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RZsumZ

Nous prouvons que pour tout schZma formel propre et lis9¢ sur Ok , o* Ok est I0an-
neau dOentiers dans une extension non archimZdienne complete de valuation discirale
Qp avec corps rZsiduel parfaikk et degrZ de ramibcatiore, le i-sme groupe de cohomolo-
gie de Breuil-Kisin et sa spZcialisation de Hodge-Tate admettent de belles dZcompositions
lorsqueie < p ! 1. Gr¥ece aux thZoremes de comparaison issus des travaux rZcents de
Bhatt, Morrow and Scholze [BMS18], [BMS19], nous pouvons alors obtenir un thZoreme
de comparaison entier pour des schZmas formels, qui gZnZralise le cas des schZmas prouvZ
par Fontaine et Messing dans [FM87] et Caruso dans [Car08].

Mots-clZ

Cohomologie deA;,s, cohomologie de Breuil-Kisin, thZorie de Hodge-adique.



Abstract

We prove that for any proper smooth formal schemeX over Ok , where Ok is the ring
of integers in a complete discretely valued nonarchimedean extensi¢h of Qp with perfect
residue beldk and ramibcation degreee, the i-th Breuil-Kisin cohomology group and
its Hodge-Tate specialization admit nice decompositions where < p ! 1. Thanks to the
comparison theorems in the recent works of Bhatt, Morrow and Scholze [BMS18], [BMS19],
we can then get an integral comparison theorem for formal schemes, which generalizes the
case of schemes proven by Fontaine and Messing in [FM87] and Caruso in [Car08].
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Introduction

Fix a prime number p. Given a proper smooth schem& over Ok , whereOg is the ring
of integers in a complete discretely valued nonarchimedean extensith of Qp with perfect
residue beldk and ramibcation degreee, there are several classical cohomology theories
one can dePne, such ap-adic @ale cohomologyH (X e,Zp) Of the geometric generic
Pbre X g, crystalline cohomolongéryS(X /W (k)) of the special PbreXy and de Rham
cohomology Hjr (X/ Ok ). These cohomology theories are not unrelated. In fact, there
are very deep connections among their structuregp-adic Hodge theory, roughly speaking,
studies the relations of these cohomology theories. It was Fontaine who formulated the so-
called crystalline conjecture making precise these relations witlp inverted, via his period
ring Berys. Note that p is invertible in B¢ys. This conjecture now has been proved after
many peopleOs works (cf. [Fal88], [Tsu99], [Niz08], [Beil2]) :

Theorem 0.0.1 (Crystalline conjecture). Let X be a proper smooth scheme over O,
where Ok s the ring of integers in a complete discretely valued nonarchimedean extension
K of Qp with perfect residue field K. There is a natural isomorphism compatible with Galois

and Frobenius actions

Hiet(xl(z” Zp) ! Zp Bcrys & H(i:rys(x k/W (k)) ) W (k) Bcrys-
for each i $ O.

The crystalline conjecture is very beautiful but it requires p to be invertible. There are
many cases where we would like to study the cohomology theories integrally. In particular,
the integral structure contains the information about the torsion. So what happens without
inverting p? Fontaine and Messing have proved in [FM87] that there is an abstract iso-
morphism of W (k)-modulesH (X o, Zp) " z, W (K) # HL o(X/W (K)) in the unramiped
case (i.e. the ramibcation degree of the beldK is 1) under the restrictioni <p ! 1
In the ramibed case, a similar result has been obtained by Caruso under the restriction
(i+1l)e<p! 1in[Car08]. It is until very recently that Bhatt, Morrow and Scholze have
made great breakthroughs in integralp-adic Hodge theory. They have constructed a new
cohomology theory calledAj.; -cohomology in [BMS18]. With the help of Ajy; -cohomology,
they have generalized the rational comparison theorem to the case of formal schemes and

11



12 INTRODUCTION

obtained a very general result comparing the integral structure ofp-adic €ale cohomo-
logy to crystalline cohomology without any restrictions on the ramibcation degree and the
degree of the cohomology groups.

The goal of this thesis is to present some results generalizing the works of Fontaine-
Messing and Caruso to the case of formal schemes and reproving some of their results, by
studying the new cohomology theories introduced by Bhatt, Morrow and Scholze. Before
we state our main theorems, we will discuss some history of integratadic Hodge theory.

Integral p-adic Hodge theory. As we have said, integralp-adic Hodge theory studies the
relations of dilerent cohomology theories without inverting p. It also tries to understand
Galois stable Zp-lattices in crystalline (semi-stable) p-adic representations and their links
with integral p-adic cohomology theories via semi-linear algebra data.

The brst result concerning integral comparison was given by Fontaine and Messing in
[FM87].

Theorem 0.0.2 ([FM87]). Let X be a proper smooth scheme over W(K) and X, =
X Yospecw (k) SPECWn(K)), where K is a perfect field of characteristic p. Let Gk, denote
the absolute Galois group of Ko = W(k)[%]. Then for any integer i such that 0 & i & p! 2,

there exists a natural tsomorphism of Gk ,-modules
Toys(Hgr(Xn)) ' He(X wor Zp/P")

where Terys 45 a functor from the category of torsion Fontaine-Laffaille modules to the

category of Zp[Gk ,]-modules, which preserves invariant factors.

Note that Hjgz(Xn) # H &rys (Xk/Wn (K)). Here we have used implicitly thatH iz (Xn)
is in the category of torsion Fontaine-Lalaille modules, which is actually one of the main
di%culties. The proof of Fontaine-MessingOs theorem relies on syntomic cohomology which
acts as a bridge connecting-adic €tale cohomology and crystalline cohomology.

Recall that rational p-adic Hodge theory provides an equivalence between the category
of crystalline representations and the category of (weakly) admissible pltered-modules.
The idea of Fontaine-LalailleOs theory is to try to classifyG ,-stable Zp-lattices in a
crystalline representation V by " -stable W (k)-lattices in D satisfying some conditions,
where D is the corresponding admissible Pltered -module.

In order to generalize Fontaine-LalailleOs theory to the semi-stable case, Breuil intro-
duced the ring S (see Debnition 6.0.7) and related categories &-modules in order to add
a monodromy operator. He has also obtained an integral comparison result in the unra-
mibed case when<p ! 1in [Bre98a]. Later, this result was generalized to the case that
e(i+1) <p! 1by Caruso in [Car08].

Theorem 0.0.3 ([Bre98a] [Car08]) Let X be a proper and semi-stable scheme over Ok,

where Ok s the ring of integers in a complete discretely valued nonarchimedean extension
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K of Qp with perfect residue field K and ramification degree €. Let Xpn be X Yspeco
SpecQk /p"). Fiz a non-negative integer r such that er < p ! 1. Then there exists a

canonical isomorphism of Galois modules
He(Xie.Z/p"Z)(1) & ot (Hiog: crys(Xn/ (SIP"S)))

foranyi<r .

Tsu is a functor from the category Modgoo (see Debnition 6.0.10) to the category of
Zp[Gk ]-modules, which preserves invariant factors. The proof also relies on the use of synto-
mic cohomology. One of the main di%culties in their proof is to showi Iiog” CryS(X nl (SIp"S))
is in the category Modgw, in particular, to show Hliog.. orys(Xn/ (S/pS)) is Pnite free over

S/pS.

Remark 0.0.4. One crucial point of BreuilOs theory is that it highly depends on the
restriction r & p! 1 which is rooted in the fact that the inclusion " (Fil'S) ( p"S is true
only whenr & p! 1. One way to remove this restriction is to consider Breuil-Kisin modules.
In fact, one of the main motivations of A;,; -cohomology theory is to give a cohomological
construction of Breuil-Kisin modules. The techniques in [BMS18] can not directly give
the desired Breuil-Kisin cohomology. However, this goal is achieved in [BMS19] by using
topological cyclic homology and in [BS19] by debning the prismatic site in a more general
setting.

Recently, Bhatt, Morrow and Scholze have obtained a more general result about the
relation between p-adic Ztale cohomology and crystalline cohomology in [BMS18] by using
Aint -cohomology. Their result is about formal schemes and does not impose any restriction
on the ramibcation degree, roughly saying that the crystalline cohomology is a degeneration
of the p-adic Ztale cohomology. Throughout the thesis, formal schemes always mepsadic
formal schemes.

Theorem 0.0.5 ([BMS18]Theorem 1.1) Let X be a proper smooth formal scheme over O,
where Ok s the Ting of integers in a complete discretely valued nonarchimedean extension
K of Qp with perfect residue field K. Let C be a completed algebraic closure of K and write
Xc for the geometric rigid analytic fiber of X. Fixz somei $ 0.

1. There is a comparison isomorphism

Het(Xc,Zp) " 2, Boys % Herys (Xi/W (K)) " w (k) Berys,

compatible with the Galois and Frobenius actions, and filtration.

2. For alln'$ 0, we have the inequality

lengthyy () (Hérys(Xk/W (K))tor/p") $ lengthy (Hg(Xc, Zptor/p").
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3. Assume that H(i:rys(Xk/\N (k)) and H(i:;’yls(XkNV (k)) are p-torsion-free. Then one can
recover HéryS(Xk/W (K)) with its " -action from H;t(XC,Zp) with its Gy -action.

Main theorems. In this part, we will state our main theorems and brie3y explain our
strategies of proofs.

Let X be a proper smooth formal scheme oveDg , where Ok is the ring of integers
in a complete discretely valued nonarchimedean extensiod of Q, with perfect residue
peld k. DebneS := W (K)[[u]] and Px a uniformizer# of Ok . There is a natural W (k)-
linear surjective morphism$ : S ) O ¢ sendingu to #, whose kernel is generated by an
Eisenstein polynomialE = E(u) for #. We can debne the Breuil-Kisin cohomologR! s (X)
of X by using topological cyclic homology or debne it to be the prismatic cohomology of
X associated to the prism(S, (E)) (see Theorem 1.6.6). Moreover we can also debne its
Hodge-Tate specialization :R! y1 (X) := R! g(X) " g Ok . We simply call R! 471 (X) the
Hodge-Tate cohomology ofX (this may not be a standard notion).

Let Oc be the ring of integers in a complete algebraically closed nonarchimedean
extension C of K and R denote X %spi(0,) SPf(Oc). Debne Ajys := W (O%) where
Of = im e Oc/P. Then we can debne theAiy -cohomology ofR as : Rl a,(R) =
R! ;ar(R, A" g), where A" ¢ is a certain complex of sheaves of\js-modules on the Za-
riski site of X. There is also a Hodge-Tate specialization ol -conomology :R! 1 (X) =
Rl A, (R)" ;mfﬁ Oc (for the debnition of % see Debnition 1.4.1).

For more precise debnitions about these cohomology theories, see Chapter 1. Now we
can state our brst main result which is about the structure of theAj.; -cohomology groups
and the Breuil-Kisin cohomology groups in low ramibcation.

Theorem 0.0.6 (Theorem 3.2.5, Theorem 5.2.1) Let X be a proper smooth formal scheme
over Ok , where Ok is the ring of integers in a complete discretely valued nonarchimedean
extension K of Qp with perfect residue field K and ramification degree €. Let Oc be the ring
of integers in a complete algebraically closed nonarchimedean extension C of K and X be
the adic generic fibre of R 1= X Yosprox) SPF(Oc). Assume ie <p ! 1. Then there is an
isomorphism of S = W (K)[[u]]-modules

HS(X) # HG(X, Zp) " 2, S

where HS (X) := H'(R! s(X)) is the Breuil-Kisin cohomology of X. Consequently, we also
have

H’L‘inf(ﬂ) g Hlet(x’ Zp) " Zp Ainf1
where H'i%nf(ﬂ) = H'(R! A

assumption ie <p ! 1, there is an isomorphism of Ok -modules

(R)) is the Aint -cohomology of R. Similarly under the same

inf

Hip (X) # Hi(X, Zp) " 7, Ok,
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and an isomorphism of Oc-modules
Hir (R) % Hi(X, Zp) " 2, Oc,

where H,i_n- (X) = HY(R! y1 (X)) (resp. H,i_”- (R) := R! 4t (R)) is the Hodge-Tate cohomo-
logy of X (resp. R).

Remark 0.0.7. The Aj,s-cohomology is usually di%cult to calculate and its structure can
be very subtle. In [CDN19], the authors have calculated theA,; -cohomology of Drinfeld
symmetric spaces and given an explicit description. In particular, they have also shown
that the Aijns-cohomology groups of Drinfeld symmetric spaces ar&torsion-free (for the
debpnition of & see DePnition 1.4.1) by using dilerent regulator maps.

Remark 0.0.8. Note that the debnition of Breuil-Kisin modules (see DebPnition 1.5.1) in
[BMS18], [BMS19] is slightly more general than the original dePnition given by Kisin in
[Kis06]. The dilerence lies in the existence oflu-torsion (note that S = W (k)[[u]] is a two
dimensional regular local ring). However, the theorem above shows that the Breuil-Kisin
cohomology theory constructed by Bhatt, Morrow and Schloze does take values in the
category of Breuil-Kisin modules in a traditional sense, at least wherie <p ! 1.

Unfortunately, we can not give any canonical isomorphisms between these modules.
Our method only enables us to compare the module structure. The proof of this theo-
rem relies essentially on the existence of Breuil-Kisin cohomology and the construction of
Aint -cohomology in [BMS18] by using theL! -functor and the pro-&ale site. In fact, this
construction presents a close relation betweeA s -cohomology andp-adic €ale cohomo-
logy. The L! -functor provides us with two morphisms betweenHiAinf(ﬂ) (resp. HLT (X))
and Hg (X, Zp) " z, Aint (resp. Hg (X, Zp) " z, Oc), whose composition in both direction
is ' (resp.('p! 1)'). For the dePnitions of u and ', see DePnition 1.4.1.

Note that HiHT (X) is just the base change oH ‘HT (X) along the canonical injection
Ok ) O c. We can then directly obtain the statement about the Hodge-Tate cohomology
groups in Theorem 0.0.6 by studying the two morphisms provided by the.! -functor and
the lemmas of commutative algebra in Chapter 2.

For the part concerning the Breuil-Kisin cohomology groups, we need to prove some
torsion-free results. Namely, whenie < p ! 1, the Breuil-Kisin conomology groupHiSJ'1 (X)
is E -torsion-free (equivalently u-torsion-free by Corollary 5.1.4). Moreover for any positive
integer n, we haveHiS(X)/pn is alsoE (u)-torsion-free whenie<p ! 1.

As we have said, by studyingAins -cohomology and its descent Breuil-Kisin cohomology,
we can generalize the results of Fontaine-Messing, Breuil and Caruso to the case of formal
schemes, at least in the good reduction case. This is actually the main motivation of this
work.
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Theorem 0.0.9 (Theorem 4.3.6, Theorem 5.2.3) Let X be a proper smooth formal scheme
over Ok , where Ok is the ring of integers in a complete discretely valued nonarchimedean
extension K of Qp with perfect residue field K and ramification degree €. Let C be a complete
algebraically closed nonarchimedean extension of K and X := X Yospi(o ) SPF(Oc). Write
X for the adic generic fiber of R. Then when ie < p ! 1, there is an isomorphism of
W (K)-modules H (X, Zp) " z, W (K) # HL o (X/W (K)).

We will study unramibed case and ramibed case in dilerent ways. For the proof in the
unramibed case, we need the following theorem :

Theorem 0.0.10 (Theorem 4.3.5) With the same assumptions as the theorem above,
when e=1, foranyn<p ! 1 we have

lengthz, (He(X, Zp)tor/p™)) $ lengthy k) (H grys (Xi/W (K))tor /™)

for all positive integer m.

In fact, we brst compare Hodge-Tate cohomology to Hodge cohomology by proving that
the truncated Hodge-Tate complex of sheave$”?" 1" 4 is formal in this case, i.e. there is
an isomorphism (%" 1" 5 ' @ LHI(" g)[! i]. We then study the Hodge-to-de Rham
spectral sequence to relate Hodge cohomology to de Rham cohomology. By Theorem 0.0.6,
we can bnally relate de Rham (or crystalline) cohomology te-adic Ztale cohomology. Note
that the theorem above gives a converse to Theorem 1.4.7 in [BMS18], which implies that
He (X, Zp) and Hys(Xk/W (k)) have the same invariant factors.

In the ramibed case, the integral comparison theorem follows directly from Theorem
0.0.6 and Theorem 1.4.5.

