7! sin( s )

Bl
INT

has a holomorphic continuation to a neighborhood of the origin. Its derivative there satis es

" q 4
- P (s P
s s 2
@@q‘s=o L L G s e @k +1)a) + g+
i>0 k>1
i
— @ sin(s) 1 (s)(3=2 s) 1 1 (1+ )s 2s 1 1
= @3s=0 *® B it (2a) s DZs 2
1,1 P— a2
7t g to()

as goes to in nity. We now move on to studying the term

p q
j 1 1 2 1
'.I a4 k2 (s+1) ((2k !)a) +Z+
j>0 k>1

The method used here is extremely similar to the what is done above, if switches sign. There
are, however, a few di erences, which we will need to highlight in what follows. What can be done
in the same way as before will not be detailed for clarity. The aim is here to use the Ramanujan
summation process on each and every one of the series

P

k> 1

e (@K !)@2+%+

We begin by considering the interpolating functions

q
& oz 7' oty (@2 Na)’+ 1+

which are well-de ned and holomorphic on the half-planeRez >!= (2 ), since we have

I+ +(2z ')a® = 1+ +4 2 (Rez)® (mz)® 4la ?Rez
+12a2+4ia?(2 Rez !)Imz:

It is important to note here that the half-plane on which gs; is de ned contains 1, since! is strictly
below 2 . As before, we have

k!lIrPl G (k) = 0
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since we have choses to be such that we haveRes > 1= . We further have

R 1 Lo(k+i Lo(ki
O+ Osj ( +gz)t gsflj_ (k_it) dt = 0 '

I
k! +1

still by using Taylor's formula and Lebesgue's dominated convergence theorem. We then have

@) +1
1 gS;j (k)+ 1

A
. Osj (k) = Osj (X) dX ;

k=

and the analyticity theorem for Ramanujan sums implies that the function

. ®)
s 7! sm(s)‘%S %_'_ s . O (k)

is entire. Its derivative at s =0 is given by

#
) ®) ®)
S ME R T w0 = w9

R _ . .
— %go;j (1)+ i O+l go; (1+ Ietz)l QOf (1 it) dt:

Similarly to what we did before, the dominated convergence theorem proves that we have

R+ 1 . i " i
P go; (1+it) go; (1 it) — .
!|II111 0 I} d = 0 :

This yields the following asymptotic behavior of the Ramanujan sum

@) g
W () = 3 i+ +@ DP@+o@ = Prow
k=1

as goes to in nity. We will now prove that the function

q
S P (S)J 1 R+1 1 ;
. il 4 1 x2 (s+7]) 4
j>0

s 71 SinCs) + +(2x !)%a?dx -

Bl
INT

which is well-de ned and holomorphic on the half-planeRes > 1=, has a holomorphic continuation
to an open neighborhood of0, and get an asymptotic control on its derivative at this point, as
goes to in nity. We will need to remove part of the integral before we can proceed. The function

. P (s R q
s 7! SIn(S)% %+ ° % 4% 12x2(]§+j) %+ +(2X !)2a2dx
i>0
is holomorphic around 0, and its derivative there is given by
" . #
i s P (9 R, 2
S T A T G d Ut G orex Dl
I
h R, 4 i
= P12 T1e leex 122 1 dx = Prioq):

147



Thus, the function we actually need to study is

S P (S)J 1 R+l 1 q

1 1 2.2 .
® 7 g @ 2 w2t t@x )Tatdx:

When s lies in the half-plane where this function is de ned, we have

R, a
1 1 1 2 2
2 e ozt t@2x  1)Tatdx
q R
_ 1 1 1 112 42 2a +1 1 . 1 .
T ) IZ eI 4+ +(4 ) as + T (sr ) 1 2 X2 (1) T e dx;
2 x !)232

and we can once again compute this last integral using hypergeometric functions. We have

R, R — ) S
1 1 1 _ 1 1 2 (stj) 1 1 (s+j)+l =2
2 xxenT f oo dx = z5 3+ (2a) at
1+ 2x 1)2a2
R =4 . 2 (s+j)+1
@ 1)2aZ t (s*i) 2 al 1=2 -

The di erence with the previous series appears here, as we have, on the interval of integration

p2 1=2 al 1=4+ - ! .
1=4+ t 6 P 1=4+ @ NHa ~ 4 1 < I
Had not removed the integral ranging from 1 to 2, we would have gotten!= (2 1), which is not

in general strictly smaller than 1. Fortunately, having done this manipulation allows us to obtain
the required bound, which in turn enables the use of the binomial formula, and the interchange of
sums and integrals. We thus have

R, a 5
, =t it t@x  1)%a?dx
q 2 (s+j) 1
_ 2 2
= 2(s+1j) 1 T it t( a2+ 74 (4 1)%a?
P @ (stiyrn 2 (o ", 1
n>0 @ (s*+1) n! 41 Tl=ar +(@  1)2a2
i
l.1. ; n. 1=4+
F 5L (s+j)+ 3 = +@ 1%

Once again, we assume thall=(2 ) is not an integer, so as not to introduce arti cial singularities.
After summing over j and multiplying by the relevant factor, the rst term above becomes

s s 1 1 1 1 2.0 .
o 1T 2 &+ D T 2 (st]) 1 it +(4 1)y a*

and induces a holomorphic function aroundO, whose derivative there is given by

n ' #
@ sin(s) 1 1 s P o), 1 1 1 a 1 4 12 52
@9s=0 # 17 i>0 JU 4 226+ 1 2 (s+]) 1 zt +( ) a
d 2 P
= 2 i+ +@4 & = 2" "+0(1)
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as goes to in nity. We can now study the second term, given by

) P (s) 2 (s+j) 1
s s 2
sn(s) 11y N @4 )&
j>0
P @ (stivn 2 (0 "y 1
oo @ (s*1) n! 4 T lmar +@ 1)%a?
|
1. 1. ; . 1=4+
F 3Ll (s+D+ 3 e e

At this point, the study is very much the same as the one led above, and yields the holomorphic
continuation around 0 of the term presented above, as well as the fact that its derivative ats = 0
satis es the following asymptotic expansion

|
2

1 (1+ )s 2s 1 1 1 1 P—

sin(s) 1 ((s)( =2 s) +
4s T

@ 1
@9s=0 1
as goes to in nity. This part of the computation thus proves that the function

P (s P q

S S 2

& it 1 s e (ko Da)+ g+
j>0 k>1

has a holomorphic continuation to a neighborhood of the origin, where its derivative satis es

q #
; P (s P
S 5 2
Sgo T Gt T SE d i @k D@ e
i>0 k>1
i
_ @ sin(s) 1 (s)3=2 s) 1 1 (1+ )s 2s 1 1
= @ys=0 o B at (2a) s DZs 2

1oL Pevalioq

as goes to in nity. Putting the two parts of the computation, we have proved that the function

P s 9
sn(s)i 14 0° jki> 1 @k +1)a)’+ 1+

has a holomorphic continuation to a neighborhood of0, and that its derivative there satis es

q #
. P s
S .2 2
T 5 R S S (A A DEVE
jkj>1
@ h in(s) (s)@ =2 s) 1 @1+ )s 2s 1 i
— sin( s 1 S = S 1 S 1
= 2ggs-0 7 P= zt (2a) Zs D2s 2
1,1 P—, a2 1 1 P—, az
7t Tt G 3 2 + - +o()
h in(s ) (s)@ =2 s) 1 1+ )s 2s 1 i
_ @ sin( s 1 S =2 s 1 S 1
= 2g3s=0 g P at 2a) @s DEs 2

p

1 2

“+ 5-a+o0(1)

as goes to in nity. This completes the proof of this proposition.
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Ninth part. The next term coming from proposition 4.6.18 is dealt with below.
Proposition 4.6.30.  The function

. L p_—
sin(s) 1 1 3 X 1 ° =4 +

s 7! 5 2 jkj?

’

N
Ol
=

o

ikj>1
which is well-de ned and holomorphic on the half-plane
Res > 1 ;

has a holomorphic continuation to a neighborhood 00, whose derivative there satis es
!