Remark 0.0.11. The Ajys-cohomology theory in the semi-stable case has been studied in
[CK19]. The Breuil-Kisin cohomology might be also generalized to the semi-stable case by
using prismatic site. Then one could also hope to generalize Theorem 0.0.6 and Theorem
0.0.9 to the semi-stable case.

We also remark that although the result in the ramibed case can recover that in the
unramibed case, the method used in the unramibed case can lead to the following theorem
concerning Hodge-to-de Rham spectral sequence and integral comparison result for all
cohomological degrees..

Theorem 0.0.12 (Theorem 4.4.3, Corollary 4.4.4) Assumed=dimX<p! 1.

1. There is an isomorphism of W (K)-modules for all n
Ha(X, Zp) " 2, W(K) & Hys(XidW (k).

2. The (integral) Hodge-to-de Rham spectral sequence degenerates at E1-page.
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Outline. We explain the content of each chapter.

In Chapter 1, we recall the construction ofA;,s -cohomology and recollect some impor-
tant theorems that we need.

In Chapter 2, we prove the key lemmas of commutative algebra that lies in the heart
of our proof of the comparison isomorphism and collect some useful results about derived
Hom functor and derived completion.

In Chapter 3, we study the Hodge-Tate cohomology and prove the part concerning the
Hodge-Tate cohomology in Theorem 0.0.6.

In Chapter 4, we prove the comparison isomorphism in the unramibed case. We will
prove a decomposition of the Hodge-Tate cohomology groups and study the Hodge-to-de
Rham spectral sequence.

In Chapter 5, we turn to study the comparison isomorphism in the ramibed case.

In Chapter 6, we will prove some results about Breuil-Kisin modules which might be
already known to experts. This will provide another (partial) proof of the comparison
isomorphism in Chapter 5.
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Chapitre 1

Recollections on prismatic
cohomology

In this chapter, we simply recall the necessary ingredients for debning th&j.; -cohomology
theory in [BMS18]. We will stick to the method using the pro-etale site and the decalage
functor L! for debPning the Ajns -cohomology, which will provide us with some useful mor-
phisms betweenAj.; -cohomology groups ando-adic €ale cohomology groups for later use.
We will also brieRy introduce the prismatic cohomology that provides a site-theoretical
construction of the Aj,s-cohomology.

1.1 Adic spaces

In this section, we brieRy introduce the theory of adic spaces, which was introduced by
Huber. Our basic references are [Hub13] and [SW20].

There are several theories of non-archimedean geometry, including the theory of rigid-
analytic spaces due to Tate and the theory of Berkovich spaces. But both of them have
some defects (cf. [Con18], [Weil7]), which are solved by the theory of adic spaces. The
category of adic spaces contain both the category of locally noetherian formal schemes
and the category of rigid-analytic varieties as full subcategories. More recently, in his Phd
thesis [Sch12], Scholze used the theory of adic spaces as the basic language of his theory
of perfectoid spaces.

Like rigid-analytic spaces are built out of a%noid spaces associated to a%noid algebras,
adic spaces are built out of a%noid adic spaces, which are associated to pairs of certain
topological rings (A,A*).

Definition 1.1.1. A topological ring A is called a Huber ring if it admits an open subring
Ao (A which is adic with respect to a finitely generated idael of definition. Any such Ag
1s called a ring of definition of A.

19



20 CHAPITRE 1

Definition 1.1.2. Let A be a Huber ring. An element X + A is power-bounded if the set
{x"In$ O} is bounded. Let A% denote the subring of power-bounded elements.

Definition 1.1.3. Let A be a Huber ring. A subring A* (A is called a ring of integral

elements if it is open and integrally closed in A and A* ( A&

Definition 1.1.4. A Huber pair is a pair (A,A"), where A is a Huber ring and A* ( A

s a ring of integral elements.

Example 1.1.5. If A = Q,,T-, then A% = Z,,T-. We can take A* = A% i.e. the pair
(A, A% is a Huber pair.

Now we show how to construct topological spaces out of Huber pairs by considering
continuous valuations as the points.

Definition 1.1.6. A continuous valuation on a topological ring A is a map |a]: A) ! .{ 0}

into a totally ordered abelian group ! such that
1. |abf = |al[b]
2. |a+ bl & max(|al, |b])
3 1=1
4-101=0
5. For all) + ! lying in the image of | &| the set {a+ A ||a] <) } is open in A.
We say two continuous valuations |af, | a} valued in! 1 resp. ! 5 are equivalent when it is

true that |a|y & [bly if and only if |al2 & |bl,.

Definition 1.1.7. Let (A,A") be a Huber pair. The adic spectrum Spa(A,A™) is the set
of equivalence classes of continuous valuations | & | on A such that |A*| & 1. We write
f )| f(X)| for a choice of valuation corresponding to X + Spa(A,A™). The topology on
Spa(A, A") is generated by open subsets of the form {x | |f (xX)| & |g(x)| © 0} withf,g + A.

In order to dePne the Ostructure sheafO on the adic spectrdme Spa(A, A*), we need
to introduce the rational subsets.

Definition 1.1.8. Let s+ A and T ( A be a finite subset such that TA (A is open. We
define
T
U(g) = {x+ X ||t(xX)] &|s(x)|60,forall t+ T}.

We call subsets of this form rational subsets.

Now we state a theorem saying that rational subsets are adic spectra.
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Theorem 1.1.9 ([Hub94] Proposition 1.3). Let U ( X =Spa(A,A™) be a rational subset.
Then there exists a complete Huber pair (Ox (U), O;'( (U)) and a morphism of Huber pairs
(A,A*)) (Ox(V), 0% (U)) such that the induced map

Spa(Ox (U), 05 (U)) ) SpaA,A™)

factors through U and is universal for such maps. This map is a homeomorphism onto U.

Definition 1.1.10. We define a presheaf Ox of topological rings on X = Spa(A,A™*) :if
U ( X is a rational subset, Ox (U) is as in the theorem above. For an open subset W ( X,

we define

Ox (W)= l;m  Ox(U)

U' Wrational

We can define a presheaf O; of topological rings in a similar way.
Definition 1.1.11. A Huber pair (A,A") is sheafy if Ox is a sheaf of topological rings.

Remark 1.1.12. The presheafOx needs not to be a sheaf. There are some examples in
[Mih16], [BV18].

Now we come to debne adic spaces.

Definition 1.1.13. Let V be the category as follows. The objects are triples (X, Ox, (| &
(X)Dx(x ), where X is a topological space, Ox is a sheaf of topological rings and for each
X + X, |&X)]| is an equivalence class of continuous valuations on Ox x . The morphisms are
maps of topologically ringed spacesf : X ) Y that make the following diagram commute

up to equivalence for all X + X :

Ovirx) — Oxx

! !

Then an adic space is an object (X, Ox, (| &(X))x(x) of V, which admits a covering by
spaces Ui such that the triple (Ui, Ox |u;, (| &(X)|)x( u,) is isomorphic to Spa(Ai,A) for a
sheafy Huber pair (Ai,A]"). For sheafy (A,A*), we call the topological space SpaA,A*)

together with its structure sheaf and continuous valuations an affinoid adic space.

Remark 1.1.14. For every rigid analytic variety X, there is an associated adic space
r(X). And there is an equivalence between the Ztale topos ofX ) and the Ztale topos of
X (cf. [Hub13, Proposition 2.1.4]). In particular, the Ztale cohomology o is the same as
the Ztale cohomology of (X).

We end this section by introducing the notion of perfectoid Tate rings which will appear
in the study of pro-Ztale site in next section.
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Definition 1.1.15. A Huber ring A is Tate if it contains a topologically nilpotent unit

g+ A. We also call topological nilpotent units in A pseudo-uniformizers.

Definition 1.1.16. A complete Tate ring A is perfectoid if A% is a ring of definition and
there exists a pseudo-uniformize # + A such that #° divides p in A% and the p-th power
Frobenius map #: A%# ) AY#P is an isomorphism.

Remark 1.1.17. We remark that there is another notion of integral perfectoid rings (cf.
[BMS18, Section 3]). These two notions are closely related. In fact, & is a perfectoid Tate
ring with a ring of integral elements A*, then A* is an integral perfectoid ring ((BMS18,
Lemma 3.20]).

1.2 The pro-Ztale site

The brst ingredient for debning the Aj,; -cohomology is the pro-Ztale site. The pro-
Ztale site was introduced by Scholze in [Sch13] in order to study-adic Hodge theory of
rigid-analytic varieties. The local structure of rigid-analytic varieties is often complicated.
The introduction of the pro-Ztale site makes the local study much simpler : it is Olocally
perfectoidO.

In this subsection, letC be a complete and algebraically closed nonarchimedean exten-
sion of Q, and X be a smooth rigid-analytic variety over C, viewed as an adic space.

Definition 1.2.1. Let pro-Xet be the category of pro-objects associated to the category
Xet- The objects are functors from a small cofiltered category | to Xet sending i to U;,
which we denote O,JimQ( 1 Ui. The underlying topological space of C‘),JimQ( (Ui is defined
to be pmi(l [Ui], where |Ui| is the underlying topological space of U; . The morphisms in

pro-X et are given by
Hom(F,G) = lim Jim Hom(F (i1), G(i2))
i2(12i1( 11

for any objects F :11) Xet and G :lo) Xagt.

Definition 1.2.2 ([Sch13] Debnition 3.9) The category Xproet is defined to be the full
subcategory of pro-Xet consisting of those objects pro-étale over X . We say that a pro-
object in pro-X gt is pro-étale over X if it is isomorphic to an object U = Oljm Q( | Ui with

Ui + Xet such that all maps U;') Uj are finite étale and surjective.
Definition 1.2.3 ([Sch13] Debnition 3.9) We say a collection of maps {fi : U;) U} in
Xoproet s a covering if and only if the following conditions are satisfied :

1. The collection of the maps of the underlying topological spaces {f; : |Ui| ) | U]} is

a pointwise covering.
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2. Eachfi satisfies the condition : One can write Uj as an inverse limit Uj = I:;m <% Uu
of Uy + Xproet along some ordinal * such that for all W> 0, the map Uy ) Uqy =
pmu/<u Uu/ 1s the pullback of a finite étale and surjective map in X et. And there is
an étale map Ug ) U, i.e. the pullback of an étale map in X o, such thatfi 1 U;) U

is the composite of the projection U; ) Ug and the étale map Up) U.

The category X yroet together with the coverings dePned above forms a site.

Definition 1.2.4 ([Sch13] Depnition 4.3) An object U + Xpoet is said to be affinoid
perfectoid if and only if it is isomorphic in Xproet to an object O,JimQ( 1 Ui which has the

following properties :
1. The transition maps Uj ) U; are finite étale surjective forj $ i;
2. U = Spa(Ri, R}") is affinoid for each i ;
3. The complete Tate ring R := (Ijm : R’ )2) "z, Qp is perfectoid, where ()I)O means
p-adic completion.

The next proposition says that the site X pr0et is locally perfectoid.

Proposition 1.2.5 ([Sch13] Proposition 4.8) The set U + X et which are affinoid per-
fectoid form a basis for the topology.

Now we want to dePne some sheaves Ofpet. Consider the natural projection map
of sites
+ Xproet ) Xet.

which is debned by pulling backU + X to the constant tower (Aaa)U ) U) X)in
Xproet- This just rel3ects the fact that an Ztale morphism is pro-Ztale.
Definition 1.2.6 ([Sch13] Section 6) Consider the following sheaves on X proet -
1. The integral structure sheaf O; = 4! O; o
The structure sheaf Ox = +' Ox, -
The completed integral structure sheaf O;Z = |§m N O;'( Ip".
The completed structure sheaf Ox = C/)\; [%]

The tilted completed integral structure sheaf G;b =ljm Ox/p.

S v e e

Fontaine’s period sheaf Aint x , which is the derived p-adic completion ofW((S;b)
(for the definition of derived p-adic completion, see Section 2.4).

Remark 1.2.7. 1. In [BMS18, Remark 5.5], it has been pointed out that it is not
clear WhetherW(ﬁ;b) is derived p-adic complete. So in order to make theAjn-
cohomology theory work well, we need to dePnfy x as the derivedp-adic com-
pletion of W((S; ,), which is actually a complex of sheaves.
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2. Let U = OJimQU; + Xpret be a%noid perfectoid with U; = Spa(R;, R;"). Then
Oy (U) = m RY, Ox(U) = §m Ri, Oy (U) = R*, Ox(U) = R, Oy, (U) =
R*#(:=lim S R*/p), HO(U,Aint x ) = Aint(R*) (cf. [Sch13, Lemma 4.10, Lemma
5.10, Thoerem 6.5]).

1.3 The L! -functor

The other important ingredient for debning the Aj; -cohomology is the &calage functor,
which functions as a tool to get rid of Ojunk torsionO. The Ojunk torsionO exists already in
FaltingsO approach tgp-adic Hodge theory in [Fal88]. The introduction of the dZcalage
functor is actually the main novelty of [BMS18] to deal with this Ojunk torsionO.

Definition 1.3.1 (The L! -functor, [BMS18] Section 6) Let (T,Ot) be a ringed topos and
| (O 71 be an invertible ideal sheaf. For any | -torsion-free complex C¥ + K (O1) !, we can
define a new complez !, C¥ = (!, C)¥ + K (O7) with terms

(4 C) = {x+Clldx+14aC"}" o 171

For every complex D¥ + K (O7), there exists a strongly K -flat complex C¥ + K (O7) and
a quasi-isomorphism C¥) D¥. By saying strongly K -flat, we mean that each C' is a flat
Ot -module and for every acyclic complex P¥ + K (O7), the total complex Tot(C*" P¥) is

acyclic. In particular, C¥ is | -torsion free. Then we can define
L'y :D(Or)) D(Or)
Lty (D¥) = 1, (CY)

A concrete example is to consider a ringA and a non-zero-divisora + A. If C is a
cochain complex ofa-torsion free A-modules, we can debne the subcomplexC of C[%]
as

(1,C) = {x+aC':dx + a*t ac'*'}

and this induces the corresponding functolL! ; : D(A)) D(A).

Lemma 1.3.2. The map f : Z(C') ) (1aC)' defined by sending m to am induces a

natural tsomorphism
H(C)/H (C)a])" H'(!4C).

Proof. Let m + C' be a cocycle, i.edm = 0. Then am + (1 ,C)' is also a cocycle. Let
n + C' be a coboundary, i.e.n = dx for somex + C" 1 then an + (1,C)' is also a

1. The category K (Or) is the category whose objects are complexes ofOr-modules and morphisms
are maps of complexes modulo homotopy equivalence.
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coboundary asa'n = d(a'x) and a'x is in (! ,C)'" 1. So the map sendingn to a'm induces
amapf :H'(C)) H'(1.0C).

It is easy to see that the induced map is surjective. Since for any cocyckein (! ,C)',
we can write n = a'y for somey + C'. Then dn = 0 implies dy = 0 sinceC is a-torsion
free. This meansy is a cocycle inC'.

The kernel of the induced map corresponds to thos& + C' such that dx = 0 and
ax + d(C" 1), i.e. H'(C)[a]. O

This lemma justibes that the L! -functor can kill Ojunk torsionO in some sense.

Remark 1.3.3. 1. The L! -functor is not an exact functor between derived categories.
For example, consider the distinguished triangleZ/p ) Z/p?) Z/p where the brst
map is induced by multiplication by p on Z and the second map is modulg. It is
easy to see thatl! ,(Z/p) =0 and L! n(Z/p?) 6 0.

2. By [BMS18, Proposition 6.7], theL! -functor is lax symmetric monoidal.

3. The L! -functor was prst introduced by Berthelot-Ogus in [BO15] following a sug-
gestion of Deligne. They used it to study the crystalline cohomology of a proper
smooth scheme over a perfect beld of characteristigand the relation between the
associated Newton and Hodge polygons.

1.4 The Aj;-cohomology

From now on to the end of this chapter, letX be a proper smooth formal scheme over
Ok , where Ok is the ring of integers in a complete discretely valued nonarchimedean
extensionK of Q, with perfect residue Peldk and ramibcation degreee. Let Oc be the
ring of integers in a complete algebraically closed nonarchimedean extensi@hof K and
X be the adic generic bbre oR := X Yospi(0 ) SPf(Oc). Let Xy denote the special Pber of
X and Xg denote its base change t® which is the residue Peld ofO¢ (note that K is not
necessarily the algebraic closure ).

We Prst recall some basic debnitions ip-adic Hodge theory.

Definition 1.4.1 ([Fon94]). 1. Define O#C = I:;m & xP Oc/p which is called the tilt of
Oc and Ans = W(O#C), the Witt vector ring of Oé. Note that Oé is a perfect ring
of characteristic p and Aint is equipped with a natural Frobenius map " , which is an
isomorphism of rings.

2. Fiz a compatible system of primitive p-power roots of unity {" pr}n(n in Oc such that
IS"“ = "pn. Under the isomorphism of multiplicative monoids Oé # pm Oc,

we define , == (1,"p," p2, 248 pn, d2QA+ Of and pu:=[,1" 1+ Ajx.

x$ xP

8. There is a map %: Aint ) O ¢ defined by Fontaine. The map %is surjective and
ker(% is generated by &= W" " 1(W). After twisting with the Frobenius map, we get
%= %L" "1 Ains ) O ¢, whose kernel is generated by &=" (& =" (.
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Now we are ready to debne thé\;;; -cohomology theory. We consider the natural pro-
jection - : Xproet ) Rzar, Which is actually the compositeX proet) 1 Xet) Ret) Riar.

Definition 1.4.2 ([BMS18] Debnition 9.1) Define A" g := L! yR-1(Ainf x) and 'Tg =
L' R- (6; ). The Aint -cohomology is defined to be the Zariski hypercohomology of the
complez of sheaves A" g, i.e. Rl a. (R) 1= R! zo/(R, A" ). We can also define the Hodge-
Tate cohomology R! yt (X) := R! zar(R, 'Tg).

Remark 1.4.3. As both R-, and the L! -functor are lax symmetric monoidal, the complex
"~g is a commutative Oyx-algebra object in the derived category oDy-modulesD (O). For

the same reason, the compleR" 4 is a commutative ring in the derived categoryD (Xzar, Z)

of abelian sheaves.

The Ajns-cohomology takes values in the category of what we call Breuil-Kisin-Fargues
modules.

Definition 1.4.4 ([BMS18] Debnition 4.22) A Breuil-Kisin-Farques module is a finitely
presented Ains -module M which becomes free over Aijng [%] after inverting P and is equipped

with an 1somorphism
n - n 1 I+ 1
MM " AL Ains [z])- M [E]-

The main theorem about the Aj; -cohomology theory is the following :

Theorem 1.4.5 ([BMS18] Theorem 14.3) The complex R! a, . (R) is a perfect complex of
Aint -modules with a " -linear map " : R!' A, (R) ) R! A, (R) which becomes an isomor-
phism after inverting & resp. & The cohomology groups H}L\inf(ﬂ) = H(R! A, (X)) are

Breuil-Kisin-Fargues modules. Moreover, there are several comparison results :
1. With etale cohomology : R! o, . (R) " A, Ainf[Up]" R! (X, Zp) " z, Ainf (L1 ].

2. With crystalline cohomology : R! a, (R)" kme(Q) " R! cys(Xp/W (R)), where the
map Aing = W(Oé) ) W (R) is induced by the natural projection O*é ) R (in fact,

O*é is a valuation ring with residue field ).

3. With de Rham cohomology : R! A, .(R)" /L\inf,$ Oc' R!'4r(R/O¢).

4. With Hodge-Tate cohomology : 'T,q A" "&infyg Oc and Rl o, (R) " ;inf‘g Oc¢'
R! ur (R).

Corollary 1.4.6. For alli $ 0, we have isomorphisms and short exact sequences

1oHy (B A At [U]# HL(X, Zp) " 2, Ains [Vl].

2.0) Hi ()" an W) Hin(XeW (R)) Torp= (Hi™ (R),W(R)) o.

3.0) Hi (R)" a,s0c) Hyg(ROc)) HyL(RI&) O.

4-0) Hi (®", 0c) Hir(R) HLL(RIE) o
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One of the most important applications of the Aj,; -cohomology theory is to enable us
to compare Ztale cohomology to crystalline cohomology integrally without any restrictions
on the degree of cohomology groups and the ramibcation degree of the base beld. More
precisely, it can be showed that the torsion in the crystalline cohomology gives an upper
bound for the torsion in the etale cohomology.

Theorem 1.4.7 ([BMS18] Theorem 14.5) For any n,i $ 0, we have the inequality
lengthyy () (Hérys (Xk/W (K))tor /p") $ lengthy (He(X, Zp)tor/p")

where H(i:rys(Xk/W (K))tor s the torsion submodule of H(i:rys(Xk/\N (k)) and H(Lt(X, Zp)tor
1s the torsion submodule of H;t(X, Zp).

1.5 Breuil-Kisin cohomology

As we have mentioned, there is a rePnement of thd.;-cohomology, i.e. the Breuil-
Kisin cohomology, which recoversA s -cohomology after base change along a faithfully Rat
map. :S = W(K)[[u]] ) Ain. In fact, there is a commutative diagram

S % Ainf

-

OK %OC

where$ is the natural projection sendingu to # and i is the natural injection. To debne the
map . , we bx a uniformizer# of K and a compatible system ofp-power roots#P" + C,

which debnes an elementt” = (#, #1P  #P° aap+ fim . Oc £ Of. Then . is debned
to sendu to [##P and be the Frobenius orw (k). In particular, we have (. (E)) = ( & where
E is a bxed Eisenstein polynomial fo#. To see this, recall that an elementx + ker(% is a
generator if and only if the second termx; of the Witt vector expansion x = ( Xo, X1, A &Ris
a unit in O’é (cf. [Fon82, Proposition 2.4]). So an elemeny + ker(% is a generator if and
only if the second termy; of y = (yo,y1,a4)is a unit in Of. Note that E = > 7, aju'

for somea; + W(k) such that a = 1, a + pW(k) for 0 & i < e and ag # p?W (k).

Then . (E) = Y7, " (a)[#P'. Let x = (Xo,X1,44BY = (Yo, Y1, a8@be two elements in
Ajnt = W(Oé). Recall the following formulas

p P p
X+ Y= (Xo+ Yo xp+ yp+ 0 Y0 FEXOJ’VO) 44K

px = (0,x5,x5,44p

Then it is easy to check that the second item of (E) is a unit in Oé. For the Ratness of
the map . , see [BMS18, Lemma 4.30].
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The Breuil-Kisin conomology takes value in the category of Breuil-Kisin modules, which
dates back to the work of Breuil [Bre] and the work of Kisin [Kis06]. It has shown great
power in integral p-adic Hodge theory. For instance, it has been used by Kisin to give an
alternative proof of Clomez-FontaineOs fundamental result in [CFO0O] that weakly admissi-
bility implies admissibility and also to give a classibcation ofp-divisible groups and Pnite
Bat group schemes. In [Kis09], Kisin has used the Breuil-Kisin modules with coe%cients
to prove some modularity lifting theorems. More recently, Emerton and Gee constructed a
moduli stack of Breuil-Kisin modules and used it to study Galois representations in [EG19].

The brst attempt to Pnd a cohomological construction of Breuil-Kisin modules dates
back to the PhD thesis [BI2] of Ojeda Bar, who used crystalline cohomology to construct
certain perfect complexes. Later, after the birth ofA;,s -cohomology theory, Cais and Liu, in
their paper [CL19], also used crystalline cohomology and,; -cohomology to give a coho-
mological construction of Breuil-Kisin modules under some restrictions on the ramibcation
degree.

The Prst unconditional construction of the Breuil-Kisin conomology is given in [BMS19]
by using topological cyclic homology. Another construction is given in [BS19] by using the
prismatic site. We will not say anything about the construction of Breuil-Kisin cohomology
theory here but choose to state a similar comparison theorem as in tha;,s case.

We give the dePnition of Breuil-Kisin module which is slightly more general than the
original debnition due to Kisin.

Definition 1.5.1 ([BMS18] Debnition 4.1) A Breuil-Kisin module is a finitely generated

S -module M together with an isomorphism
1 1
"miM"sy S[ED MIZ]

Theorem 1.5.2 ([BMS19] Theorem 1.2) For any proper smooth formal scheme X/ Ok,
there is a S -linear cohomology theory R s(X) which is a perfect complex of S -modules.
Moreover, it is equipped with a " -linear map " : Rl s(X) ) R! s(X) which induces an

isomorphism L L
RI's(X)" S[=]" R's(X)[=
s(X)" sy SIZ] sl
The cohomology groups H 15 (X) := H(R! 5(X)) are Breuil-Kisin modules. There are several
specializations that recover other p-adic cohomology theories :

1. With Ajnt -cohomology : after base change along . : S ) Ajns, it recovers Ajnt -
cohomology : R! s(X) " s, Aint ' R! a,(R).

2. With étale cohomology : R! s(X)" s ¢ W(CH "' R! (X, Zp)" Z, W (C#, where =
15 the composition S)!( Aini ) W(CH.

3. With de Rham cohomology : R! 5(X) " ;~ Ok ' R!'gr(X/Ok), where $ = $1" :
S)O «.
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4. With crystalline cohomology : after base change along the map S') W (K) which is
the Frobenius on W (K) and sends U to 0, it recovers the crystalline cohomology of
the special fiber : Rl 5(X)" g W(K) " R! ¢rys(Xi/W (K)).

For later convenience, we debPn®&! y7(X) ;= R! g(X)" g Ok and call it the Hodge-
Tate cohomology ofX. Note that there is an isomorphism :R! y1 (X)" (L)K Oc' R!'pyr(X).

Remark 1.5.3. Note that there is a Frobenius twist appearing in the specializations above.
As explained in [BMS19, Remark 1.4], this is not artibcial but contains some information
about the torsion in the de Rham cohomology.

1.6 Prismatic cohomology

The goal of this subsection is to recall howAj,; -cohomology and Breuil-Kisin cohomo-
logy can be unibed by prismatic cohomology. We hope that the results in this thesis can
be generalized to the semi-stable case by applying the prismatic formalism. But we will
not address this question here.

The basic object for debning the prismatic site is called a prism, which can be viewed
as a deperfection of a perfectoid ring. Before introducing prisms, we need to debP@gings.

Definition 1.6.1 ([BS19] Debnition 2.1) A 0-ring is a pair (R,0) where R is a commu-
tative ring and 0: R ) R is a map of sets such that 0(0) = O(1) = 0 and satisfies the
following identities :
O(xy) = xPO(y) + yPO(x) + pO(x)0(y)
and
xP+ yPl (x+y)P
p

The identities on 0 enables us to construct a ring map"r : R ) R by debning

"r(X) = xP+ pQO(x). Then " g can be regarded as a Frobenius lift. Now we introduce the

O(x +y) = 0(x) + O(y) +

notion of a prism.

Definition 1.6.2 ([BS19] Debnition 1.1) A prism is a pair (A,1) where A is O-ring and
I (A is an ideal defining a Cartier divisor in Spec@), and satisfying the following two

conditions :

1. The ring A is derived (p,|)-adically complete (for the definition of derived comple-

tion, see Section 2.4).

2. The ideal | + " po(l) contains p, where " o is the Frobenius lift induced by the O-

structure on A.

A map of prisms (A,1)) (B,J) is given by a map of A) B of O-rings sending | into J.

Remark 1.6.3. There are two examples which are related to the ring®\i;s and S.
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1. One is (Aint, ker(%), where %is FontaineOs map. In fact, for any perfectoid ring,
there is a corresponding perfect prism(Ains (R), ker(%). Here perfect means that
"r :R) R is anisomorphism.

2. The otheris (S, (E)). The Frobenius lift on S extends the Frobenius onW (k) and
sendsu to uP.

Definition 1.6.4. A prism (A,l) is bounded if there exists some integer N such that
Al [p 1= Al [p"].

In general, given a bounded prism(A, | ) and a smooth p-adic formal schemeX over
A/l , one can debne the prismatic sit§(X/A ), ,0; ). The construction of the prismatic
site is similar to that of the crystalline site, but considering prisms instead of nilpotent
thickenings.

Definition 1.6.5. The prismatic site (XIA ), is the opposite category of prisms (B, J)
with a map (A,1)) (B,J) and a map Spf(B/J ) ) X over Spf(A/l ), equipped with the
faithfully flat covers. We say a map (A,1)) (B,J) of prisms is faithfully flat if A) B
1s (p, 1) -completely faithfully flat which means that the derived tensor product M " !& N is
concentrated in degree 0 for any (p,1)-torsion A-module N and B" % A/ (p,1) is a faithfully
flat Al (p, |)-module.

The structure sheafO, on (X/A ), is dePned to be the sheaf taking a paifB,J ) to B.
And there is another sheafﬁ! of rings on (X/A ), which is dePned to take a pair(B, J)
to B/J . This is a sheaf ofO(X )-algebras.

Now we state the theorem showing that prismatic cohomology can recové;,; -cohomology
and Breuil-Kisin cohomology.

Theorem 1.6.6 ([BS19] Theorem 1.8) Let (A,1) be a bounded prism, and let X be a
smooth p-adic formal scheme over All . We consider the sheaf cohomology of the structure
sheaf

Ry (X/A) = RI(( XIA),,0y),

which is a commutative algebra in the derived category D (A) of A-modules and is equipped

with a " a-linear map " .
1. (Base change) Let (A1) ) (B,J) be a map of bounded prisms, and let Y =
X Yospran y SPF(B/I ). Then there is a canonical isomorphsim

L

Rl (XIA) xB " Rl (Y/B),

where the completion on the left is the derived (p,J)-adic completion.
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2. (Aint -cohomology) Let (A1) be the perfect prism (Aint, ker(%), then there exists a

canonical " -equivariant isomorphism
1 n I/I'\L
REA(X) " " AR (XIAing) = Ry (XIA in8)™ A, 1 Alin -

3. (Breuil-Kisin cohomology) Let (A,1) to be the prism (S, (E)). Then there is a ca-

nonical " -equivariant isomorpshim
Rl s(X)" Rl (X/S).

4. (Crystalline cohomology) If | = (p), then there is a canonical " -equivariant isomor-
phism
R! crys(XIA ) " " LRI 1 (XIA) = R (XIA )"A,I&,! LA

of commutative algebras in D (A).
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Chapitre 2

Preliminaries on commutative
algebra

In this chapter, we will recollect some results on commutative algebra and prove some
key lemmas that are frequently used later. We bx a complete, algebraically closed nonar-
chimedean extensionC of Qp, with ring of integers Oc.

2.1 Finitely presented modules over valuation rings

In this section, we study Pnitely presented modules oveDc.

Lemma 2.1.1 ([Stal9]Lemma OASN) Let R be a ring. The following are equivalent :
1. For a,b+ R, either a divides b or b divides a.
2. Bvery finitely generated ideal is principal and R is local.
3. The set of ideals of R are linearly ordered by inclusion.
In particular, all valuation rings satisfy these equivalent conditions. The module struc-

ture of Pnitely presented modules over valuation rings is similar to that of bnitely generated
modules over principal ideal domains as the following lemma shows.

Lemma 2.1.2 ([Stal9]Lemma 0ASP) Let R be a ring satisfying the equivalent conditions

above, then every finitely presented R-module is isomorphic to a finite direct sum of modules
of the form R/aR where a + R.

Corollary 2.1.3. Any finitely presented module over Oc is of the form @in:l Ocl#i for

some #; + O¢.

We will need to study Pnitely presented torsionOc-modules later. The main tool to
deal with these modules is the length functionlp ., as used in [CK19], see also [Bhal7a].
In particular, this length function behaves additively under short exact sequences. Usually,
we use the normalized length function, i.elo.(Oc/p)=1.
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Lemma 2.1.4. Let A and B be base changes to Oc of finitely presented torsion W (K)-
modules. If for each m > 0, we have

loc(Ap™) = lo.(B/p™)
then A is isomorphic to B as Oc-modules.

Proof. Note that 2o, (A/p)! lo.(A/lp 2) is the number of copies oD¢/p in A. This implies
that the number of copies of Oc/p in A is equal to that of B. By induction on m, it is
easy to proveA # B asOc-modules.

O

2.2 Key lemmas

In this section, we want to prove the following key lemma which will be used in the
comparison of Hodge-Tate cohomology ang-adic Ztale cohomology.

Lemma 2.2.1. Let M = @1, Oc/$ ™ and N = @jnzl Oc/$"i, where $ © 0 is in the
mazimal tdeal m of Oc and all mj,nj are positive integers. Suppose there are two Oc-
linear morphismsf :M ) N andg:N ) M such that g1f = . andf 1g= ., where
. +Oc and v($) >Vv(.). Then m = n and the multi-sets {m;} and {nj} are the same,
ie., M ¥ N.