L P s Pr
@ sin(s) 1 1 s+ 3 ) 1 T
@4s=0 = 27 - ikj i Argsh =1
jkj>1
- @ sin(s) 1 1 1 (1+ )s 2s 1(s) (3 s) 1 1P —
= @0 @ 4Tt 2a) Pe—"351 3 log
h Ri1 1 2 2
+ 2, vy arctan 5t +arctan =t dt log2+2

+4-log 3 +3%log 42 12 & p*+o(1)

as goes to in nity.

Remark 4.6.31. Apart from the term left untouched, which will later be canceled, we note there
is no contribution to the constant term in the asymptotic expansion as goes to in nity.

Proof of proposition 4.6.30. This result can be proved using, as for proposition 4.6.28, the Ra-
manujan summation process and hypergeometric functions.
O

Tenth part. The next term from proposition 4.6.18 is the one associated to the logarithm.
Proposition 4.6.32.  The function

i 1 1 s X o 1 0° 1
sin(s) 1y jki# 7 log (Cyca)’+ 3+

7
s ' 4s+1 4 o
jkj>1

which is well-de ned and holomorphic on the half-plane

1 .
Res > 5 ;

has a holomorphic continuation to a neighborhood 00, whose derivative ats = 0 satis es
I

i ) S 9
B0 T i ki 3 log (Cix @)+ ;+

= Zlog + ip*+ 0(1);

as goes to in nity.
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Proof. Once again, we can use the same arguments as in the proof of proposition 4.6.28, namely
the Ramanujan summation process and hypergeometric functions.
O

Eleventh part. The only remaining di cult term to deal with is the polynomial term from
proposition 4.6.18.

Proposition 4.6.33.  The function

00 11
i 1 1 s 2 X 1 ° C..
s 7! sin(s) — =+ kaz - U, @ @qLiaAA :
45 4 . 4 14
jkj>1 2

which is well-de ned and holomorphic on the half-planeRes > 0 has a holomorphic continuation
to a neighborhood of0, whose derivative ats = 0 satis es

: 1 P s
@ sin(s) 1 1 s 1 1,2 1 ik a
@gs=0 & &t S LY S =
jkj>1 4
= ee 1+ log sa—log2+ llog(4a) 52 +0(1);

as goes to in nity.

Proof. The proof is once more conducted as that of proposition 4.6.28, using the Ramanujan
summation process and hypergeometric functions.
O

Twelth part. The last term we need to take care of is the one corresponding t&k = O in
proposition 4.6.18, for which we need to assumé not to be zero.

Proposition 4.6.34.  The function

sin(s) 1 1 S
> Z+ Iong%Jr (‘a)

s 7!

is holomorphic on C, and its derivative at s = 0 satis es

@ sin(s) 1 1 S
@gs=0 ¥ it logkP -—('a)

%pflog +(log('a) IogZ+1)p*+%Iog zlog 5 +o0(1);

as goes to in nity.

Proof. Since there is no series involved, this result is a direct consequence of the asymptotic ex-
pansion of the modi ed Bessel functions of the second kind.
O
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Thirteenth part. However, as we have stated right before proposition 4.6.16, we have only dealt
with the di erence that appears in the expression ofF , . It is now time to say a few words about
the rest, namely about the terms associated to

8 q

2 2 i+ gqt:p%flogKt(C!;k a) if k60
q

> .

: 2 %+ @@qtzp% logK; ('a) if k=0

Proposition 4.6.35.  The function

q P s+1
s )
s 70 A 14 2 z+ K g @@Qt:p%+ logK (Cix @)
jkj>1
+2(5)(%S) 1y 132 2s 1 1
= i (2a) Zs DZs 2
1
+(S)(£ s) %_'_ 15(2a)25 12511 ;

which is well-de ned and holomorphic on the half-plandkes > 1=, has a holomorphic continuation
to a neighborhood of0.

Proof. This result is a direct consequence of theorem 4.6.12 and of the several computations, stated
in propositions 4.6.19, 4.6.20, 4.6.21, 4.6.23, 4.6.24, 4.6.25, 4.6.28, 4.6.30, 4.6.32, 4.6.33.
O

Remark 4.6.36. Note that we have omitted from the last proposition the factor sin(s). The rea-
son is that the cancellation we hinted at before proposition 4.6.16 will not be perfect, as explained
in remark 4.7.4. However, since there are no series involved, the cancellation of the derivative at
for the term corresponding tok = 0 will be complete.

Corollary 4.6.37.  The function

S
Pv k3 T8 P logK (Cy ) |
jkj>1

which is well-de ned and holomorphic on the half-plandres > 1=, has a holomorphic continuation
to a neighborhood of0.

This concludes the study of the terms associated t@ . , and thus that of the integrals L . , which
was the point of this section.

4.7 Study of the integrals M

Recalling de nition 4.5.2, we turn our attention to the integrals M . , which were de ned as

8 Zq s
% sin(s) o %{;, fu () dt if k60
2kj g+
M;k (S) = . Z 1 s |
E sin(s) 0 t2 1, f.o(t)dt if k=0 and! 60
) 4
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where, as indicated in de nition 4.4.5, the function f .« is given by

t 70 logKi(Cix @) Py G Py logK((Cyc @) |
As always, we have denoted by > 0 a positive real number, and by! a real number in[0;2 [.

We can then split the integrals M . according to the two terms appearing in the de nition of f . ,
leading to the following de nition.

De nition 4.7.1.  On the strip 1 < Res < 2, for any real numbers and! as above, as well as
any integer k, we de ne the integrals f1 x and R by

8 R
sin(s) "+1 2 1 S @ i
% = i p " t 7t @tlogKt(Cg;k a)dt ifk6o0
£ (s) = ;
; . R ;
goSs) TR 2 1+ °@ogK(la) dt if k=0
: N and! 60
for the rst part of f . , and
8 sin( s ) 1 +1 2 1 S
pi— P — 2 i+ t dt
: if k60
@@qt:p — logK (Cix @)
R;k (S) = R ;
% sl pl TR 2 L+ St
it 3t
if k=0and! 60
@@qtzp = logK; (la)

for the second part off | .

Remark 4.7.2. This splitting has been performed so as to haveM . (s) = f k (8)+ Rk (9).
Studying M  will therefore be reduced to investigating the behavior of both terms above.
4.7.1 Study of the integrals R

We begin this phase of the study with the simplest term, which is the second one in the de nition
above. As the reader will notice, it can be computed quite explicitly.

Proposition 4.7.3.  For any complex numbers with 1 < Res < 2, any integer k, as well as ny
and! as above, we have

8 q s+1
S 2
e b e T
@@qt—ler logK (Cix @) it k&0
— - 4
Ru (8) = sin(s) 1 1 1 S 1 ql
% iz 2% Ts 2 1%
if k=0and! 60
gnr: p T logK; (la)

Proof. This proposition can be summed up as the computation of the integral that appears in the
de nition of R , i.e. in de nition 4.7.1.
O
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Remark 4.7.4. The reason for the lack of compensation that was alluded to in remark 4.6.36
is the factor 1=(s 1) that appears in the computation of R . When the associated term is
combined with that of proposition 4.6.35, one sees a factor

sin(s) S

s 1

appear, contributing to the cancellation of the derivative at 0. However, even these two factors
together cannot give a cancellation when multiplied by a meromorphic function with a single pole
at 0. This is the reason why, in proposition 4.6.35, we had to remove some problematic terms.

Proposition 4.7.5.  The function

p
s 7! R (s) .
ikj> 1 '

which is well-de ned and holomorphic on the half-plandres > 1=, has a holomorphic continuation
to a neighborhood of0, whose derivative ats = 0 satis es, as goes to in nity,

" #
2 R ()
. K
@9s=0 k> 1
_ @ sin(s) 1 1 S qu P -k-2 1 st @ p logK; (C
- @9s=0 4s Z+ Z+ o IK] 14 @ijt= %Tog t( Lk a)
jkj>1
(s) (3 s) 1 1's (2a)? * (s) (G s) 1 1s (2a)2° !
+2 Pt 27 s nes ot Pt at 7s 1

+,4 1+1 log +5= % log(4a) 2+ llog2

+— 1+1 log + gi-log2 i log(4a) g +o(1):

Proof. Using proposition 4.7.3, we note that the function to be considered here is, up to a holomor-
phic factor around 0O, the same as the function studied in proposition 4.6.35. Hence, the function

P
s 7! R« (9);
jkj>1

which is indeed well-de ned and holomorphic on the half-planeRes > 1=, has a holomorphic
continuation to a neighborhood of 0. Still using proposition 4.6.35, we see that we have

" #
e Rx (9
. K
@9s=0 jkj>1
_ @ sin(s) 1 (1=4+ ) ° q 1 P a2 1 s+l @ p
- @9s=0 45 s 1 2 zt ikj 4 @ft=" 1+ logK (Cix @)
jkj>1 4
(s) 3 s) 1 1's (a)?s ! () (3 s) 1 1's @a)?s !
2 ——p—= g+ zs nzs o F . i s 1
@ sin(s) 1 1 s 1 (s) (3 s) 1 1's  (2a)*s *
@9s=0 = 17t s 1 2 Pt 7t @s DEZs 2
@ sin(s) 11 s 1 (s) (3 s) 1 1 s (2a)2° !
@9s=0 w 37t g1 — = gt 75T
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The rst derivative above can be simpli ed, as the factor 1=(s 1) within only induces a change
of sign. The result is precisely the derivative in the formula we wish to prove. Therefore, we only
need to compute the last two derivative in this last equality. This will be achieved by using the
Laurent expansions at0 of the relevant terms. For simplicity, we will use the notation O s to
mean a holomorphic function aroundO with a zero of order at leastk there. We have

1 s (2a)?s 1

+ Zs DZs 2

sin(s) 1 1 s 1 (s)®@ =2 s)
& 3t g1 2 =

s 1

Bl

|
=

1+ )s 1 B =2 s) 2s 1
+ s (8) EF22a) g

S

IN
)
FNIN
IN

>
Bl
N

[

+ s+0 s> 1 2log(2)s+ O s?

N
Q
INIS

1 (1+ )log 7+ s+0 s 1+s+0 s> L+  +0(9)
1+ (2log2+ 2)s+0 s? 1+2 log(2a)s+ O &?
1+3s+0 ¢°
Therefore, the derivative at s = 0 of the considered term is given by
h [

@ sin(s) 1 1 s 1 (s)®@=2 s) 1 1's (@a)>s !
@9s=0 = 2t 51 2 = it Zs D2s 2
= g 3+ 2log2 (1+ )log %+ +2 log2+

2 +1+2 log(a)+3 )

= 45 7+ (@+2 log(da)+  2log2) =~ 1+% Z+ log 7+
= ;2 3+ (1+2 log(4a)+ 2log 2)
&~ 1+1 Zlog + log + 3% +o0(1)
= 4 1+%1 log & 1+1log +;2-(1+2 log(4a)+  2log2)

+glog(4a) gi-log2+o(l)

as goestoin nity. We can now move to determining the asymptotic behavior of the last derivative
at 0 above as goes to in nity. We have

sin(s) 1 1, s ()5 s) 1, 1s @a)c
45 4 s 1 - 4 2s 1
_ 101 sin(s) 1 1 s 1 1 1+ )s (1=2 s) 2s 1
= za ozt = 7t Ts 2% (s)—F=—"(2a)"" 5
— 1 1 3 2 2
= e s+ 0 s 1 2log(2)s+ 0O s 1+s+0 s

1 (1+ )log 2+ s+0 s L1 +0(
1+ (2log2+ )s+0 s> 1+2 log(2a)s+ O §?
1+2s+0 ¢
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The derivative of this term at the origin is thus given by

@ sin(s) 1 1, s1 () (3 s) 1, 1s a)>®?
@9s=0 45 4 s 1 4 2s 1
— 101 1
= 72 a7 2log2+1 (1+ )log 7+

+2 log2+ +2 log(2a)+2

= ;L (1+ ) log +5 1+2log L1 (1 2log2+2 log(da)+2 )

ga—( 2log2+1+2 log2+2 log(2a)+2 )+ g2—(1+ )+ o(1)

= L@+ ) log +z1 1+1log L (1 2log2+2 log(da)+2 )

+52-10g2 = si-log(4a)+ o(l)

as goes to in nity. These last two computations then yield

" . 4
S55-0 jkj>1..R;k (s) )
B SR s L DI SR
42 (9,6 5) it b (2(32a1§(225512)+ (22,3 2) it e 7(223?2511
+72= 1+1 Jog +5;1 L1 log(da) 3+ llog2

+— 1+1log + 32-log2 gl log(4a) i +o0(1)

as goes to in nity. This concludes the proof of the proposition.
O

This concludes the study of the integralsR .« as goes to in nity. We now move on to investigating
the behavior of Rgx asa goes to in nity. This will be done by taking advantage of the fact that
the log-derivative of the modi ed Bessel function has an explicit expression in this case.

Proposition 4.7.6.  For every integer k, we have

8
3 oSnls)1 o1 2 1 "B (2C &Sk A if K80
1 ikt i 1(2Cix @) '
RO;k(s) = !
sn(s) 1.1 3 S E (2la)ea if k=0and! 60

where E; denotes the exponential integral, for which the reader is referred to [75, Chap. 6]. The
derivative at 0 of (the continuation of) function

P
s 7! Rok (s) -
jkj>1 ’
then satis es
" #
@ P
@SS:O RO;k (S) = 0(1)

jkj> 1

156



as a goes to in nity. Furthermore, assuming ! does not vanish, we have

@@3520 RO;O (S) = 0(1)
as a goes to in nity.

Proof. This result can be obtained by using the asymptotic expansion of the exponential integral,
which the reader may nd in [75, Sec. 6.12.2].

O
Remark 4.7.7. It should be noted that this sort of asymptotic evaluation would be signi cantly
more di cult to obtain should we have not assumed to be zero.
4.7.2 Study of the integrals f1 k (9)
We can now move on to the core of this section, which is the study of the terms associated to

8 R
sin(s) '"+1 2 1 S @ .
E 2iki p " t 77t 61/109K (Ci @) dt  if k60

M;k (S) - sin(s)R+p1 2 1 s @ .
= M t i o:/09K¢ (la) dt ifk=0
and! 60
Proposition 4.7.8. For any , ! as before, any integerk, and any real numbert, we have

r_ v
Cik a 2 2+ (Cy a)°

@@t logK(Cix @ = Argsh

This computation also holds fork = 0, assuming! is non-zero.

Proof. Let > O and! be real numbers, with! 2 [0;2 [, and k be an integer. Recalling the
asymptotic expansion of modi ed Bessel functions of the second kind, we have

q__
logK¢ (Cix @) = 3log 5 +tArgsh = 2+(Cx &)° flog t2+(Cix a)°
N N , =2 N , 322
8t 1+T2(C!;k a) +ﬁ 1+T2(C!;k a)
CI-
et
for any real numbert. After di erentiating, we get
@ - t s t 1 t
61 109K (Cix @) = Argsh o — + — cia pt2+(C!;k e
(C!:k a)
1=2
1 t 1@ 1 1 2
2 vwera? sot t 1t (Ckad)
+5@ 1 14 1 2 % e 1 t Cu 2
et t 1t @ (Cud) ot 7& L7y

This yields the proposition.
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We will treat every term appearing in proposition 4.7.8, taking care of the -asymptotic expansion,
and of the a-asymptotic expansion for =0 simultaneously, as computations are the same.

First part. We begin with the term that involves the remainder &.