In order to prove this lemma, we consider all Pnitely presented torsion modules ov€r.
As we have mentioned, any such module looks Iik@}i":1 Oc/#; for some non-zerc#; + m.
We call trk( N) := n the torsion-rank of N . Note that the torsion-rank of N is equal to the
dimension of N base changed to the residue beld @c. So it is well-debned. We will also
use the normalized length functionlg,, for Pnitely presented torsionOc-modules.

Now we prove a lemma concerning the torsion-rank :

Lemma 2.2.2. Let N /) M be an injection of finitely presented torsion Oc-modules.
Then trk(N) & trk(M). Dually if N LM is a surjection of finitely presented torsion
Oc-modules, then trk(N) $ trk(M).

Proof. Write N = @L; Oc/#i and M = @, Oc/1 i. Let # be the smallest of the#;
(i.e., the one with the smallest valuation), and let1 be the largest ofl ;. Then

(OcH#)" (N M ( (Oc/1 )™,

which shows that1l + #Oc ; write 1 = #x. The composition of these maps lands in the
#-torsion of (Oc/1 )™, which is isomorphic to (xO¢c/1 O¢)™ # (Oc/# Oc)™. So now we
have an injection (Oc/#)" ) (Oc/#)™. Taking length shows thatn & m.
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If N [Mlis a surjection of bnitely presented torsiorOc-modules, we can consider the
injection Hom(M, Oc/t) ) Hom(N, Oc/t) wheret is any non-zero element inm. Then
we havetrk( M) = trk(Hom( M, Oc¢/t)) & trk(Hom( N, Oc/t)) =trk( N). O

Lemma 2.2.3. Let g: N ) M be a morphism of finitely presented torsion Oc-modules ;
write N = @L; Oc/#i and M = @1, Oc/l i. Assume that ker(g) is killed by some
element . + Oc¢ whose valuation is strictly smaller that all of the #;. Then trk(N) &
trk(M).

Proof. By assumption ker(g) is contained in the . -torsion N[. ] of N, which is given by
N[ 1% @i, }*Oc/#i0c. So

n
N [Nlker(g) CNIN [.]# @500/#@0.
i=1 °

Taking torsion-ranks, Lemma 2.2.2 for surjections shows thatrk( N/ ker(g)) = trk( N). But
N/ ker(g) ) M, so Lemma 2.2.2 also shows thatrk( N/ ker(g)) & trk(M). O

Now we are ready to prove Lemma 2.2.1.

Proof of Lemma 2.2.1. Note that the number of invariant factor $¥ in M is equal to
trk($K" IM) ! trk($XM). By Lemma 2.2.3 applied tof |y : $M ) $*N and g|-«y :
$XN ) $*M, we havetrk($¥M) = trk( $¥N) for any k. This means that the number of
invariant factor $¥ in M and that in N are equal for anyk. So we must haveM # N. O

Lemma 2.2.4. Let M = Of 2 (@1, Oc/$ M) and N = Of 2 (EBjnzl Oc/$ "i). Suppose

there are two Oc-linear morphismsf :M ) N andg:N ) M such that glf = . and
f1g= ., where. + O¢c and v($) >Vv(.). Then M EN.In particular, if M =0, then
N =0.

Proof. According to Lemma 2.2.1,M/$ X and N/$ ¥ are isomorphic for all k. For large
enoughk, this means the torsion submoduleM,; of M is isomorphic to the torsion sub-
module Ny, of N and also the rank of the free part ofM is equal to that of N, i.e.r = s.
We are done. O

2.3 Derived Hom

In this section, we collect some results about the derived Hom functor. These results
will be used in Chapter 3 when we deal with derived category. For the proofs of these
results, we refer to [Stal9, Section 0A5W].

Let R be a ring. The derived Hom is a functor

D(R)° %D(R)) D(R)
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(K,L) /) RHomg(K,L)

More explicitly, choose aK -injective complex| of R-modules representind-, then RHomg (K, L )
Hom¥(K, I ), where the Hom complexHom*(K, I ) is dePned byHom" (K, I ) = [T, - ,. o Hom(K " 9,1P)
with dilerential d(f)= d, 1f ! (! )"f 1dx for f + Hom"(K,I).

Note that the derived Hom is right adjoint to the derived tensor product, i.e.

Homp (ry (K, RHOmMg(L, M )) = Hom pry(K " g L,M)
for K,L,M + D(R).

Lemma 2.3.1 ([Stal9]Lemma 0AB5) Let R be a ring and K,L,M + D(R). Then there

is a canonical isomorphsim
RHomg (K, RHomg(L,M )) ' RHomg(K "k L,M)

in D(R) functorial in K,L,M . In particular, if we take the O-th cohomology groups, this

gives back
Homp (g (K, RHomg(L, M )) = Hom p gy (K " g L,M)

Lemma 2.3.2 ([Stal9]Lemma 0A66) Let R be a ring. Let P be a bounded above complex of
projective R-modules and L be a complex of R-modules. Then RHomg (P, L) is represented
by the complex Hom¥(P,L).

Lemma 2.3.3 ([Stal9]Lemma 07VI). Let R be a ring. Let K + D(R) be perfect. Then
K- =RHomg(K,R) is a perfect complex and K ' (K™ )".

2.4 Derived completion

In this section, we collect some basic facts about derived completion. We will focus on
the derived category ofA-modules for some ringA. The basic reference is [Stal9, Section
091N]. One can also consider the more general case about ringed topoi but the results in
this section remain true in that general case. We refer to [BS15] and [Stal9, Section 0995]
for discussions in the case of ringed topoi.

Definition 2.4.1. Let A be a ring and f + A. Let K + D(A). We say K is derived
f -adically complete if the derived limit T(K,f ) of the system

438 K K K

vanishes. Let | be an ideal of A. We say K is derived | -adically complete if T(K,f ) vanishes
forallf +1.
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Proposition 2.4.2 ([Stal9][Proposition 091T, [BS15] Proposition 3.4.2) Let | be a finitely
generated ideal of a ring A. Let M be an A-module. Then M is | -adically complete if and
only if M is derived | -adically complete and | -adically separated.

There is a useful criterion to tell if a complex of A-modules is derived! -adically com-
plete :

Lemma 2.4.3 ([Stal9]Lemma 091P) Let | be a finitely generated ideal of a ring A. An
object K + D(A) is derived | -adically complete if and only if each H'(K) is so.

Lemma 2.4.4 ([Stal9lLemma 091V) Let | be a finitely generated ideal of a ring A.
Let Dcomp(A, 1) be the full subcategory consisting of deirved | -adically complete objects of
D(A). The inclusion functor Deomp(A,1)) D(A) has a left adjoint, i.e. given any object
K + D(A), there exists a map K ) KA, where K is derived | -adically complete, such that

the map
HomD(A)(K, E ) ) HomD(A)(K, E )

is bijective whenever E is a derived | -adically complete object of D(A). In fact, if | is
generated by f1,f5,addf, + A, then we have

K = RHom(( A) [TAr,) I Arr, ) @da) Asiras).K)
i() i0<i 1
functorially in K .

Remark 2.4.5. SinceRHomp a)(L, (! )) is an exact functor fromD (A) to D (A) for any
L + D(A), the derived completion functor debned above is also exact.

Lemma 2.4.6 (Derived Nakayama lemma, [Stal9]Lemma 0G1U) Let | be a finitely ge-
nerated ideal of a ring A. Let K be a derived | -adically complete object of D(A). Then
K =0 if and only if K " 5 Al " 0.

Lemma 2.4.7 ([Stal9]Lemma QAGE) Let | be a finitely generated ideal of a ring A. Let
K,L + D(A). Then

RHoma(K,L)' RHoma(K, L)' RHoma(K, L).

Lemma 2.4.8. Let | be a finitely generated ideal of a ring A and K + D(A). Then
K"LAI " K"EAI.

Proof. First note that any A/l -complex is derived| -adically complete. In fact, all the
cohomology groups of &/l -complex is classicallyl -complete, then also derived -adically
complete by Proposition 2.4.2. Then this statement follows from Lemma 2.4.3. K" LA

and K " 5 A/l are both derived | -adically complete. Let M be any derived | -adically
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complete object inD (A). By the universal property of the derived completion, there exists
a unique mapf : K ) K™ I;\A/I which makes the following diagram commute :

Next we consider the composition of mapg\V/l ) A/l "L A/l ) A/l where the brst map
is induced by A ) A/l and the second map is the multiplication map (one can choose
the resolution A-" ) A of A/l induced by the generatorsi;,aédai, of | to make the
maps explicit). This composite is in fact the identity map. Now we can get a commutative
diagram induced by the compositeA/l ) A/l "L A/l ) A/l as follows :

K*"EAml —2 K" LA

ﬁl ’///,/”/ lHQ
\L -7 4
I

~

K*LAL "LAal —Z5K"LAl "L Al

| !

K"EAl —2 L K"EA

in particular, the compositions of the vertical maps are the identity map. The commutati-
vity of the diagram implies s, 1(p1 19 = ( p1 19 1s, = id (wherepy : (K" KA1 )" AN )
K" ,'& A/l ), which shows that s; is an isomorphism andp; 19 is its inverse. So we are
done.

O

Corollary 2.4.9. Let | be a finitely generated ideal of a ring A and K,M + D(A). Then

we have
~

K" L M.

Proof. Recall that there is a natural mapi : K ) K. By the exactness of derived com-
pletion, we have the distinguished triangleK'" EM ) K" EM ) cone(i) " L M. By
Lemma 2.4.6, we just need to check thatA/l " k (coné(i) " k M) ' 0 or equivalently
Al "R (K" LMy Aan otk (K!" L M). By Lemma 2.4.8, this is equivalent to proving
Al "L ((K"LEM) Al "L (K" L M). Again, this follows from Lemma 2.4.8. O



Chapitre 3

Hodge-Tate cohomology

In this chapter, we study the Hodge-Tate specialization of Breuil-Kisin cohomology
of a proper smooth formal schemeX over Ox, where Ok is the ring of integers in a
complete discretely valued nonarchimedean extensidd of Qp with perfect residue beld and
ramibcation degreee. We will prove the isomorphism concerning Hodge-Tate cohomology
groups in Theorem 0.0.6 under the restriction ie<p ! 1.

Our strategy is to prst study the Hodge-Tate specialization ofA;.; -cohomology. Then
we can take advantage of thel! -construction of Aj,;-cohomology and its Hodge-Tate
specializaton. This will provide us with two morphisms which enable us to use Lemma
2.2.4.

3.1 Almost mathematics

In order to make our strategy more precise, we need to introduce the framework of
almost mathematics (derived category version) following [Bhal8, Section 3]. All results in
this subsection can be found there.

Throughout this section, let C be a complete, algebraically closed nonarchimedean
extension of K and O¢ be its ring of integers. Letm denote the maximal ideal ofO¢ and

k denote the residue Peld 0D¢. Recall that Ajyr = W(O%) where O% = M 6 Oc/p.

Definition 3.1.1 (The pair (Oc, m)). We say an Oc-module M is almost zero if méM =0.
Amapf : K ) L inD(Oc¢) is an almost isomorphism if the cohomology groups of the

mapping cone of T are almost zero.

Example 3.1.2 ([Sch13] Lemma 4.10(v)) Let X be a locally notherian adic space over
Spa(C, Oc). Then for any U + X pr0et Which is a%noid perfectoid, the cohomology groups
H i(U,(S;'<) are almost zero fori > 0.

Now we consider the almost derived category oOc-modules. Firstly, the restriction
of scalar functor Res : D(k) ) D(Oc¢) is in fact fully faithful. To see this, note that

39
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the restriction of scalar functor Res : Mod(k) ) Mod(O¢) admits a left adjoint func-
tor given by (! ) " o, k. By [Stal9, Lemma 09T5],Res : D(k) ) D(Oc) has a left
adjoint functor given by (! )" ('30 k:D(Oc)) D(k). Forany M,N + D(k), we have
Homp () (Res(M ) " '(-)C k,N) # Homp (o)(Res(M ), Res(N)) by the adjunction. Next we
will construct a natural isomorphism (! " (LDC k) 1Res) id and then the restriction of
scalar functor Res is fully faithful by Lemma [Stal9, Lemma 07RB].

To prove there is a natural isomorphismRes(M) " gc k' M in D(k), note that
Res(M)" & k' M"[k"g_ k. Sowe just need to prove there is an isomorphism
k™" '(-)C k' kin D(k). To prove this, we consider the short exact sequenc@ ) m)
Oc) k) O0.Infact, m) O ( is a RRat resolution ofk in D(O¢) asm can be regarded as
a bltered colimit of Rat (free) Oc-modules and Pltered colimit of 3at modules is Rat. So
k" %,C k' (k" oom) k" o.Oc). Sincem= m?, we havek" o, m=0. So we are done
and the restriction of scalar functorRes: D(k) ) D(Oc) is fully faithful.

Now we can consider the following two functors :

DO D(0c)? := D(Oc)/D (k), L/ L2

0«

D(Oc))”" D(Oc), L¥/) (L?), :=RHomo,(m,L)

where the Verdier quotientD (O¢)/D (k), i.e. the derived category of almosO¢-modules, is
actually the localization of D (O¢) with respect to almost isomorphisms. For the debnitions
of Verdier quotient and localization of triangulated categories, we refer to [NeeO1].

Next we state a lemma which enables us to move freely between the real world and the
almost world.

Lemma 3.1.3. Let C be spherically complete, i.e. any decreasing sequence of discs in
C has nonempty intersection. For any perfect complex L + D(Oc¢), the natural map
L = RHomo,(Oc,L) ) RHomg.(m,L) induced by the natural injection m ) O ¢ is

an isomorphism.

Proof. This is [Bhal8, Lemma 3.4]. For readersO convenience, we give the proof here.
We brst prove that if this lemma is true whenL = Oc, then it is true for any perfect
complexL + D(Oc). Let L~ denote RHomg (L, Oc). By Lemma 2.3.3, we have

RHomo,.(L™,0¢) " L.

So in order to prove that RHomo,(Oc,L) ) RHomg,(m,L) is an isomorphism, we just
need to proveRHomg,(Oc, RHomg (L™ ,0¢)) ) RHomg.(m,RHomg (L™ ,Oc¢)) is an
isomorphism. Next by Lemma 2.3.1, we have

RHomo . (m,RHomo(L™,0c)) ' RHomo (L™ " 5., M, Oc)
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and
RHomoC(Oc, RHomoc(L' ,0c)) ! RHomoc(L' " Oc Oc,0¢).

So now we just need to prove that the mafRHomo.(L" " §_Oc,Oc)) RHomo (L™ " &,
m, O¢) is an isomorphism. Again by Lemma 2.3.1, we see that this is equivalent to requiring
the map

RHomo, (L™ ,RHOomg,(Oc,0c)) ) RHomg,. (L™ ,RHomg,(m, Oc))

to be an isomorphism. By our assumption that the natural map RHomg(Oc,Oc¢) )
RHomg,(m, Oc) is an isomorphism, we are done.

Now we assume. = Oc. We have to show that the natural map Homg . (Oc,Oc) )
Homg (M, Oc) induced by the injection m) O ¢ is an isomorphism and all the higher
cohomology groups oRHomg,(m, Oc) vanish. Write m= . ym, with m, = (a%), where
a is any non-zero element irm and a» is a bxedn-th root of a.

n—1

1. For the brst one. Note that for anyf + Homg_,(m, Oc), we havef (a) = f (a a%) =
a'n f (a%) for all n. Then v(f (a)) = v(a%)+ v(f (a%)) for all n. This implies that
v(f (a)) $ v(a). So we can bndk + O¢ such that f (a) = ax. This shows that the
natural map Homop(Oc,Oc)) Homg,.(m,Oc) is an isomorphism.

2. For the second one. Note thatRHomg (M, Oc) = RHom o (. nmMn, Oc). Choose a
K -injectve resolution| of Oc and thenRHomg (. nmMy,Oc) ' Homéc(. nMmn, 1)
pmn Hom(my, ). Let m; denoteHomg . (mn, Oc) and Mod(Oc, N) denote the abe-
lian category of inverse systems ofOc-modules. Then the inverse system(my)
is in Mod(Oc, N). Sincem, is principal for all n, the complex of inverse system
Hom(mp, | ) gives an injective resolution of(mj,). So we can write{jm N Hom(mg, 1) =
Rlim(my). By [Stal9, Lemma 091D], we haveR'lim(mj,) = H'(Rlim(m)) =0 for
i > 1. So now we just need to proveRlim(m,) = 0. For eachn, consider the map
m, ) C debned byf /) f(a%)a" %. This map is injective and its image is the
Oc-submodule ofC generated bya’ . Now we will seem;, as anOc-submodule of
C via this injection. Note that the canonical map . : C) lim C/my is surjective.
Indeed, an element(X,) + Im C/my gives a descending-sequen@(n + m,} of
open discs inC, where xp, is any lift of x5 + C/ mj,. By spherical completeness of
C, there exists somex + C such that x + x5 + m;, for all n. Then x + C maps to
(Xn) + {im C/ m;, under the map . . This shows the surjectivity of . . Now we apply
the Iong exact sequence foR'lim to the short exact sequence of inverse systems of
Oc-modules :

0){ mh{ CH{ C/my}) 0
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and we get the sequence
0) lmm,) o §mc/m,) RUm(m;)) o.