Proposition 4.7.9.  The function

Z
H X +1 S )
o 7 Sin(s) e 1, @1  Cua

= 5 @
jo1 24 4 @t t

dt

is well-de ned and holomorphic on the half-planeRes > % and its derivative at s =0 satis es

2 7 3
. X +1 S
sin(s 1 1 Cix a
@ 4sin(s) D 2 4+ e S e X dt> = o(1)
@s%=0 K1 2K EE 4 @t t
as goes to innity. Furthermore, the same derivative, this time for = 0, has the following
asymptotic expansion, asa goes to in nity,
2 7 3
i X 1 1 ° 1 Ci,
@ 4sin(s) 2 = @ S et k@& 5 = o(1):
@ss=0 o1 K 4 @ttt t

Proof. We will begin by performing an integration by parts. We have

2 1 S@ 1 . Cix a
2jkj T I+ t at et 7 & L% dt
h i 41
S Ci a
= t2 l+ 1 Q t, Lk
4 tz bk e
2 1 s 13 .Ciy a
2s Pttt G+ L e k2 gt
_ 11 s1 .2 1 % 3 g 1, . Cpa
= =T 17T jKj 7 v © 2jKj it 4’3;7
ikj 2ikj g+
+1 2 1 s 14 Cix a
+2s 2iK] p1+ tt 7t 7 & == dt

for s of real part large enough. We note that, the rst term above has actually already been
dealt with in proposition 4.6.19, in which a bound was proved on e, thus yielding the asymptotic
behaviors required. To take care of the second term, we will work in a similar fashion. For any
integer k 2 Z and any real number

h q h
t 2 2jkj 3+ ;+1 ;
we have
1 - Cwa Py t 1ok +1 1 1ok + 1 n
z & U — = . n 7 2 :f( Ia tU1 f( Na
+iup 12k +!)a
— P (1)n+l 1 t.12k+| 1 12k+| n
= ., 7 2 Uil a fu T ( Ha
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where the terms , and u; are the ones used by Olver in [74]. We now have

1 t 2k +!)a 6 C 1 - C 6 C .
2 T 2 [, @k+ZaZ 242 k +1)%a2 272k +1ja
t2

where C > 0 is a strictly positive constant. We should note that this estimate on , can be
obtained in more details as in proposition 4.6.19. Furthermore, we have

3
1 1 I 1 2k +!)a 2k +!)
Lu,  L@k+1)a 6 L 3 @Gkrha .5 (@ksl)
1 1 ] 1 .
_ L e = —_——,
6 3t 14 @K +1)2a2 6 3 2 th j2k +!ja
12
This allows us to give explicit bounds for &. We have
P n
1 .Cix a C __Cc 1
v e = 6 2tj2k+!ia+n>2 2t12k+!ja+?% ¥t 2k +1ja
p 2
C 1 1 C ]
. — + p + 5
6 A2k +Tja 2 (2k+lj@a™2 2"t j2k+lja 3 2
| z }
< 5t for jkj large enough
C 1 P 1
6 : — o+ : L
2tj2k +!ja tji2k +!ja 2n
n>2
CO
6 2tj2k +!ja

where C%is a strictly positive real constant. It is worth noting that the fact that this bound is
only valid for jkj large enough is of no consequence, as we have the required asymptotics for any

of the individual terms appearing in the series. Thus, forjkj large enough and anyt in the interval
mentioned above, we have

2 1 s 13 .Cu a 2 1 Res 1 co
14 = ; 14 PR O
tt 4 7 @ L= 6 tt 4 2tj2k +! ja
2 1 3=4 c® .
6 t zt 22k +1ja’

the last inequality being valid for k large enough in absolute value, proving that the function

R+1
2 1 s 11 .Cix a
2kj  T=ar tt 7 = & 1 t dt

-

is holomorphic on the half-plane Res > 1=4, at least wheneverjkj is large enough, while the
remaining terms can be deal with in a similar fashion. We then have, still fork far enough fromO0,

R,
1 2 1 s 13 .Cix a
x4+ = i
2ikj = 1=4+ tt 4 z & t t dt
6 c® R+l dt
2aj2k +1] 25kj = 1=4+ (12 (1=4+ )3
]
h i+1 R 1=4
c? 2 42 1 1=4 +1 1 2 1
& 2 1y + P = Z+
6 2aj2k +1] t t 4 2iKj 1=a+ 2 2jkj 1=4+ t2 t 4 dt
I {z }
6 t1=2
c® 1 =4 1 .
6 2k +1ja a7 jkj=2’
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which means that this term, after summation over k, induces a holomorphic function around the

origin. The derivative of the function

P R, ,
te2 1+

s 71 2sSNCs) P —
ikj> 1 2jkj 1=4+

S l% & t, C!;l; a dt

—

then vanishes, because of the presence of the factesin( s ). The proposition is thus proved.
O

The function

. y4 s
sin(s) ~ *1! ) 1 @ 1 la
ARl g 2 = el
S p t 2 ot 2 e ft n dt

1
2 g+

Proposition 4.7.10.

% and its derivative at s = 0 satis es,

is holomorphic on the half-planeRes >
@ "sin(s)Z” 1 @ 1 la #
— 2 4 = = tt— dt = o(l
@s5:=0 P 4 et 201 o)
as goes to in nity. Furthermore, the same derivative, taken with =0, satis es
@ "sin(s)Z” 1 ‘@ 1 la #
— 2 - = = tt— dt = o(l
@50 1 4 @tz t o)

as a goes to in nity.
Proof. The proof can be conducted in a similar way as that of the last proposition, the argument

being simpler, since there are no series involved.
O

Second part. We now move on to the Argsh term.

Proposition 4.7.11.  The function

1 S t
-+ Argsh dt -
4 9 Cix a !

Z+1
t2

1
I+

sin(s) X

s 7!

jkj>1 Ak
which is well-de ned and holomorphic on a half-plane of complex humberswith large enough real
part, has a holomorphic continuation to a neighborhood oD, whose derivative there satis es

n #
. P R
@ sin(s ) +1 2 1 s _t
@4s=0 jkjp1 AW P v et Argsh o= dt
. . P P
_ @ sin(s) 1 1 s+ 3 1 jkj a1
- @9s=0 Fz 17 Kol jkjZs Argsh 2k +1ja
jkj>
) p q
@ sin(s) 1 1 S 1 —_— 2 5
+ @5s=0 = 17t o g T (4 +1)jkji" +@2 k +!)"a
ik
L log

1+log(4da) 3llog2 T

2
s-a+ g— + glog(4a) gi-log2 15—+ 0(1)
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as goes to in nity. Furthermore, the same derivative, this time taken for =0, satis es

#
i P R
@ sin( s ) +1 2 1 S t _ |2
@5s=0 7.k.>1 ki t 7 Argsh Tha a = >-a za+o0(1)
iki

as a goes to in nity.

Remark 4.7.12. It should be noted that two derivatives were left uncomputed in the proposition
above. The rst aims to cancel the one from proposition 4.6.23, while the second one cancels the

derivative from proposition 4.6.21. Since the study of both asymptotic behaviors call for the same
computations, they will be done simultaneously.

Proof of proposition 4.7.11. We begin by using the binomial formula, which holds on the interval
of integration. We have

2 1 s t
jkj>1 2jKj P it t it Argsh Cik a dt
P (s P R
- o1, j +1 p 1 i t .
>0 11 kp1 AN R ATgSh s At

as the interchanging of sums and integrals is also permitted. We will now compute the integrals
above using hypergeometric functions, as well as an integration by parts. We have

R,
1 t
h 1 1 t L
= mwpa e AN g P
1 1 R+1 1 1 t2 1=2 dt
2s+2] 1 2k +lja 2jkj L+ t%207 1 2k +1)%a2
. P——
— 1 1 1 s j+l=2 1 2jkj ~ 1=4+
- 2s+2] 1 225727 1 y + J-ka (s+7) ArgSh j2k +1ja
L1 Ry 1 14+ @k+1)%a’ 1=2 dt:
2s+2j 1 2jkj %+ t2s+2] t2 '
After summation over k and j, we get
P Ry s
o 2 14 Argsh =—1— dt
1 4 .
=1 Ak e Cix 2
P =
= o1y 2P . P L prgsp 2K 1T
=z 1 2s%2] 1 22527 1 Kz D) 9 2Kk +1ja
. J J . ikj J J
J>0 " ]k]>l
+P (s); 1 1y | P R+1p4 1 g4 @kr1)a? = dt
) j! 2s+2j 1 4 2k - Ly t2s%2] 2
i>0 k> 1 4 #
P R, 2,2 1=2
1 2k !)a
+ 2k p 1y t2s+2] 1+ ( 12 ) dt
k>1 4
We will begin by studying the function associated to the rst term, that is
p__
sin(s) 1 s+1=2 P (s); 1 1 P 1 2jKj 1=4+
s 7! zt 7T Zs+2] 1 25727 1 KE Argsh  —1—3

>0 jkj> 1
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As we did in the proof of proposition 4.6.23, for any integerj > 0, we split the sum overk into
the following two parts

p___
P —— P 1 2kj | 1=a+
4 +1 e AOSh o
jkj>1 " #
p—— P p——
_ p—- P 1 ok =4+ 1 2% ' I=a+
= 4 +1 e Agsh o=y + e ASh oy
k>1 k>1
and we note that the rst of these two sums can be written as
P
Pr— P 1 2k 1=4+
4 +1 e Argsh =y
k>1 p
- 4 +1 H 4 +1 !
- 2; (2 (S+ J 1)+1) 2; 2|7 k2 (s+:]!- 1)+2 :|_+]2-1T
k>1
p—
Prer P 1 Rictos P aT ,
4 +1 o1 Kz GG+1) 0(Zk ) 1+ XX2)3:2 Ck+)a X dx:

We then realize that, after multiplication by the appropriate factor, the sum over j > 2 induces a
holomorphic function around 0, whose derivative at this point vanishes because of the Pochhammer
symbol. The term corresponding toj = 1 also induces a holomorphic function around the origin,
and its derivative there is given by the term above involving the Riemann zeta function, which is

i

S 1 1 4 +1 - 4+ 1 _ 1 1 .
+ S o1 ¢ 2a (2s+1) - 8a 2 T 4a t s ¢

This derivative has been written that way so as to facilitate its consideration in the -asymptotic
expansion. After having taken = 0, the same derivative vanishes as goes to in nity, which
yields its contribution to the a-asymptotic expansion. The term associated tg =0, i.e.

2jkj P 1=4+

+ s+1 =2 1 1 P 1
2k +1ja

1
s 25 1 255 1 7S
jkj>1 1

sin( s )

Argsh

induces a holomorphic function around0. A computation of its derivative there is not necessary
for the asymptotic study as goes to in nity, as indicated in the statement of this proposition.

However, it has to be done for the study asa goes to in nity, for which we take to be zero.
Fortunately, the computation that was done above will yield the result quite directly. We have

P _1 Argsh —K = L @2 (s 1+1) X P 1 1
kZs 9 @k +1)a T 2a 2a 2 kZG D2 Tv
k>1 k>1
P 1 R(Zkk+1)a X Kk X dx:
K> 1 k2s 0 (1+x2)3%2 2k +!)a :

We note that the second sum overk can be dealt with by formally switching the sign of ! , yielding

" )
. _ P . —
8., T iy T : ak =
@9s=0 at 751 51 jgrs  AOSh T = o(1)
jkj>1
asa goes to in nity. To sum up what we have proved so far, the function
| sin(s) 1 s+1=2 P (s); 1 1 P 1 20Kj p T
S 7 ! 4 + ) T 2s+2] 1 22s%2] 1 jkj2 G Argsh W
>0 jkj> 1
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has a holomorphic continuation to a neighborhood of0, its derivative there is given by

" #

_ _ P Qo P
@ sin(s) 1 st1=2 4 1 2ikj  1=4+ 1 1
@5s=0 z 7Tk Argsh =1+ t3a T
jki>

+

and vanishes asa goes to in nity, when equals zero. We move on to the next term, given by

1=2
P ol 1+ @k dt :

1 2s+2 |
it t

() jPR+1

jI° 2s+2j 1 4
j>0 ! ! k>1 2k

s 71 sin( s ) P (s); 1 1y

We will rst prove that the sum over j > 2 plays no role in what we aim to prove. For any such
integer j, any strictly positive integer k, and any t in the interval of integration, we have

1 1 1 1 j+3=2 1 .
T 6 T pmss 60 7t K@ 3 [presw 0
which then yields
1 @k +1)%a® T j+3=2 1 1
t2s+2] 1 + t2 6 (4 + 1) k @i 3) (2 K +1 )a t2Re s+2

This proves that, for any integer j > 2, the function

R+1 2.2 1=2
1 2k +!)%a
s 71 P mhy 14 ) dt
7

is holomorphic on a neighborhood of0. For these integers, we further have

1=2

R+ 2,2
1 1 2k +!)%a
2kp4LTt25+21 1+ t2 dt
. q 2Res 1
6 (4 +1) "7 o ; res X gt '
k @i 3 (2k+!)a 1+2Re s 4

This proves that the following function is holomorphic on a neighborhood of the origin

T =T PR 14 @keD?a? 2
) 71 Zs+2] 1 4 2k t2 )
j>2 k>1

s 71 sin(s) P (s); 1 1,

P

. 1
+ t25+2j

Its derivative there vanishes because of the Pochhammer symbol. Only the terms corresponding
to j 2f0;1g remain. Let us compute the integrals above in the sum ovek, using hypergeometric
functions and a change of variablesx = (2 k + ! )2 a’t 2. For any integer k > 1, we have

I'-\’2+k1p%T tzs%“ 1+ @k J;zl y2a2 172 dt
= 1@k +1)a) 2s 2141 (s+j 1?12):(2) s j+1) s+j1 . (4((ill)<s++5)z;)k2:*(zsij21)
F L s j+1; s j+2; —fé“kil!);‘zaz
3 m w%@ +1) s oo oF 30S Jt1l; s j+2; 7(§4k:1!))"2232

+%Wﬁplj(5+j 1=2) (s j+1):
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Having this formula, we can now take care of both integerg that have yet to be studied.

We begin by dealing with the casej = 1. We consider

. p h 2
sin( s ) 1 1 1 1 S 1 1. . . (4 +1)k
Zsil a7 ks 1 2 k+Na 5(4 +1) kZs F 2 S s+1; 2k +1)%a?
i
+1 W Pl (s+1=2) ( s) :

We rst consider the second term of the above, given by

i P
sin( s ) 1 1 — 1
2;1 at 25 (s+1=2) ( S)k>1 @k +1)a)>=T

which is close to the Hurwitz zeta function . Namely, we have

| P
medosr it (5+1=2) ( S)k>1W
i) s 14 g (s+1=2) ( s)(2a) ¥ 'y 25411+ &

Using the fact that  has a meromorphic continuation to C, whose only pole is atl and is simple,
we see that the above induces a holomorphic function around = 0. We will compute its derivative
at the origin using Laurent expansions, as well as the previously used notatio® s , which stands
for a holomorphic function around 0 which has a zero of order at leask there. We have

sn(s) s 14 109199 ( g2a) X, 2s+1;1+ -

+ s21+0s? 1 25+0 s> 1 2log(Ra)s+ 0O s?

1 2 1+5 +0(s) 1 (2log2+ )s+0O s2 L1+ +0(s)

+ 1+0s? 1 2s+0 s> 1 2log(2a)s+ O s°

1 2 1+53 s+0s? 1 (2log2+ )s+0 s* 1+ s+0 s ;

where denotes the so-calledligamma function, that is the log-derivative of the Gamma function.
This means that we have

i = 25 1 . |
oo TS b 3 9@a) By 2411+ 5
= g ot 2 2log(2a) 2 1+ 4 2log2 +
= ;L 1+ l+log@da)+ 1+
1

l1+log(4da)+ 1+ + = 1l+log(da)+ 1+ 5

We have elected to write this last line above to clearly see the contribution of this derivative to
the -asymptotic expansion. Furthermore, this derivative vanishes asa goes to in nity, for =0.
This yields the full asymptotic study for this term. We now move on to the rst term of the
decomposition used to study the casg¢ = 1. We thus consider

A P 2
sin(s) s 1 s+1 1 1 1 1. o . (@4 Dk
2s+1 5(4 +1) > 1 s F 20 S s+1; 2k +1)%a2




For any integer k > 1, we have

1. o . (4 ) K?
F 3 s s+1l; ke
= 14 B DK SF s+l s s+1- @4 +1) K?
(k +1)%a? 2 > "4 +1) k2 +(2 k +!)2a?