As the map . is surjective, we see thatRlim(m;,) = 0. So we are done.

O

Remark 3.1.4. As we see in the proof above, the spherical completeness is necessary.
There are some examples which are not spherical complete. For instand®,= Q, is not
spherical complete.

There are similar constructions and results in the setting ofAj; -modules.

Definition 3.1.5 (The pair (A, W(m™)). An Ains-module M is called almost zero if
W(m* aM = 0, where W(m") = Ker( Aint ) W(K)). A map f : K ) L in D(Ajn) is
called an almost isomorphism if the cohomology groups of the mapping cone of f are almost

ZETO0.

Similarly, we consider the almost derived category ofAj,;-modules. But we can not
simply repeat the preceding debnition asV (m*)2 might not be equal to W (m®) as ideals in
Aint (see [Ked16, Remark 1.4]). The solution is to consider the derivepgradically complete
complexes.

Let Dcomp(Aint) ( D(Ainf) be the full subcategory consisting of all derivedp-adically
complete complexes. Again, we brst show that the restriction of scalar functoRes :
Dcomp(W(K)) ) Dcomp(Aint) is fully faithful. Forany N + Dcomp(Ainf) andM + D comp(W (K)),
we have

(N, Res(M)).

Homp (w (ky) (N " L W(K),M) " Homp (a

inf inf)

By Lemma 2.4.4 , we have
Homp (wagy (N " &, W(K),M) " Homp . waoy (N " % W(K),M).

This means that the restriction of scalar functor Res : Dcomp(W(K)) ) Dcomp(Aint) is
right adjoint to the functor (! "!k\inf W (K) : Dcomp(Aint) ) Decomp(W(K)).
Now we want to prove Res(M 5 " k\mf W(k) " M. Note that
jll L ' L | n L
Res(M)" 5. W(k)' M W (K) W(K) " & W(K).

Considering the short exact sequenc®) W(m% ) Ajs ) W(k)) 0, we get a distin-
guished triangle

Aint ) W(K)" &

W(K) " &, WMD) W(k)" & W (k).

inf inf
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Since derivedp-adic completion is exact by Remark 2.4.5, we get another distinguished
triangle
W) "L wmh)) WE™ME Ag) WEML wk
AL W) WE' L An) WEME W(K).

Note that we have Ain/p " 5 (W (k) & A WMD) T Aglp "R W(K) "R W (M)

by Lemma 2.4.8. Moreover Aine/p " 5 W(K)" 5z W(m’) "' k" g, m*wherem"is the

maximal ideal in OF. Since m” is a Bat O¢-module and (m*)? = m* we havek " ¢,
C

k" o, m? = 0. Then by Lemma 2.4.6, the derived Nakayama lemma, we have

W(k) 5 W(m# = 0. This implies W(k)" 5 W(k) ' W(k). Finally, by Corollary

" | n 1 " | ' . .

2.4.9 we haveM bv(k) W(k)" 5 W(k) " M W W) * M. So the restriction of

scalar functor is fully faithful by Lemma [Stal9, Lemma 07RB].

Now, we can consider the following functors :

m#

0

Dcomp(Ainf))!! Dcomp(Ainf)a = Dcomp(Ainf)/D comp(W(k))a L /) Le

0«

Dcomp(Ainf)a)!! D comp(Ainf), L?) (L), = RHomAinf(W(m#)7L)

where the Verdier quotient D comp(Aint)? = Dcomp(Aint)/D comp(W (K)) is actually the
localization of D ¢omp(Aint) With respect to almost isomorphisms.

Lemma 3.1.6. Let C be spherically complete. If L + Dcomp(Aint) is perfect, then the natu-
ral map L = RHom A, .(Aint,L) ) (L?) = RHom s, (W (M%), L) induced by the injection
W(m*) ) Ain is an isomorphism.

Proof. This is [Bhal8, Lemma 3.10]. For readersO convenience, we give the proof here.

By the same argument as in Lemma 3.1.3, we may assume = Aj;;. So we need to
check that Ajs = RHom a, (Aint, Ainf) ' RHomAmf(W(m#),Amf). By Lemma 2.4.7, both
sides are derived&adically complete (for the debnition of & see Debnition 1.4.1). So we
just need to check the isomorphism after applying(! ) " kmf Aint/& by derived Nakayama
lemma.

By choosing a projective (free) resolutionP of W(m* and Lemma 2.3.2, we can see
that

RHoma, (W (m"), Aint) " &, Ainf/& "' HOm*(P, Ain) " A, Aint/& ' Hom¥(P,Oc)

inf

and moreover, we have an isomorphism of complexes @ -modules,

Hom*(P,O¢) ' Hom*(P " a. . Oc,Oc).

inf
As P " a,; Oc is also a representative ofV (m) " 5 Oc, we have

Hom*(P " a,,; Oc,Oc)"' RHomg,(W(m"" 5 Oc,Oc).
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Using the projective resolution Ainf)!!/ ’ Ain¢ of Oc, we can get that W (m*) " ,';mf Oc'
W (m#)/&. Then it is enough to checkRHomo . (Aint/&, Oc) ' RHomo (W (m#)/&, Oc).

Recall that there is a short exact sequence ofj-modules0) W(m% ) A )
W (k) ) 0. Then we can get a long exact sequence

W(KI&) W(m)/&) An/&) W(k)/&) O

Since & is sent to p under the canonical mapAijy ) W (k), we have W (k)[& = 0 and
W (m*)/& # m. Then by Lemma 3.1.3, we are done. O

3.2 Structure of the Hodge-Tate cohomology groups

Now we are ready to study the structure of the Hodge-Tate cohomology groups. We Prst
state a lemma about theL! -functor, which will give us two important maps connecting
Hodge-Tate cohomology andp-adic @ale cohomology.

Lemma 3.2.1. Let A be a commutative ring and a + A be a non-zero divisor. Assume
K + DIOSI(A) with HO(K) being a-torsion free. Then there are natural maps L! 3(K)) K

and K ) L! 2(K) whose composition in either direction is aS.

Proof. This is [BMS18, Lemma 6.9]. We also give the proof here.

Firstly, we choose a representativd. of K such that L is a-torsion free. Then we apply
the truncation functor (% and (°%to L,i.e. (*(°°L =(444a)0) L%Im(d" 1)) L?)
444 )L> 1) ker(d®) ) 0&an SinceK + DOSI(A), (“S(°0L is still isomorphic to K .
We now prove (5(°9L is still a-torsion-free. It is easy to see thatker(d®) is a-torsion
free. For L% Im(d" 1), supposew + L% Im(d" 1) is killed by a, then ax + Im(d" 1) for any
lifting x + L° of w and d°(ax) = ad’(x) = 0. As LY is a-torsion free, d°(x) must be 0,
which implies that x + ker(d®). But this also means that HO(L) = H%K) has a-torsion.
So (*S(9OL is still a-torsion free and we can apply! -functor to it.

There is a natural inclusion ! 5((”5(°°L) ) (”5(°°L. We can debne another map
(7S(00L ) 1,4((%s(°OL) by multiplying by a°. Then the composition of these two maps
in either direction is a°. O

Let Oc¢ be the ring of integers in a complete algebraically closed nonarchimedean ex-
tension C of K and X denote X Yospi(0 ) SPF(Oc). We may apply Lemma 3.2.1 toA = Og,
a="'p! landK = (%R-,0f. Infact (*R-, O} is in DI%(Og) with HO((*R-,0})
being ('p! 1)-torsion free. By the same argument in the proof of Lemma 3.2.1 we can
always bnd a representative. of (R- 6; such thatL is('p! 1)-torsion free andL® =0
for any s + [0,i]. Then there are two natural maps which we denote by and g,

ol g ((MR-105) " (%7 g) ("R-105
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g: ("R-10%) ("7

whose composition in either direction is(" ! 1). The isomorphismL! - » 1((*R-105) "
(%‘"N,q is due to the commutativity of the L! functor and the canonical truncation func-
tor (" (see [BMS18, Corollary 6.5]). Recall that for anyK + D(Og), (¥ K := (44a)
K" ker(d)) 0)aaa).

Passing to sheaf cohomology, we get two natural maps

("R (R (%)) (MR zar(R, ("R Ox)

g: (PR zar(R, (PR-10%)) (PRI zar(R. (7 p)

whose composition in either direction i p! 1)'. Since there is an isomorphsing " R! ,4,(X, (" g) '
(“R! ,ar(R," x) which is induced by the canonical morphism(%" 5 ) " 4, we get two
maps

f:(RUzar(R72) ("R! zar(R,R-10%)
g: (YRR R-105)) (PR! zar(R, ")

whose composition in either direction is(' p ! 1)\

Note that there is an isomorphism R! ,5/(%,R-105%) ' R! proet(X, OF). What we
want to study at the end is the p-adic @ale cohomology but not pro-Ztale cohomology.
But actually we get almost what we want. Recall the primitive comparison theorem due
to Scholze.

Theorem 3.2.2 ([Sch13, Theorem 8.4]) For any proper smooth adic space X over C,

there are natural isomorphisms in D (O¢)? and D (Ains)? respectively,
R! et(X, Zp) ) %p OC " R! proet(X, 6;()

and
R! et(xa Zp) " Ep Ainf " R! proet(X, Ainf ,X)-

Then by passing to the world of almost mathematics, we get two natural maps in
D(Oc)?:

F2 (PR (R g)?) (R zar(RR-105 )2 (MR a(X, Zp) " 2, Oc)?

¢ (PR zar(RR-103 ) (PR elX, Zp) " 2,00)) (PR zar(R, (¥ g))?

where we have used the following lemma.

Lemma 3.2.3. Ifh:K ) L is an almost isomorphism in D(Oc) (resp. D(Aint)), then
sois B: (YK ) (YL.
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Proof. Let M denote congh) and M denote congH). Then there is a morphism of distin-
guished triangle
(%i K (%i L N

| |

K L M.

We then get a morphism of long exact sequences

i — s H7HK) ——= H7YL) —— HY(M) Hi{K) HiL) — HY(M) 0
| | | | l | | | |
i — = H7HK) ——= H7YL) —— HY(M) Hi{K) HiL) — H'M) — HTY(K) —— ---

By using Pve lemma, it is easy to deduce that whem < i , we haveH " (M) ZH "(M);
whenn = i, the mapH'(M)) H(M) isinjective ; whenn > i , we haveH"(M) = 0. Then
we conclude that the cohomology groups ofone(f) are almost zero, i.e B : (*K ) (%L
is an almost isomorphism. O

Lemma 3.2.4. The complez (®R! y1 (R) = (¥ R! zar(ﬂ,:;q) (resp. (PRI A, .(R)) is a
perfect complex of Oc-modules (resp. Aing -modules).

Proof. By Theorem 1.4.5.4 and Theorem 1.5.2.1, we have
Ripr(R) ' RIs(X)" §¢ At " & Ant/& R!s(X)"§. 0k "5, Oc.

SinceR! s (X) is a perfect complex ofS -modules andR! y7(X) := R! g(X) " g Ok, the
Hodge-Tate cohomologyR! yt (X) of X is a perfect complex ofOx -modules by [Stal9,
Lemma 066W]. Moreover a¥Jk is a Notherian local ring, the cohomology group$d ‘HT (X)
are pnitely generatedOk -modules and so Pnitely presente®y -modules. So we see that
every Hodge-Tate cohomology grou ,LT (R) is also Pnitely presented oveO¢. By Lemma
2.1.3, this meansH;; (R) # @[, Oc/#; for some# + Oc. SoH};(R) is perfect.
The lemma hence follows from [Stal9, Lemma 066U]. Fqr® R! A, (R), this follows from
[BMS18, Lemma 4.9] stating that eachHLinf(ﬂ) is perfect. O

As (YR! &(X, Zp) and (“R! 2o(R," z) are perfect complexes, then Lemma 3.1.3
tells us that if C is spherically complete, then((“RI( ®," g))2 ' (%RI( X," x) and
(("R! ot(X, Zp) " 2, 0c)?" (YR! &(X, Zp) " z, Oc. By moving back to the real world,
we have two maps

3 (PR zar(R 7 g)) (PRI e(X, Zp) " 2, Oc

(@™ (PR elX, Zp) " 2,0c ) (YR! zar(R," g)

whose composition in either direction is(' p ! 1)'. These two maps induce maps between


https://stacks.math.columbia.edu/tag/066W
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cohomology groups for anyn & i.
fIH"(R,"g)) H&X, Zp)" z, Oc

9:HX(X, Zp)" 2,0c) H"(R,"g)

whose composition in either direction is(' p ! 1)\

Now we come to the following key theorem :

Theorem 3.2.5. Let X be a proper smooth formal scheme over Ok , where Ok is the ring
of integers in a complete discretely valued nonarchimedean extension K of Qp with perfect
residue field K and ramification degree €. Let Oc be the ring of integers in a complete and
algebraically closed nonarchimedean extension C of K and X be the adic generic fibre of
X=X Yospr(ox) SPF(Oc). Assuming ie < p ! 1, then there is an isomorphism of Oc-

modules between Hodge-Tate cohomology group and p-adic &tale cohomology group,
Hir (R) = H'(R,"x) & He(X, Zp) " 2, Oc.

Proof. Note that replacing C by its spherical completionCwill not make any dilerence to
this theorem. The spherical completion always exists (see [Rob13, Chapter 3]), which is still
complete and algebraically closed. On one handy-adic @ale cohomology is insensitive to
such extensions in the rigid-analytic setting (see [Hub13, Section 0.3.2]). On the other hand,
by the base change of prismatic cohomology, we haw¢/,; (X" 0. Oc/) # H/\r (X)" o, Oc:
and the natural injection O¢ ) O ¢ is Rat.

So now we assume€ is spherically complete. We have seen in the proof of Lemma 3.2.4
that H'(R," g) has a decomposition aOg 2 (@jmzl Oc/# ™). By requiring ie<p ! 1,
we havev(('p! 1)) <v(#) in Oc asv(('p! 1P 1) = v(p) and v(p) = Vv(#°). Now the
theorem follows from Lemma 2.2.4 and the existence of maps

frH'(R ")) HalX, Zp)" z,0c

9:HL(X, Zp)" 2,0c) H'(R,"g)

whose composition in both directions is('p ! 1)'. O
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Chapitre 4

The unramibed case : comparison
theorem

In this chapter, let X be a proper smooth formal scheme oveDyk , where Ok is the
ring of integers in a complete discretely valued nonarchimedean extensidd of Qp with
perfect residue Peldk and ramibcation degreee. Let O¢ be the ring of integers in a bxed
complete algebraically closed nonarchimedean extensi@h of K . We will study the relation
between thep-adic Ztale cohomology group—l(‘gt(x, Z,) of the adic generic PbeX of X :=
X Y%ospico ) SPF(Oc) and the crystalline cohomology groupH icryS(Xk/W (k)) of the special
Pber Xy in the unramifed case, i.e. the ramibcation degree = 1 and Ox = W/(k). Note
that in the unramibed case, the crystalline cohomologyR! ¢rys(Xk/W (k)) is canonically
isomorphic to the de Rham cohomologyR! 4r (X/W (k)) (cf. [Ber06]).

In order to prove our integral comparison theorem, we brst relate Hodge-Tate coho-
mology to Hodge cohomology. And then we can use Theorem 3.2.5 to get a link between
Hodge-Tate cohomology ands-adic Ztale cohomology. The last step is to study the Hodge-
to-de Rham spectral sequence and we can prove the converse to [BMS18, Theorem 14.5],
which results in the Pnal comparison theorem.

4.1 The cotangent complex

Before we move forward, we briel3y recall the construction and basic properties of the
cotangent complex that will be used later.

Definition 4.1.1 (Quillen). For any map of commutative rings A ) B, we define the
cotangent complex Lgjp =" |13°/A " pe B, where |:’¥)!2 B is a stmplicial resolution of B
by polynomeal A-algebras and the tensor product is componentwise. Note that Lga is a
simplicial B -module, which is unique up to homotopy (since P¥ is unique up to homotopy).