It is worth noting that the point of using the last formula was to get a hypergeometric function
whose last parameter lies in the interval[0; 1[. The aim will now be to break down this hypergeo-
metric function, in order to make factors s appear as much as possible, which will tend to simplify
the computation of derivatives at 0. We begin by removing part of the hypergeometric function,
which involves the use ofgeneralized hypergeometric functionsde ned in [75, Sec 16.2],

1. .- . @ +)K?
F2s s+l g
h
= 1+ @k S 1 S(s_1=2) (4 +1) k?
2k +!)%a2 s 1 (4 +1) k2 +2 k +!1)%az

3. a1 .. (4 +1) k2
F s+ 35 s+1;1 s+2,2,(4 KT TG K7 T)7a2

Using di erence quotients, it can be seen that the generalized hypergeometric function above is
bounded, uniformly in every parameter for s in a neighborhood of0, since we have

Re s+1 (s 2 =1 > o0:

After multiplication by the appropriate factor and summation over k, the term involving this
generalized hypergeometric function induces a holomorphic function around, whose derivative
there vanishes because of the factos. Hence, we only have to deal with the term associated to

’ P 2 s
sin(s) 1 1 s+1 1 1 (4 +1Hk
25+1§(4 +1) 2k +1 kZs 1+(2k+!)2a2

k>1
We can further simplify this term, by writting

s @ +1) k2

e DT s e s T ey P

The term involving the integral remainder above behaves nicely, as we have

(@4 +1) k2 (4 +1) k2 )
Qm (1+ t)S 1 dt 6 Om (1+ t)Res 1 dt (é4k ‘:—ll))kaz

for instance on the strip 1=26 Res 6 1=2. Thus, the term

2
. P 4 +1) k
sin(s) s 1 s+l 1 1 @2k +1)2aZ s 1
st (4 t1) Sk+T Kis O a+1) dt

k> 1

induces a holomorphic function aroundO, whose derivative there vanishes, because of the facte
Thus, what remains to study is

i P
sin(s) 1 1 s+1 1 1
2s+1§(4 +1) k>l2k+! k2s
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This term, which is in some sense is related to both the Riemann zeta function and the Hurwith
zeta function, can be further broken apart by writting

" #
PPy 4 - 2P 4 = L @2s+1) L+ i 1
2K +1 kZs - 2 kZs 1 1+ — = 2 2 kZs *2 1+
k> 1 k> 1 2k k>1 2k
The term associated to the series above is then given by
i P
sin(s) 1 1 | s+l 1
ssTazz 4 *+1) R e
k>1
induces a holomorphic function arounds = 0, and its derivative there is
" #
@ sin(s) 1 114 +1) s+1 P 1 B R P 1 ..
@9s=0 2s+1 8a 4 2 k>l|<25+2 I 7 - 8 Za 4 k>1k2 I+ 7=

To complete this step, we therefore only need to evaluate the series above, which we can do using
the fact that it ressembles both the Hurwitz and the Riemann zeta functions. We will use the
notation Fp, which stands for the nite part of a meromorphic function at a point, i.e. the
constant term in the Laurent expansion there. We have

" 4
T i % : = ) L i = Fps 0 T S+1
K - k+ — - = S+ S+
2 k>1k 7w k>1 k* 2 k k>1 (k+3) K
_ . ! _ .
= Fps=o n 1+s1+ a1+s) = 1+ 4
Therefore, we have
" #
@ sin(s) 1 1 | (4 + 1) s+l P 1 1
@9s=0 2s+l 8a4 2 KZs7 Ty =
k>1
— 1 1 ! — 1 ! 1 !
L tolre = gy v 1 a <+ 1t

This provides the contribution of this term to the -asymptotic expansion. We also note that this
derivative vanishes asa goes to in nity (when  equals zero), which yields the required asymptotic
expansion related toa. The last term related to the casej =1 we must study is given by

ms) 2511 1615 (4 +1) i (2s+1) ;

which induces a holomorphic around0, whose derivative there can be computed using Laurent
expansions. We have

i 1
sm(S)ZS%r1 16161 (4 +1) s+ (28+l)

= ;A 1+ s+0s® 1 2log@s+0s? 1 25+0 &
1 log i+ s+0 s L+ +0(s)
= 2 1+ 1+0s® 1 2log(Qs+0 s> 1 2s+0 s?

1 log 3+ s+0 s> L+ s+0 s
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The derivative of this term at s =0 is thus given by
[

h
i 1
S T4 +1) ST (2s+))

— 1

= g 4 2log2 2 log 2+ +2

Before proceeding to the asymptotic study in , we note that the derivative above vanishes as
goes to in nity. Finding the contribution to the  -asymptotic expansion is then simply a matter
of performing a Taylor expansion in1= . We have

h
sin(s) 1 1 (4 +1) s+l (25+1)

@@q‘szo 2s+1 16a
= g log + ;2 ( 1 log2)  z=—log
+ 5 ( 1 log2) 2+ 0(1)
= = log + ;2 ( 1 log2)  z=—log
t—  me— e l0g2+0(1):

This concludes the study of the casg =1.

We now turn to the last remaining case, which isj = 0. We consider

. p h )
sin(s) 1 1 1 1 s+l 1 1. . . (4 +1) k
25 lk>1 2 @k+D)a s 1(4 +1) K2 (s v F 54 s+1; s+2; 2k +1)Zaz

+ b (s 1=2) ( s+1)

i1
2 (@k+hHa™ ?
Once again, we begin by taking care of the second term above, namely

- ) P
sin(s) 1 1 (s, 1=2) 1
w12 P~ ( s+l g @KFDRF T

This term induces a holomorphic function around 0, since we have

: . P
sin( s ) 1l(sp£-2)( S+1) 1

1
5 7 P k3122 T
S k>q1 @Kk+1)a)

(2a) =t o=nls) 4o L52B (s41) 4 25 L1+ 4o

NI

and its derivative there can be computed as follows

" "
1sin(s) 1 (s,1=2) 1 P 1
P = (s mrner T

e
@9s=0 2 2s o1

1]
Q
=
+
+
[l

= 32a (2)n Ll+

It is worth noting that since this computation is exact, and not asymptotic in either  or a, the
associated contribution to either expansion is the same. We then move on to the rst term of the
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above, given by

(4 +1) k?

1 sin(s) 1 P
2k +1)%a?

2a 2s 1)(s 1) k> 1

e (4 +1) ST L F Los+l; s+2;

Unlike what happened in the previous case, there is ng alone in the parameters of the hypergeo-
metric function above that would help us to compute the derivative at 0. To remedy that problem,
we will use one of the formulae related to contiguous functions, for which the reader is referred
to [75, Sec. 15.5.ii], which here yields

1 (@ +k? 1. ) (4 +1) k2
s+ s 3 kT az F 3, s+1;, s+2; Zk+iyar

(4 +1) k2 L1, . @4 +1)K?

+(s 1) 1+(2k+!)2a2 F S+1’§’ s+1; 2k +1)Za?
L1, . (4 K32 _ .
+F  s;5; s+2; ki - 0:

We note that the rst hypergeometric function above is the one we wish to study, the second one
can be computed precisely since its rst and third argument are identical, and the third one has
its argument equal to s, which means that its derivative at 0 can be computed by successively
breaking it down, as we did for the casg = 1. First of all, we note that we have

1 (4 +yK? 1. . (4 +1) k2
2 (2k+!)?a2F 2 s+1; s+2; 2k +1)%a?

_ (4 +1) k2 1. . (4 +1) k? L1, (4 +1) k2
= S 1+(2k+!)2a2 F 2 s+l) s+2 2k +1)2az F sz s+2 @k +1)%a?
d 2
(s 1) orire (@ +1) K2 +(2k +1)%ax

2k +!)a

The point of this manipulation was to make factors s appear as much as possible. It should be
noted that the hypergeometric function that appears on the left-hand side is also present on the
right-hand side, with a crucial di erence, as it has a factor s in front of it. Therefore, we consider

. P 2
1 sin(s) s+l 1 1 1 1. . . (4 +)Kk
G D g zeer et 2 STLSYZ i
. P 2 2
_  sin(s) s 2k +! 1 (4 +1)k 1 . 4 )k
= 7(4 +1) @s 16)‘(5 1) > 1 kz: §(2k+!)2a2 2 S+1, S+2, (2k+!)2a2
. s P 2 2
_  sin(s) a4 +1) 2K +! (4 +1)k 1. . (4 +)k
- 2s D(s 1) s 1 kZs s 1+ 2k +1)?%a? 2 s+1; s+2; 2k +!)%a?
L1 . 4 +1) k? 2
Fosii s+2; ék:;)zaz arrs 4 t1DK QK +1)%a

A S P 2 2
sin( s ) as(4 +1) 2k +! (4 +1) k 1. . . (4 +1) k
—_ 1+ F 3 s+1; s+2;

- 2s (s 1) > 1 k2s 2k +1)%a2 2k +1)?a2
sin( s ) s 1 2k +1! L1, . @4 +1)Kk?
: (4 +1) "o 1)ak . ke F o Sig s+2; 2k +1)2az
>
. p q
L@ +1) *oF e @ DK+ Kk +1)%a
k>1



We will begin by studying the third term of the above, given by

q

- P
nCs) 4 +1) ° Lo A (4 +1) k2 +2k +1)%a2
k>1

Using a Taylor expansion, as in the proof of proposition 4.6.21, we see that the function

p q
s 7! e (4 +1)Kk2 +(2 Kk + 1) a2

has a holomorphic continuation to a neighborhood of0, whose derivative at this point is given by

’ #
. p q
@@Sjszo M(4 +1) S ﬁ k2lS (4 +1) k2 +(2 k + 1 )2 a2
n k>1 "
| b
= 2., M@+ C 0 A (4 DK Ak +1)

k>1

As indicated in the statement of this proposition, this derivative is not to be evaluated as goes

to in nity. However, it must be studied, for =0, asa goes to in nity. We have
" #
sin( s) P d 2
8o T E e K r@KkDT@ = ga JlavoW)
>1

asa goes to in nity. We can then move on to the next term, given by

) P 2 2
sin( s ) s 2k +! (4 +)k 1. . . (4 )k
s) 4 +1) mbl e 1+(2k+!)2a2 F 3 s+1; s+2; 2k+)Zaz

We will rst need to work on the hypergeometric function. We have

. . . 4 +1) k?
Fogios+li s+2i gy
N A\ | G ST PR @ +1) K2
- @k +1)%a? 20 '@ ) k2 +Q2 k +1)7a?
The term we wish to study therefore becomes
sin( s ) s s P 1 a 2 2.2
k>1 :
[
1.4. . (4 +1) k2
F 2L S"'2'(4 +1) k2 +(2 k +!)%a2

The hypergeometric function we get in this last expression has something which is particularly
nicer than the one that was originally to be considered: its second argument i&. This allows us
to expand the hypergeometric function as follows

1.1. . (4 +1) k2
F 2l s*2ig e e ki
= 1 1 (4 +1) k?
- 2(s 2) (4 +1) k2 +(2 k +!1)%a?
2
3 1 @ +1)K? 5.4. . (4 +1) k?
*t2 (s 2)(s 3) (4 +1) k2 +2 k +1)%a? F 2L S"'4'(4 +1) k2 +(2 k +!)%a?
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For s in a neighborhood of0, we have the inequality

Re s+4 1 2 = Re s+ > 0

N

meaning we can bound the last hypergeometric function above, uniformly in every parameter.
Thus, the function

p q
G OE D g (4 +1)k? +(2k +1)%a2
k>1

s 71 M)g o+q) °

3 (4 +1) K? 2

1
4 (s 2)(s 3) (4 +1) k2 +2 k +!1)?a?

5.1- . (4 +1)k?
F 2l s+ g ke

is holomorphic in a neighborhood of0, and its derivative there vanishes, due to the presence of the
factor s. Thus, we only need to deal with

P q
m kzls (4 +1)k2 +(2k+!)2a2
k>1

Siﬂ(S)(4 +1) S

1 1 (4 +1) k2
2(s 2) (4 +1) k2 +(2 k +!1)?a?

The rst step towards that is to study the second term of the above, namely

P 1

sin( s ) s+1 s )
4 +1) 22s D(s (s 2 |, KED Tu0yi2 +2 k +1)2a2

For every integerk > 1, we have

D 1 _ 1 .o 1 1
T4 +1) K2 +@2 k +1)2az @k+Da " Tig k2 +2 k+1)2a2  k+ha

1 n 1 1 n (@ +1)k?
Ck+Na Ty ke +@ k+!1)2az @K+1)a oy 41)ar (4 +1) k2 +2 k +!)2a?

This proves that the following function is holomorphic around 0

71 sin(s) s@ +1) S* P 1 1

D 1 .
S 22s D(s (s 9 |, k2D U@ ) KZ +2 Kk +1)2a2  @k+Da v

and its derivative there vanishes, because of the factos. Thus, we look at

P

sin( s ) s+l 1 1 .
(4 +1) 35 s (5 2 oy EET KD

and we can further write

1 - 1 1 - 14,1 i 4 - _1 roo 1
2k +!)a 2 ak 1+ 50— 2 ak 2 ak 1+ 51— 2 ak 2ak 2k 14 L -
A
61
Thus the function
s 7! sin(s)(4 +l) s+1 s P 1 1 1 1
: 22s 1)(s 1)(s 2) > 1 k2 (s ) 2ak I+ =
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is holomorphic around the origin, whose derivative there vanishes because of the facter We are
then led to study the term

- P
sin( s ) s+l 1 1
(4 +1) %5 (s 5 D oy ECTZaR

sin( s ) (4 + 1) s+l

1 .
57 T (s 3 za G+2 (s 1)
which has a holomorphic continuation to a neighborhood of0, whose derivative at this point
vanishes. Therefore, we are left with studying

q

Eos T, e @ rDk sk e
>1

sin(s)(4 +1) s

Using the same computations as those performed in the proof of proposition 4.6.21, we see that the
above function has a holomorphic continuation to a neighborhood oD, and unlike what happened

in the referenced proposition, the term we are dealing with here has a vanishing derivative ab,
due to the presence of an extra factoss. The last term we need to take care of is

P 2
2k +1 1. @ +1)k
ak>1 s S S*20 oy

nts)g +1) S(25 1%(5 )

The rst step in the study of this term is to slightly modify the hypergeometric function so that
its last argument becomes trapped betweer® and 1. For every integerk > 1, we have

.1. S

F S;5: S+2; AT
_ @ +1k2 S : 3. : (4 +1) k2 )
- 1+(2k+!)2a2 F S, st 3 S+2'(4 +1) k2 +2 k +1)%Zaz '

and we can expand this last hypergeometric function, by writting

. 3. . (4 +1) k2
F s/ s+ 3; s+2,(4 k@ ka8
= 1 S(s 32 (4 +1) k2
= s 2 4 +1) k2 +2 Kk +! )2a2
2
(s 3=2)(s 5=2)(s 1) (4 +1) k2
*+2s (s 2)(s 3) (4 +1) k2 +2 k +!)Za?
7. Lq. . q. (4 +1) k2 .
F s+ 35 s+2;1 s+4,3,(4 KZ 2 K+1)%a7

where a generalized hypergeometric function, as de ned in [75, Sec. 16.2], appears. Since we have

Re s+4+3 s+ 2 s+2+1 = Res+3: > 0

N

for s around 0, the generalized hypergeometric function above can be bounded uniformly in every
parameter, which means that the function

sin(_s ) s 2 (s 3=2)(s 5=2)(s 1)
s 7! (4 +1) "o HE ST (5 s 9
Pookar g, @i ® (@ +1) k? 2
1 @k+1)%7aZ  {@ +) k2 12 k +1)a? .
|
(4 +1) k?