So it can be viewed as a complex of B -modules in D(B) via the Dold-Kan correspondence.

49
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Remark 4.1.2. let A be a commutative ring and S be a set. One can debPndé[S], the
polynomial A-algebra with variables indexed byS. Consider anA-algebraB. By thinking

of B as a set, we get a naturalA-linear map )g : A[B] ) B. Moreover, there are two
maps A[A[B]] :!A[B] , one of which isA[) g] and the other is) 5o[g}. By iterating this

process, we can debne the canonicAlalgebra resolutionPg‘,A of B as follows :

PYa = (aaAAABI —IAAB] —IAB) —'B

Using this canonical resolution can make the debnition of cotangent complex functorial.

Remark 4.1.3. For any commutative ring map A ) B, there is a canonical isomor-
phism HO(Lgn ) # "L, . If A) B is surjective with kernel I, then H%(Lg/a ) =0 and

H" 1(Lgn ) = I/l 2. In some sense, the cotangent complex may be regarded as a Oleft deri-
ved functorO of taking Kehler dilerentials. In fact, for any sequence of commutative rings
R) S) T, thereis an exact sequence

"]S-/R "sT) "T/R) "T/S) 0.

If S) T is surjective with kernel J, then the sequence above can be extended to
JI?) "La"sSN) "15) O

The cotangent complex extends these two exact sequences further to the left. Before the
debnition of the cotangent complex, there are already some elorts devoted to extending
these two exact sequences further to the left, such as the Lichtenbaum-Schlessinger functors
[LS67].

Proposition 4.1.4 ([lI0O6]). Let R be a commutative ring and A be a commutative R-
algebra.

1. Kwnneth formula : For any commutative R-algebra B such that ToriR(A, B)=0 for
alli> 0, then

Lax zer '~ (Lar "rB)2 (Ler "RA)

2. Transitivity triangle : Let B be a commutative A-algebra, there is a natural distin-

guished triangle

Lar "5B) Ler ) Lga

8. Base change : For any commutative R-algebra B such that ToriR(A, B)=0 for all
i> 0, then
Lar "RB"' La+mm -
Remark 4.1.5. The cotangent complex is di%cult to compute in general. But there are
some cases that the cotangent complex behaves well.
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1. If a commutative ring map R) A is smooth, thenLar " " 5 [0]. For the proof,
see [Stal9, Lemma 08R5].

2. Let R be a commutative ring of characteristicp and A be aR-algebra such that the
relative Frobenius Fpr @ A® := A" g R) A is an isomorphism, thenL or
vanishes. In fact, ifA is a polynomial R-algebra, then the relative Frobenius induces
the zero mapLr, ., :Laayr ) Lar asd(xP) = 0. As the relative FrobeniusFar
is an isomorphism, thenL Fa/n is an isomorphism by functoriality. This implies that

Layr ' 0. For more details, see [Bhal7b, Proposition 6.1.4].

3. Let A be a commutative ring andl ( A be an ideal generated by a regular sequence.
Then Liay ya * U 2[1]. To see this, we Prst consider the casd = Z[x1,aaax;]
and | = (x1,44ax,). The transitivity triangle for Z ) A ) A/l isLyz"k
Al ) Lenyz) Lanya-SoLbwpnya " " i/z "A AL I ?[1]. For the
general case, we choose a regular sequerigea 4 &f ; generating |, which induces

Al z" E[xl,aéé&r],(xi#ssfi) A. Base change for the cotangent complex then implies
that Lian ya ' Lz/zix,.a85.] " E[Xhééé(r]A " I/l ?[1]. For more details, see [Bhal7a,
Example 3.1.3].

4. Let R be a perfect ring of characteristicp, then LVI\/(R)/va the derived p-adic com-
pletion of Ly (ry/ z,, vanishes. This results from Lemma 2.4.6, Lemma 2.4.8 and the

vanishing of the base changé  r),z, " Ep Fo' Lrir," O

As an application of the cotangent complex, one can give a description of the Breuil-
Kisin twist as debned in [BMS18, Debnition 8.2].

Definition 4.1.6 (Breuil-Kisin twist) . Define Oc{1} = Tp(" (13c/Zp)’ the p-adic Tate
module of " (130/ z, For any Oc -module M , define the i-th Breuil-Kisin twist of M as

M{i} = M " o, Oc{1}"".

We remark that Oc{1} is a free Oc-module of rank 1.

Now we will explain how to use cotangent complex to describe Breuil-Kisin twist. Let
W (k) be the integral closure ofW (k) in Oc¢.

Theorem 4.1.7 ([Beil2] Section 1.3) The map W (k) ) W (K) has a discrete cotangent

. 1 n 1l
complez, i.e., LW/W (K) WM (k)

Note that by base change of cotangent complex, we have
" 1 ] n L
Litom a0 Woo K Lawgomn  Lwaomw g " woo K
Then by Lemma 2.4.6 and Lemma 2.4.8 , there is an isomorphism

! 1 l
LW(k)I\N (k) I‘W(k)/W (k)*


https://stacks.math.columbia.edu/tag/08R5
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On the other hand by Theorem 4.1.7, we have

| [ n 1! — H w1 n n
Lwtomw w0 Waow i = RIMC fragm o - wag WKIPT)

and since every element otV (k) admits a p”-th root for all n, the map " \1N(k)/\N ) ;{ P

n 1
= is surjective for all n. So we have
WM (k) J

-

n 1 n 1
WIOW (k) W (K) W (k)/p" W MW (k)[pn][l]-

n 1l n+]_ "/ P w1
Wiow (k)[ )1 WaIW () [p"]is surjective for all n, the inverse system(" 1

is Mittag-Le&er. Hence by [Stal9, Lemma 091D]

W (K)W (k) [P"D

n n ' Ill n
Rlim( W(k)/W (k) W(k)W(k)/pn) l,gm W (k)W (k)[pn][l] To( W(k)/W(k))[l]'

Finally we have

! " 11}
I_W(k)/\N (k) p( W (k)/wW (k))[l] Tp( W kW (k))[l]
Since" & =0, we have" 1 #1 by considering the exact sequence
W(K)/ Zp W(k)/W ®  WKIZ, y g d

associated toZ, ) W(k) ) W(k). Similarly as L\'N(k)/zp vanishes by Remark 4.1.5.4,
we have LW'(k)/W W LJv(k),Z by Proposition 4.1.4.2 and the exacteness of derived
completion (Remark 2.4.5). By the derivedp-adic completion of the transitivity triangle

H YTy | 1 | n L | -
associated toZp) W(k) ) O ¢, we havelo/z, LW/ZP b Oc as Loc/m 0

(which follows from derived Nakayama lemma, Proposition 4.1.4.3 and Remark 4.1.5.2).
! ' w1 " - w1 :
So pnally, we getlg,/z, " Tpl W(k)/zp[l]) o Oc ' Tp( oc/z,,)[l]- For passing

from " 1 to"1 , we refer to [GR03, 6.5.20}.
WK/ Z, OclZy [ ]

4.2 Decomposition of Hodge-Tate cohomology groups

In this section, we explain how to relate Hodge-Tate cohomology to Hodge cohomology.
In fact, we can show that the complex of sheaveg?" 1" 4 is formal in the unramibed case.

Theorem 4.2.1. For any proper smooth formal scheme X over W (K) and R = XYospf(w (k)

1. One can conclude from [GR03, 6.5.20] that there is a short exact sequenceé — Q! WOC —
Wk)/zp (%)

Ol — 0! — 0 and Q! is p-torsion-free. This implies that Q} Oc =
Oc /2p oc /7 oc v © P P w2z P Pt O¢

Qo sz, [P"] for all n.
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Spf(Oc), the complex of sheaves (¥P" 1"~g s formal, i.e. there is an isomorphism

pr1 _
) DR BT (g,
i=0

where " Ig = Ipn " i(ﬂ/p ") (Oclp™) is the Og-module of continuous differentials and " 'ﬂ{' i}

is the Brewil-Kisin twist of " .

Proof. We proceed by brst showing that( %1‘72 is formal and then constructing the general
isomorphism in the statement. In this proof, Lg,; and Lgyy () always mean the derived
p-adic complete cotangent complex.

By [BMS18, Proposition 8.15], there is an isomorphism( %" 4 Lgz, {! B[ 1]
Considering the sequence of sheavek, ) W(k) ) O g, there is an associated distin-
guished triangle

Livagiz, " Wao Or) Laiz,) Law -

By Remark 4.1.5, we know thatL y )z, vanishes. Therefore, we have
LQ/ZP{! B[ 1" Lgw (k){! 1 1]

For any a%ne openSpf(R) ( X, write R for the base changeR"  )Oc and ﬁ for

its p-adic completion. Then we haveL'ﬁNv ) " Llgw (ky Which follows from the derived

Nakayama lemma, Remark 2.4.5 and Lemma 2.4.8.

By the K dgnneth property of cotangent complex in Proposition 4.1.4, we have
Law (0" (Locw (9 " wag R) 2 (Lrw 9" W Oc)-

Applying the derived p-adic completion functor (which is exact by Remark 2.4.5), we
have

' L} ! n ! n
Lr* imoem () (Locmw (k) b\,(k) R) 2 (Lrw (k) b\,(k) Oc).

On one hand, by Corollary 2.4.9, we get

! mn 1
Loem'to " wag R Lo " we R {1} [1]

where the last isomorphism follows from the discussion at the end of Section 4.1.

As ﬁ coincides with the derivedp-adic completion of R (cf. [Stal9, Example 0BKG]),
we have LOCAN!(k) "wu R’ R{1}[1]. On the other hand, by the base change property
in Proposition 4.1.4, we getLrw () " w() Oc ' Lm o, The derived p-adic completion

| .. . . w1l .
L@ o, is isomorphic to ymn (®p ")/ (Oc/p ™" Indeed as®/p" is a smoothOc/p"-algebra


https://stacks.math.columbia.edu/tag/0BKG
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for all n, we have

I L) H n L ) H L} H n l
L'F@/ Oc RIlm(LW/ Oc  Z, Zp/pn) RIlm(L(W/p n)/(oc/pn)) le (RIp ")/ (Oclp™)*
n

So pnally there is an isomorphism

Law o 'O {1112 " 4

So we get a decomposition(*!" 5z ' O g2 " 2! 1[' 1]. In particular, we have a map
)1t B 1) " 4 Which gives the Hodge-Tate isomorphismC" 1 : * wo 1)
H1(" g) (cf. [BMS18, Theorem 8.3]).

Now we consider the map for anyi & p! 1 given by

(u ;_q)*i) ..i’q’ +1"ééé~"+i /) +13ééé3‘i
It has an anti-symmetrization section a as shown in [DI87], given by

a(+134443)= (1) D sgn(s)+sq) "AaA" +().

Then we debneg); as the composition

- )
i woNF L ymulti
o) ") 7

CRUDE DR CR W R nr Y

where O" - iOmeansi-fold derived tensor product. Note that "¢ is a commutative Og-
algebra object inD (Ox) (see Remark 1.4.3). By applyingH', we have

1L L

O {1} & AH ({117 ) = Q-1 1) s (@) = H () ™% 3 (@)

Since the Hodge-Tate isomorphism is compatible with multiplication (cf. [BMS18, Co-
rollary 8.13]), this composition is exactly the Hodge-Tate isomorphismC™ * : " L {1 i}
Hi("g). So we have the map) = @ y)i + @Y "Ll i} 1) "x Taking (p!
1)-th truncation, we get the desired isomorphism) = @) @ @y bt i} i1
(%P 17 O

Remark 4.2.2. Note that the key input in the proof above is the Hodge-Tate isomorphism
c'l:nL{i})H '("g). In general, there is a Hodge-Tate isomorphism for any boun-
ded prism (A, 1) (cf. [BS19, Theorem 4.10]) and also a generalization of the isomorphism
(" Lgz, {0 B0 1)

The map Og ) (%" 4 splits as anOg-module map if and only if R lifts to A/ & (cf.
[BMS18, Remark 8.4]). In the ramibed case, this seems to be hardly satisbed due to the
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non-vanishing of the cotangent compleX. o, w (k). Note that H 0(LOK,W w) "
is generated by one element (cf. [Serl3, Chapter Ill, Proposition 14]).

1
OxW (k)

Corollary 4.2.3. There is a natural decomposition for any n & p! 1,

Hir(R) = H"(R, ") & EDH™ (R, Lt i}).

i=0
4.3 Hodge-to-de Rham spectral sequence

In this section, we study the Hodge-to-de Rham spectral sequence and Pnish the proof
of the integral comparison theorem in the unramibed case. More precisely, we will prove
the converse to Theorem 1.4.7 by analyzing the length of the torsion part of de Rham
cohomology groups and that ofp-adic Ztale cohomology groups.

Note that we have the Hodge-to-de Rham spectral sequence
Ef = HI(R" Q) =4 H*I(R,"}) = Hy (R1Oc)

As R = X" w (k) Oc, this spectral sequence can be seen as the 3at base chang©te of
the Hodge-to-de Rham spectral sequence of over W (k). This tells us Ef'j is a bnitely
presentedO¢c-module (note that Ef’j is also a subquotient ofH! (R, " 'ﬂ)).

For any integersi and n such that 0 & i & n, we have the abutment Pltration

0=F" ( F" (44a(F°= H{z(R/Oc)
and the short exact sequences
0) F*) F') EM'") o

Now we consider the normalized lengtho ., for Pnitely presented torsionOc¢-modules.
Recall that this length behaves additively under short exact sequences arlg . (Oc/p) = 1.
For any Pnitely presentedOc-module M, one can deduce from Lemma 2.1.3 thaM o, is
also a Pnitely presentedOc-module and so isM/p™ for any m > 0. Then we have the
following lemma :

Lemma 4.3.1. For any short exact sequence of finitely presented Oc -modules
0) A) B) C) O

we have lo,(Btor) & lo (Ator)+ 1o, (Cror) andIOC(Btor/pm) & IOC(Ator/pm)"' IOC(Ctor/pm)
for any m> 0.
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Proof. For the brst statement, it is easy to see thatM = By, /A or iS @ submodule ofCyy,
so we havelo. (M) = lo.(Btor) ! loo(Ator) & lo.(Ctor) by the additivity of the length.
For the second one, we have an exact sequence

M[P"]) Awr/p™) Bwr/p™) Mip™) 0

Sowegetlo, (Bior/p™) & lo, (Awr/p™)+ 1o, (M/p ™). Then we need to provdo . (M/p ™) &
lo.(Cior/p™). More generally, given two Pnitely presented torsiorOc modulesNy ( N,
there is an exact sequence

N[p™]) Na/p™) Na/p™) Np™) 0

where N = N2/N 1. Note that lo, (N[p™]) = lo,(N/p™). In fact, this follows from the
exact sequence
0) N[P"1) NY* N) Np™) O

Hencelo . (N2/p™) $ lo (N/p™) + lo (N1/p™) ! 1o (N[p™]) = lo,(N1/p™). So Pnally
we getlo, (Bior/P™) & lo . (Ator/P™) + lo.(Cior /p™). O

Corollary 4.3.2. For any integers i and n such that 0 & i & n and any positive integer m,
we have lo . (Fio p™) & lo (FEt Ip™)+ lo (EM 'ior/p™). In particular, 1o, (H5 (R Oc)r/p™) &
Zin:o IOC(E,I'n or/lp™).

Recall that the rational Hodge-to-de Rham spectral sequence degeneratesii page :

Theorem 4.3.3 ([Sch13, Corollary 1.8]) For any proper smooth rigid analytic space X
over C, the Hodge-to-de Rham spectral sequence

Ef = HI(X, " k) =4 Hy (XIC)

degenerates at E1. Moreover, for alli1 $ 0O,

i
> dimcH" (X, " L) =dim cHgr(X/IC ) = dim g, He (X, Qp).
j=0

As a consequence, we have the following lemma :
Lemma 4.3.4. For any m > 0, we have
loa(EM 1ior /™) & loc(H™ (R, R)war/p™).

Proof. Theorem 4.3.3 tells us that the integral Hodge-to-de Rham spectral sequence dege-
nerates atE after inverting p. This means that the coboundariesB"" "' must be a Pnitely
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presented torsionOc-module. Consider the short exact sequence
0) Bi,n"i) Zi,n"i) Ei,n"i) 0.

For any x + E"" 'o;, there existsX + Z'"" " whose image inE""" ' is x. As E""" ', is
killed by pN for some large enoughN , we can see thapN K isin B"" ' ( 2" ', So we
have another short exact sequence

0) B’i,”" ! ) Z,i’n" itOI’ ) E,i’n" itOI’ ) 0

Then by the additivity of the length, we get that
IOC(E,i’n" itor/pm) & IOC(Z,i'n" itor/pm)’

and

loe(ZM 1o p™) = oo (ZM" 1 ™) & loa(H™ 1R, " Do [0™]) = Too(H™ (R, Qior/p™)

where the middle inequality results from the inclusionZ™" ', [p™] ) E}" '[p™]
HM (R, " Q)[p™].
So we havelo, (E™ or/p™) & lo (H™ T(R," W)ior/p™). O

Now we prove the converse to Theorem 1.4.7.

Theorem 4.3.5. For any positive integer m and any integer N such that 0 & n<p ! 1,

we have
loc(Hir(R/Oc)tor /™) & lo (Het(X, Zp)tor * z, Oclp™).

Proof. By Theorem 3.2.5 and Theorem 4.2.3, we have

n
Ha(X. Zp) " 2,0c  Hir (R) & @DH(R." ).
i=0

This implies that
n . .
Z'Oc(Hn 'R, @orip™) = log(Het(X, Zp)tor " z, Oclp™)
i=0
Moreover, by Corollary 4.3.2 and Lemma 4.3.4, we have

n n
loc(HiR(R1Oc)or/p™) & D 1o (EM 1 i0™) & > loc(H™ /(R or /™).
i=0 i=0
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So we get that

|OC(H3R(ﬂ/ OC)tor/pm) & IOC(HQt(Xy Zp)tor ! Zy OC/pm)

O

Theorem 4.3.6. For anyn<p ! 1, there is an isomorphism of W (K)-modules

Hays(Xk/W (K)) # HG(X, Zp) " z, W (K).
Proof. We brst prove that there is an isomorphism ofOc-modules

Hir (R Oc) # HY(X, Zp) " 7, Oc.
Note that Theorem 1.4.7 tells us that for any positive integerm,
loe(Het(X, Zp)tor " z, Oc/P™) & lo,(Hgr (R Oc)or/p™)

So they must be equal by Theorem 4.3.5. This means that g (X, Zp)wor " z, Oc #

Hir (R Oc)iwor by Lemma 2.1.4. Furthermore by [BMS18, Theorem 1.1], theDc-modules
HIL(R/Oc) and HL (X, Zp) " z, Oc have the same rank. So we havéd [ (R/ Oc) #
Hgt(X, Zp)" z, Oc.

On the other hand, there is an isomorphism between de Rham cohomology and crys-
talline cohomology in the unramibed case (cf. [Ber06])

Hir (XIW (K)) # H s (Xk/W (K)).

We also have
H s (X/W (K)) " w Oc # Hir(R/ Oc)

by base change of de Rham cohomology. So bnally we get the isomorphisnWbfk)-modules

Hays(Xk/W (K)) % Hg (X, Zp) " z, W(K).

4.4 Degeneration of the Hodge-to-de Rham spectral sequence

In this section, we assumed = dimX < p ! 1. We will improve Theorem 4.3.6 by
considering all cohomological degrees and study the degeneration of the Hodge-to-de Rham
spectral sequence. These will follow from improvements of Theorem 3.2.5 and Corollary
4.2.3.



4.4, DEGENERATION OF THE HODGE-TO-DE RHAM SPECTRAL SEQUENCE 59
We begin with an improvement of Corollary 4.2.3.

Lemma 4.4.1. Whend=dimX<p! 1, we have

Hir(R) = H"(R, ") & EDH™ (R, Lt i}).

i=0

for alln.

Proof. Recall the Hodge-Tate isomorphism H("5) # " IY (cf. [BMS18, Theorem 8.3)).
Wheni $ p! 1>d, we have” L= 0. This implies (" 2"¢ ' . In particular, the
whole complex” x is formal by Theorem 4.2.1, from which this lemma follows.

O

Next we think about the comparison between Hodge-Tate cohomology anp-adic Ztale
cohomology. Recall that we have the following two maps (see Page 45)

f - (%dﬁvy) (%dR_ | 6;

g: ("R-105 ) ("¢

whose composition in either direction is(' ! 1)d.

We claim that R-!ﬁ; is almost supported in degreesX d, i.e. there is an almost
isomorphism (*@R-, O} ' R- O} . We will check this locally.

Recall that an Oc¢-algebraR is called formally smooth (as in [BMS18]) if it is ap-
adically complete RatOc-algebra such thatR/p is a smoothOc¢/p -algebra. And a formally
smooth O¢-algebraR is called small (cf. [BMS18, Debnition 8.5)) if there is an Ztale map

O:SpfR) SpfOc,Tit aaari?t-.

We call such Ztale map a framing. Given a framing, we can debne

~
1

R =R vp=.

OC3T1i1,ééﬂ'dil400’Tli T aaary
which is an integral perfectoid ring. And there is an action of! = Zp(l)d on it. More
precisely, choose a compatible systeifi,~) of p-power roots of unity and let);, i =1,aaad
be generators of . Then ); acts by sendingT,"? " to ' ynT."? " and sendinglelp " to lelpm
forj @ i.

By FaltingsO almost purity theorem (cf. [Fal88, Chapter 1, Section 3 and 4]) and [Sch13,
Proposition 3.5, Proposition 3.7, Corollary 6.6], there is an almost isomorphism of com-
plexes ofOc-modules

RI( R, )) R Yproer, O),
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whereY = Spa(R[1/p],R). Moreover the continuous group cohomology on the left hand
side can be calculated by the Koszul compleKr_()1! 1,444)4! 1) by [BMS18, Lemma
7.3], which can be debned as

d "
KroO1! Laa8)a! )= R, "z aswg (RZD 128 )™ * 2D 1,848 ).
i=1

This complex sits in non-negative cohomological degreg8, d]. On the other hand, sinceX
is a proper smooth formal scheme oveDc, there exists a basis of small a%ne opens (cf.
[Ked03, Theorem 2], [Bhal8, Lemma 4.9]). So wheh> d , we get that Ri-; O} is almost
zero.

So now we have an almost isomorphism ( "R-, 6;'( ) R-i (3;. Taking cohomology,
we then get an almost isomorphism :R!( X, (*IR-,0}) ) RI!(X,R-;05). Again by
Theorem 3.2.2, we get two maps in almost derived categorf (O¢)? :

fo(RICX, (")) (R e(X, Zp) " 2, Oc)?

g: (Rle(X, Zp)" z,0c)?) (RY y’(%d.fy))a

whose composition in either direction is(' p ! 1)9. Since both sides are perfect complexes
of Oc-modules, we get two maps in the derived categord (Oc¢) :

foRICX, (")) Rle(X, Zp) " z, Oc

g:R!et(X, Zp) " 2, 0c ) RI(X, ("75)

whose composition in either direction is(' p ! 1)d.
Now as (%" ' ", we haveR!( X, (" )" RI(X," ¢) = R! 7 (X). So we get two
maps
f iRyt (X)) R!'a(X, Zp)" z, Oc

0:R!&(X, Zp)" 2z,0c ) R!ur(X)
whose composition in either direction is(' p ! 1)d.

Theorem 4.4.2. There is an isomorphism of Oc-modules for all n
Hiir (X) # H@(X, Zp) " z, Oc.

Proof. This follows from Lemma 2.2.4. O

Theorem 4.4.3. Assume d = dimX < p ! 1. Then there is an isomorphism of W (K)-
modules for all n

Hays(XkW (K)) # HG(X, Zp) " z, W (K).
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Proof. Note that if Theorem 4.3.5 is true for all n, then Theorem 4.3.6 is true for alln. And

if Theorem 3.2.5 and Corollary 4.2.3 are true for all cohomological degrees, then Theorem
4.3.5 is true for all cohomological degrees. So this theorem follows from Theorem 4.4.1 and
Theorem 4.4.2.

O

Corollary 4.4.4. Ifd =dim(X) <p ! 1, the coboundaries B,i'n"i vanish for all n. In

particular the Hodge-to-de Rham spectral sequence degenerates at E1-page.
Proof. By Theorem 4.4.1 and Theorem 4.4.2, we see that
n . .
Z IOC(H : I(’{ ! I;q)tor/pm) = IOC(Hgt(X, Zp)tor ! Zy OC/pm)
i=0

is true for all n.
Theorem 4.4.3 shows that for alln we have

IOC(HQR(QI OC)tor/pm) = |oc(H2t(X, Zp)tor " Zp OC/pm)-

So we conclude that

n
loc(HIR(R10c)or/p™) = Y loa(H™ (R, Qor/p™)
i=0

holds for all n.
As we have seen in the proof of Lemma 4.3.4, there are inequalities for all

loc (EM™ i ™) & o (ZH 1o Ip™) & lo (H™ H(R," Qo P ™).

Also by using the same argument as in the proof of Theorem 4.3.5, we have
loc(HiR(R/Oc)or/0™) & > 1o (B 1o p™) & Tloc(H™ (R, Wior/p™).
i=0 i=0

holds for all n. But these inequalities are in fact equalities. This means that
log (EM™ e lp™) = 1o (2 T ip™) = log (H™ TR, Qiorip™).

In other words, the coboundariesB"” "' vanish as we havelo (B ') = lo,(Z"" ') !
IoC(E,"”" 'or) = 0. So the Hodge-to-de Rham spectral sequence degeneratesEatpage.
O

Remark 4.4.5. We collect some other results about the degeneration of the (integral)
Hodge-to-de Rham spectral sequence.
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1. In [FM87, Corollary 2.7], Fontaine and Messing have proved that for any proper

smooth (formal) schemX whose special Pber has dimension strictly less thgm the
Hodge-to-de Rham spectral sequence degenerates Bi-page. Their proof makes
use of the syntomic cohomology.

. For any projective smooth schemeX over W (k) wherek is a perfect peld of cha-

racteristic p, Kazuya Kato has proved that if dim(X) & p, the Hodge-to-de Rham
spectral sequence degenerates Bt -page and the de Rham cohomology groups are
Fontaine-Lalaille modules (cf. [K* 87, Proposition 2.5]).

. For any proper smooth formal schemeX over Ok , where Ok is the ring of integers

of a complete discretely valued nonarchimedean extensiok of Q, with perfect
residue beldk and ramibcation degreee. Let S be W (k)[[u]] and E be an Eisenstein
polynomial for a uniformizer # of Ok . Shizhang Li has proved that if X can be lifted
to S/(E?) anddim(X) é&e < p! 1, then the Hodge-to-de Rham spectral sequence is
split degenerate (cf. [Li20, Theorem 1.1]). His proof uses Theorem 0.0.6.



Chapitre 5

The ramibed case : comparison
theorem

In this chapter, let X be a proper smooth formal scheme oveDg , which is the ring of
integers of a complete discretely valued nonarchimedean extensidt of Q, with perfect
residue beldk and ramibcation degreee. We will get some properties about the torsion
in the Breuil-Kisin cohomology groupsHiS(X) whenie < p ! 1 and obtain an integral
comparison theorem comparing thep-adic Ztale cohomology groups and the crystalline
cohomology groups.

5.1 Torsion in Breuil-Kisin cohomology groups

We brst bx a uniformaizer# in Ok and choose an Eisenstein polynomiaE for #.
Note that the ring S = W (k)[[u]] is a two-dimensional regular local ring. The structure of
S -modules is subtle in general (see Remark 5.2.2). In particular, it is di%cult to study the
u-torsion. But in our case, it turns out to be simpler.

Let C be a complete algebraically closed nonarchimedean extensionkfand O¢ be its
ring of integers. Let X be X %sps(0,) SPf(Oc). Recall that we can debneAiy; := W (OF)
as in Debnition 1.4.1. We start by studying the Aj,s -cohomology groups ofX.

Lemma 5.1.1. For anyi such thatie <p! 1, the cohomology group H:if(?) is &torsion-

free.

Proof. We assume thatC is spherically complete. As in the proof of Theorem 3.2.5, we
see that the spherical completion ofC exists and is still complete and algebraically closed.
Moreover sinceR! Amf(Y) " Rlg(X)" g,( Aint Where. : S ) Ay is the faithfully
Rat map taking (E) to (& (for the debnition of the map ., see Section 1.5), we have
HaL (R) & HEH(X)" s Ainr, in particular H ' (R) is &torsion-free if and only if HS™ (X)

63
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is E-torsion-free as(. (E)) = ( E) So it does not matter whetherC is spherically complete
or not.

As in Chapter 3, we apply Lemma 3.2.1 to the complex of sheaves @&,;-modules
(YR-1Ainf x and the elementpu + Ay . Precisely, in the categoryD (X, Ajy), we get
two natural maps

f (MR- Ainrx ) LEu(MR-1 A x ' (WA ¢

g: (A" ' L ("R 1Anix ) (YR A x

whose composition in either direction isp'.

We consider the the complex of sheave§” R- 6; as in the categoryD (R, Aiyf) via
the map Ap)® ¢ )O %- Moreover it is in the category DI%1(R, Aj).

There is a map(% R-1 Ayt x ) (%R-, 0} induced by %: Airx ) Of . So we can get
a commutative diagram

L' w(% Ry Ajng x —2 LI w( "R~ Oy

Tk el

(MR-t Ajpt x ——2— (%R~ O}

where the composition offj with g in either direction is ' for j = 1,2. Note that
L'+ 1(*R-1 Oy is isomorphic toL! ,(“R-1 0} in D (X, An).

Recall that (¥ R! A, (X) is a perfect complex ofAj;-modules according to Lemma
3.2.4. Then by the second almost isomorphism in Theorem 3.2.2 and Lemma 3.1.6, we can
get two maps

fo(*RALR)) (PR elX, Zp) " 2, Ainr

g: (%iR! et(X, Zp) " z, Aint ) (%iR! At (R)

whose composition in either direction isp'.
By taking cohomology, we can obtain another commutative diagram

Hi,. R - Hiir (R)

i o] |

Hi(X, Zp) " z, At — Hi(X, Zp) " 2, Oc
Note that Coker(s;) is in fact HiAtlllf(%)[g] and Coker(sp) = 0.
Therefore we get two induced maps

. . f3
H/:if(%)[ga O3 0
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where the composition off 3 and g in either direction is p'. SinceH Xzif(ﬂ)[ga " H is+1 (X)IE]" ok
Oc asOc-modules, it has a decomposition a® 2 (PL.; Oc/# "+). Note that the image
of p under the reduction Aj¢ ) Aintl &is' p! Tandv(('p! 1)') <v (#) whenie<p ! 1.
We then can getHL\*iif(ﬂ)[g«] =0 by Lemma 2.2.4.
0

Remark 5.1.2. The previous version of this lemma covers the cohomological degresuch
that ie < p ! 1. We want to thank Shizhang Li for pointing out that the previous proof
can be improved slightly to include the cohomological degree+ 1 such thatie<p ! 1.

In the next lemma, we give an equivalent statement to the&torsion-freeness for some
special Ajns -modules.

Lemma 5.1.3. Let M be a finitely presented Ains -module such that M [%] is finite projective
over Aijnf [%], and let X + m\ (p) where M is the maximal ideal of Ains. Then M is &torsion-

free if and only if it is X-torison-free.

Proof. Note that the radical ideal of (p, x) is the maximal ideal. To see this, we take any
y + m. Let @ be its image in Oé = Aint/p. Then there exists a positive integers and an
elementa + Ay with image @+ OZ such that (9)® = @& where ® is the image ofx in OZ.
So we getyS is in (p, X).

Now If there exists b+ M such that xb = 0, then for any other z + m\ (p), we have
z"b= 0 for any su%ciently largen. This is because all torsion inM is killed by some power
of p. Then this lemma follows. O

Corollary 5.1.4. Whenie <p ! 1, the Ajns -cohomology group H,i;iif(f(’) 18 &torsion-free
and the Breuil-Kisin cohomology group His+l (X) is both E-torsion-free and u-torsion-free.