7. 1. ..
F s+ 35 s+2;1 s+4,3,(4 K 2 K T1)7a2
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is holomorphic on a neighborhood of0, and its derivative there vanishes, because of the presence
of a factor s. We will now take care of the term

S

| i P : 2
sin( s ) s s(s 3=2) 2k +! (@4 +)k (4 +1)k :
S B e o L e b L e T

To do that, we will successively break apart the last two factors that appear in the series above.
For every integerk > 1, we have

@4 +1) k? - (4 +k? 1
@ k> +2 k +1)%a? @k+1)%a? gy @ K2
@2k +1)2a2
(4 +1) k? (4 +1) 2k* 1

2k +1)%a? @2k +!)%a% 1+ (4 +1) k2

| Cf e

61
This proves that the function
!
sin( s ) s(s 3=2)(4 +1) S* P 1 1 4 +)k: S 1
s 7! a@s (s (s 2 |, KG9 2k~ 1+ geriya s @ 2 1

2k +1)2a2

is holomorphic on a neighborhood oD, and its derivative at 0 vanishes. We are left with studying

i — P 2 S
sin( s ) s+l s(s 3=2) 1 1 1 4 +1)k
(4 +1) (2s 1)(s 1)(s 2)5k>1 kZ (s O 2k +! l+(2k+!)2a2 ;

and we start by breaking down the complex power above. For every integek > 1, we have

2 S @+ k2 .
1+ St = 1rs g T e Tt
and the integral remainder satis es
(4 +1) k22 . . @ K
k +1)%a S + )
o T @HYT T dt 6 Gy

for s in a neighborhood of0. This means that the function

P R_4_+1) k2

2k +1)2a2 (1+t)s 1 dt

. 2 —
s 7! M@ +1) s+l &% T T o

2s 1)(s 1)(s 2) K> 1

is holomorphic around 0, and its derivative at 0 vanishes. Hence we are led to study

i . P
sin( s ) s+1 s(s 3=2) 1 1 1 .
(4 +1) 2s (s 1)(s 2) a K> 1 k2 (s 1) 2k +1 *

The point is now to link this term to one involving the Riemann zeta function, much in the spirit
of what we have prevously done. For every integek > 1, we have

1 —

1 - 1 - 14, 1
2k +! 2k 1+ 51— 2k 2k 1+

}

1 ! .
— 7k T IRE Tr
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The following function is therefore holomorphic around 0

s 7! sin( s) (4 +1) s+l s(s 3=2) P 1 1 1

1
2s 1 1 2) 2 2 (s ) 1+ L ;
2s 1)(s 1)(s 2) 2a K> 1 k 7K

and its derivative there vanishes. The term we need to study, which is

: _ P
sin( s ) s+1 s(s 3=2) 1 1
=4 +1 @ (s O(s 92a  _ k=2 &9

sin( s ) s+l s(s 3=2) 1 .
(4 +1) s s O(s 9 za 1*t2 (s 1)

is holomorphic around 0, whose derivative there vanishes. Finally, we have to study

S
1 2k +! (4 +1) k2 .
@s (s 1)"3"01 e 1t giaa

sin(s)(4 +1) s

Once again, we need to work on the complex power above. For any integér> 1, we have

(4 +1) k? _ (4 +1) k?
1+(2k+!)2a2 = 1+ S(2k+!)232

(4 +1) k2
1 +1)2a2 s 2 (4 +1)K? .

We now note that the integral remainder above satis es

4 +1) k2
@k +1)2aZ s 2 (4 +1)k? (4 +1) k2
0 O 2k +1)%a2 t dt 6 2k +1)%a2

for s close enough to0. This proves that the function

. P (4 +1) k2 )
sin( s ) s 2k +! ‘e k +1)2aZ s 2 (4 +)k
S 7' (4 + 1) 235 1% > 1 k2s 0 (1 t) W t dt

is holomorphic around 0, and its derivative vanishes there. We move on to the next term,i.e.

i P
sin( s ) s+l 1 1 1
(4 +1 2s 1?(5 1)Ek>l k2 (s O 2k +1

Using the same computations as those previously done in this proof, this term is holomorphic
around 0, and its derivative at this point vanishes. The last term to be taken care of is therefore

P
k>1
M@ +1) o Pepal @s 1+l (2s):

2k +!

sin(s)(4 +1) s k.t

a

1
2s 1)(s 1)

Using the properties and special values of the Riemann zeta function, this last term induces a
holomorphic function around 0, and its derivative there is given by

" #

, P
L@ 41 g pa | At a (h+t )

k>1

@
@9s=0

= a g+ L

N[

6
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To sum up what we have proved so far, the function

: P i P R
sin( s ) (s); 1 1 j +1
s 7! _ T zsei 1 47
j>0

P

1=2
1 g4 @k+1)%a? dt
s 1 2k Z+ t25+2 ] t2
has a holomorphic continuation to a neighborhood of0, and its derivative there is given by

@ sin( s ) P (s);
@9s=0

#

i P R 2.2 1=2

1 1 i +1 1 @k +1)%a
_ T oze; 147 2k p? ey 14 2 dt
j>0 " k>1 4 #
. = a 5
= G PO D e (4 DK+ K1)
s log + ;1 1+log4a) % 1llog2 72— log
2
at gt e log(da) s log2+o(1)
as goes to in nity. Furthermore, the same derivative, taken at =0, satis es
" "
@ MP ) 11 P Ry 1 1+(2k+!)2a2 1=2 dt
@9s=0 i>0 j! 2s+2j 14 K> 1 k t2s+2] t2
= L—Za sa 3la +o(1)
asa goes to in nity. The same methods also prove that the function
; P i P R 2,2 1=2
sin( s ) () 1 1 j +1 1 2k 1)%a
s 7t 7= 7 w1t x P mer Lt
j>0 k>1 4

2 dt
has a holomorphic continuation to a neighborhood of0, and its derivative there is given by, as

@ sin( s ) P (s);
@9s=0

#
P R 2.2 1=2
1 1 i +1 1 @k 1)%a
j>0171 7s2] 1 4T o1 2kp%+ e 1+ 2 dt
" ”
sin( s ) S P 1 g 2
= @@qs:o M) +1) o (4 +1) k2 +2k 1)@
k>1
g2 log + ;4 1+log@4a) ! Zllog2 == log
2
8t [t e log(da) p-log2+o(l)
as goes to in nity. Furthermore, the same derivative, taken at =0, satis es
" #
) P P R 2.2 1=2
@ sin( s ) (s) 1 1 +1 1 2k 1)%a
@gs=0 i[>0 TJ 2s+2] 14 s 1 k tzs+27] 1+ t2 dt

— 12 1

—a ga+ 3la +o0(1)
as a goes to in nity. It is worth noting that one may get these asymptotics expansions simply by
changing the sign of! in the study that was detailed. Put together, these last two results, as well
as the computations made at the beginning of this proof, yield the full proposition.
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We now take care of the remaining term corresponding t&k = 0 assuming that! is not zero.
Proposition 4.7.13.  The function
. Z .,
2y Sin (s)

S
P ¢ g+
2 I+

t
Argsh a dt ;
which is well-de ned and holomorphic on a half-plane of complex numbesswith large enough real

part, has a holomorphic continuation to a neighborhood oD, whose derivative there satis es
h R
@ sin( s )

@gs=0 o

i
P 2 1+ ° Argsh L dt
= P-jog  2[210g2 logra)P—+o0 s
as goes to in nity. Furthermore, this derivative, taken for =0, satis es, as a goes to in nity
o sns) Rer o, g s Lo
@ys=0 1 (S Argsh - dt
Third part.

la + 0(1):
Proposition 4.7.14.

We now deal with the term involving a rational fraction in t from proposition 4.7.8.
The function

s 71 1sin(s) X

Z+l
2

t
t2
+
jkj>1 2jk]

1
3

I

—— dt
t2+(Cix Q)

which is well-de ned and holomorphic on a half-plane of complex numberswith large enough real

part, has a holomorphic continuation to a neighborhood of), whose derivative there satis es

#
@ 1sin(s) PR 2 14 s t dt
@9s=0 2 K> 1 2jkj i+ 14 t2+(Cix a)?
!
@ sin(s) 1 1, S P 1
§ o= 4s+1 4 ki2s

@9s=0 k> 1 ikj

as

log (Qk +!1)a)’+(@ +1)jkj’
goes to in nity. Furthermore, this derivative, taken for

=0, satis es, as a goes to in nity
#
a 1sns) PR s o
@gs=0 2 ikj> 1 ikj 4 t2+( Cry a)
= floga 3 log 1 3
Remark 4.7.15.

+ +log 1+ 1 +o(1):
The derivative above cancels a term that appeared in proposition 4.6.24.

Proof of proposition 4.7.14. Using the binomial formula, we have
P R+ 1

2 1 S t
14 PR S—
o1 AW E o men a0
~h
_ P, 1, | P R+1p 1 dt
- il 4 1 t2s+2] 1 2 1 V2,2
is0 ) o1 2k i+ t2+2 k +1)%a i
+ P R+1p 1 dt
K> 1 2k %+ t2s+2j 1 t2+(2 k

1)?2a2
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