Recall that for any bnitely presentedAj,s-module M such that M [%] is Pnite projective
over Ajns [%], we have the following proposition :

Proposition 5.1.5 ([BMS18] Proposition 4.13) Let M be a finitely presented Ains -module

such that M [%] 18 finite projective over Ajns [%] Then there is a functorial exact sequence
0) M tor ) M ) Mfree) m) 0

satisfying :

1. Myor, the torsion submodule of M, is finitely presented and perfect as an Ajnf -
module, and is killed by p" forn5 0.

2. Mee s a finite free Ains -module.

3. M is finitely presented and perfect as an Ains -module, and is supported at the closed
point S + Spec@int).
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Here we recall the construction of the free moduléV ee. SinceM/M o, is torsion-free,
the quasi-coherent sheaf associated to it restricts to a vector bundle o8pec@ins )Y s} by
[BMS18, Lemma 4.10]. By [BMS18, Lemma 4.6], the global section of this vector bundle
is a bnite freeAjrs -module, which givesMee. In particular, if M/M o is free itself, then
M/M or = Myee. FOr more details, see the proof of [BMS18, Proposition 4.13].

By applying this result to Hginf(ﬁ), we can obtain the following lemma saying that
H}Ainf(}(’) is a direct sum of its torsion submodule and a freé\,; -module.

Lemma 5.1.6. For anyi such thatie <p! 1, the term M in the functorial exact sequence
0) Mir) M =Hp (R) Miee) M) 0

vanishes.

Proof. Let N = H;t(x, Zp)" z, Ainf, we have two mapsf : M ) N andg:N ) M,
whose composition in either direction isp'. Then we have a commutative diagram

0 M tor T M free “ﬂ 0
0 N tor N N free 0 0

by functoriality.

On the other hand, the exact sequence associated id,&inf(%) is the Rat base change
of the canonical exact sequence associated tdg (X) (see [BMS18, Proposition 4.3 and
4.13]). HenceM # HL(X)" s Air and M/ &% (HL(X)/E )" s Air where HL(X) is a
torsion S-module and is killed by some power ofp, u). Again, by using the decomposition
of HL (X)/E and the fact that v(('p! 1)') <v(#) whenie<p ! 1, we getHL(X)/E =0
and M/ &=0 by Lemma 2.2.4. ThenM =0 follows from Nakayama lemma.

O

Corollary 5.1.7. For any i such that ie < p ! 1, the Ajns -cohomology group H}L\inf(i)
1s a direct sum of a free Aini-module and its torsion submodule. Also, the Breuil-Kisin

cohomology group HiS(X) 1 a direct sum of a free S -module and its torsion submodule.

In the following part, we consider the torsion submodules of the cohomology groups
Ha, (R) and H§(X), and let Hp. o, Hg. o, denote them respectively.

We brst prove a key lemma which enables us to study the structure dfig. ..

Lemma 5.1.8. For anyi such thatie < p! 1, the modules (pHJ . o )P™ (resp. (PHE o )P ™) are

gz—torsion-free (resp. E -torsion-free) for all non-negative integers m,s.

Proof. Recall that we have two injective mapf : Hi.,, ) Hl. . "z, A and g:
H i

twor "z, At ) HA., whose composition in either direction isp'. These induce
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two new maps (we still denotef and g) between ((psH}.. tor)/pm)[g] and (P°HL o) " 2,

et" tor
Aini /p ™)[& whose composition in either direction igi'. Note that ((p°H L wor) Z,AinflpM)[& =
0. This means((pH . o, )/p ™)[& is killed by p'. As (P°H . o )P ™I& % (P°HE. )P ™IET" s
Ainr admits a decomposition agBi-; Oc/# " andv((' ! 1)') < v (#), the module((p°HA. ... )/p™)[&]
must be 0 by Lemma 2.2.4. Sincg(p*H . o, )P ™)I& # (P°HL. o )P ™IE]" s, Aint and

themap. :S ) A is faithfully Bat, we also have(pSHis" wor)/Pp™M) is E-torsion-free. [
In order to determine the module structure oins(X), we need the following lemma.

Lemma 5.1.9. Let M be a finitely presented torsion S -module. If M/p # (S/p)" and
pMm # @Di-; S/p"i, then we have an isomorphism of S -modules : M # DL, Sip™m:.

Proof. The proof is just that of [Bre98b, Lemma 2.3.1.1], simply by replacingS by S. For
readersO convenience, we give the proof here.

Choosem $ 0 such that p"M = 0. Let (e;,e,4aée,) be a basis ofM/pM over
S/p and we choose their liftingsé;, &,a44€, in M. By Nakayama lemma, we see that
M is generated by(€;,6,4aa8,) as aS/p™-module. So(péy, p€, aaapg,) generate the
S/p™-module pM .

k form a basis overk. Choosef;,aaaf, + pM such that pM # @{:1 S/p"iS afi. Then
there exists ar %r-matrix A + M, (S/p™S) suchthat (f,,f,,4aaf;)A = (pé, p&, a4 ape;).
Since A mod (p,u) + GL,(k), we know that A is in GL,(S/p™S). So we can replace
(81,8,44486) by (81,6,4446)A" 1 and supposepg = f;j for 1& i & r.

Forr+1 &j & n, there exista; + S/p™S for 1& i & r such thatpg = >i_; & fi =
>i=1 &j P&. Again, we can replace§ by § ! >i_; @& forr +1 & j & n. That means
we can supposeg =0 forr+1 & j & n.

Finally, we can construct a surjective morphism ofS/p™S-module :

r n
h:Mi=(Psip"*s %g) PP ShS %g)) M
i=1

i=r+l
g/) &

Note that the morphism h : M) M induces two isomorphisms :hy : pM 1)!2 pM and
hy : MYpM %* M/pM under the choice of&, 1 & i & n. For any x such that h(x) = 0,
if x + pM1 then x = 0 sincehy(x) = h(x) = 0. If x # pM? then h,(®) = 0 implies that
x + pMtwherew is the image ofx in M¥pM L Soh:M1) M must be an isomorphism.
We are done. 0

Corollary 5.1.10. Let M be a finitely presented torsion S -module which is killed by some
power of p. If (p°M)/p is u-torsion-free for all s$ 0, then M admits a decomposition as
M#Z P, Sipm:.
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Proof. To prove this corollary, we want to apply Lemma 5.1.9 toM . Note that M/p is
u-torsion-free by our assumption, therefore bnite free as &/p = k[[u]]-module. So we
need to prove thatpM admits a nice decomposition as in Lemma 5.1.9. Since the module
(pM)/p is alsou-torsion-free by our assumption, we only need to prove thap?M admits
a nice decomposition as in Lemma 5.1.9. We can continue this process until that we need
to prove p™"M admits a nice decomposition as in Lemma 5.1.9 for sonma such that M is
killed by p™*1. As p(p™M) =0 and (p"M)/p = p™M has nou-torsion, we see thatp™M
is a freeS/p-module by Lemma 5.1.9. So we are done.

0

5.2 Integral comparison theorem

Now we state our main theorem of this chapter comparing the module structure of
Breuil-Kisin cohomology groups to that of p-adic Ztale cohomology groups.

Theorem 5.2.1. Let X be a proper smooth formal scheme over Ok , where Ok is the ring
of integers in a complete discretely valued nonarchimedean extension K of Qp with perfect
residue field K and ramification degree €. Let Oc be the ring of integers in a complete
algebraically closed nonarchimedean extension C of K and X be the adic generic fibre of

X=X Yospi(0 ) SPF(Oc). Assuming ie <p ! 1, there is an isomorphism of S -modules
Hs(X) % Hu(X, Zp) " 2, S.
In particular, we also have an isomorphism of Ainf -modules
Hi, (X) # HL(X, Zp) " 7, Aint -

Proof. Note that the torsion submodule HL. .. of HL (X) is killed by some power ofp by
the Prst statement in Proposition 5.1.5. Then by Lemma 5.1.8 and Corollary 5.1.10, we
get a decompositionHL. . # @, S/p™:.

Since HL (X) is a direct sum of a freeS-module andH. ,, by Corollary 5.1.7, this
theorem then follows from theAj,s -comparison of the Breuil-Kisin cohomology groups (see
Theorem 1.5.2.1) and Corollary 1.4.6.1

HI(X)" s Ainf[Up]E HE(X, Zp) " 7, Aint [UH].

where the mapS ) Ai[L/u] is the composition of the faithfully Bat map . : S ) A
and the natural injection Ajns = W(OE) ) Ains[UH].
O
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Remark 5.2.2. In general, for any Pnitely generated moduleM over S (or any other
two dimensional regular local ring), there is a pseudo-isomorphism betweed and S' 2
(@{Ll S/Pj) where eachP; is a prime ideal of height1. Pseudo-isomorphism means its
localization at all prime ideals of height 1 is in fact an isomorphism. Within the range
ie<p! 1, the theorem above tells us that the classicap-adic cohomology theories provide
enough information to determine the structure of Breuil-Kisin cohomology groups. But
beyond this range, the situation gets subtle.

Now we come to prove the integral comparison theorem in the ramibed case.

Theorem 5.2.3. Let X be a proper smooth formal scheme over Ok , where Ok is the ring
of integers in a complete discretely valued nonarchimedean extension K of Qp with perfect
residue field K and ramification degree €. Let Oc be the ring of integers in a complete
algebraically closed nonarchimedean extension C of K with residue field R. Let X be the
adic generic fibre of R := X" o, Oc and Xg be the special fiber of X. Then ifie<p! 1,

there is an isomorphism of W (K)-modules
Het(X, Zp) " 2, W(K) # H s (Xi/W (k).

Proof. Assumeie <p! 1. By Corollary 1.4.6.3 and Corollary 5.1.4, we have an isomorphism
of Oc-modules
Ha, (R)/&# Hig (R Oc).

Since we also havedj, (R) % HL(X, Zp) " z, At by Theorem 5.2.1, we get an iso-
morphism of Oc-modules

Hir(R1Oc) # Hi(X, Zp) " 7, Oc.

Note that when e < p, we have an integral comparison isomorphism between de Rham
cohomology and crystalline cohomology (cf. [Ber06])

Hor (R Oc) # Hipys(Xg/W (R) " vy gy Oc

where Xg == Xy " ¢ R.
So bnally, we get the isomorphism

Hiet(xl ZD) " Zp W (R) g Hérys(xﬁlvv (R)).

By virtue of the base change of crystalline cohomologii Ly (Xg/W (R)) % HL o (Xk/W (k)" w (k)
W (K), we also have
Het(X, Zp) " 2, W (k) # H o (Xk/W (K)).
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Remark 5.2.4. When (i + 1)e < p! 1, the proof of the integral comparison isomor-
phism for schemes in [Car08] depends on the fact that the crystalline cohomology groups
Hlys(Xop/S) admits a decomposition asH bys(Xo.p/S)  S" 2 (L, SIp¥). This
can also be deduced from Theorem 5.2.1 and the base change of prismatic cohomology
along the map of prisms(S,(E)) ) (S,(p)), which is the composition of the Frobenius
map S ) S and the natural injection S ) S.



Chapitre 6

Categories of Breuil-Kisin modules

In this chapter, let K be a complete nonarchimedean extension @, with ring of in-
tegersOk . Let k be its residue Peld ande be its ramibcation degree. We want to give a
slightly more general result about the structure of torsion Breuil-Kisin modules of height
r, under the restriction er < p ! 1. Namely, all torsion Breuil-Kisin modules in this case
are isomorphic to@®L; S/p?3, whereS := W (k)[[u]]. As a result, this gives another proof
of Theorem 5.2.1 without using Lemma 5.1.8.

Let # be a bxed uniformizer ofOx . There is a natural W (k)-linear surjection from
S = W(K)[[u]] to Ok by sendingu to #. The kernel of this map is generated by an
Eisenstein polynomial E = E(u) for #. Fix a non-negative integerr. We Pbrst need to
debne some categories that we will study.

Definition 6.0.1 (1l\/Iod;'S) The objects of category ]MOd;’!S are defined to be S -modules
M equipped with a " -linear endomorphism " : M ) M such that the cokernel of id" " :
"'M =S", sM) M is killed by E". Morphisms are homomorphisms of S -modules
compatible with " . We say that a short sequence 0) Mi1) M2) M3) 0 is exact if it

1s exact in the abelian category of S -modules.

Definition 6.0.2 (Mod/r’!sl). The category Mod;’!Sl 18 the full subcategory of ]Mod,r’!s span-
ned by the objects which are finite free over S1 .= S/p = K[[u]].

Definition 6.0.3 (Mod;’!soo). We define MOd/r’!Soo to be the smallest full subcategory of

| . . | . .
]Mod;"s which contains Mod/r"Sl and s stable under extensions.

Remark 6.0.4. The category Mod,lg1 brst appeared in [Bre]. And the categoryMod,lgoo
is just the category Mod/ S debned by Kisin in [Kis06].

The following lemma gives us some important descriptions of objects ih/lod;'!S
Lemma 6.0.5. 1. For any M in Mod;’fS . the morphism id" " :"'M ) M s
injective.

71
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2. An object M in J1\/|0d;’!S s in Mod;’!S if and only if it is of finite type over S, it

has no U-torsion and it is killed by some power of p.
Proof. See [Liu07, section 2.3]. O

Corollary 6.0.6. The torsion submodule H'S wor 0f the Breuil-Kisin cohomology groups

of a proper smooth formal scheme over Ok is in the category Mod;’!soo when i & r < Lel.
Proof. This follow from Corollary 5.1.4 and [BS19, Theorem 1.8 (6)]. O

Next we introduce BreuilOs ring and debne some related categories analogous to those
associated with the ringS.

Definition 6.0.7 (BreuilOs ring) Let S be the p-adic completion of the PD-envelope of
W (K)[u] with respect to the ideal (E) ( W(K)[u]. The ring S is endowed with several

additional structures :

1. a canonical (PD-)filtration : Fil'S is the p-adic completion of the ideal generated by

elements (%)mo i

2. a Frobenius" : it is the unique continuous map which is Frobenius semi-linear over
W (K) and sends u to uP.

Forr<p! 1, we have" (Fil'S) ( p'S and we can debné' ; = F')— :Fil'S) S. Set
S, = S/p".
Definition 6.0.8 (1|V|0d;g ). The objects of 1I\/IOd;g are the following data :

1. an S-module ;

2. a submodule Fil'M (' M such that Fil'SaM ( Fil'M ;

3. a" -linear map " : Fil'M ) M such that for all s + Fil'S and x + M we have

"r(sx)= ¢ " (9)" ((E'X), where c= " 1(E).

The morphisms are homomorphisms of S-modules compatible with additional structures.
We say a short sequence 0) Mjy) Mz) M3z) 0in ]Mod,rg is exact if both sequences
0) M1) M) Mz) O0and0) FilI'M;) Fil'M2) Fil'"M3) O are ezact in the
abelian category of S-modules.

Definition 6.0.9 (Mod;g 1). The objects of Mod;g | are M in ]Mod;g such that M is finite

free over Sy and the image of " v generates M as an S-module.

Definition 6.0.10 (Mod;é OO). The category Mod;g __ s the smallest subcategory of ]Mod,rg

. ! . .
containing MOd/ré . and is stable under extensions.

Foranyr<p ! 1, one can dePne a functoMs __ : Mod,r’!Soo ) Mod]; as follows :

1. Ms_(M)=S", sM.Here" :S) Sisthe compositeS) S ) S where the
Prst map is the Frobenius onS and the second map is the canonical injection.
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2. Submodule : The Frobenius onM induces aS-linear mapid" " : S" | s M)
S" s M. The submoduleFil"Mg __(M) is then debPned by the following formula :

Fil'Ms_(M):= {x+Mg_(M)|(id" ")x)+Fil'S"sM ( S" s M)}

3. Frobenius : the map" ; is the following composite :

X id

Fil'Ms_(M)YY" Fil'S" s MY Ms_(M).

Remark 6.0.11. This functor was in fact debned by Breuil (see [Bre, Section 2.2]).
We state a theorem describing the functorM s __ .

Theorem 6.0.12. For any r < p ! 1, the functor Ms_ takes value in Mod;g . The
induced functor Mg _ : Mod/r’!sm ) Mod;g __ is ezact and il is an equivalence of categories.

Moreover, if we choose Ms__ a quasi-inverse of Ms__, then the functor Ms__ is also exact.
Proof. See [CLO9, Proposition 2.1.2, Theorem 2.3.1, Proposition 2.3.2]. O

Theorem 6.0.13. Assuming er < p ! 1, the category Mod;goo is an abelian category
and every object is of the form @i, SIp%. For any morphism f : (Mq,Fil'M1," ) )
(Mo, Fil"™™2," ;) in Mod;g o the underlying module of Ker(f) is the kernel of the morphism
f :M1) My in the category of S-modules and the underlying module of Fil"Ker(f) is the
kernel of the morphism f : Fil'M1 ) Fil'"M2 in the category of S-modules. A Similar
statement is true for Coker(f).

Proof. See [Car06, Section 3]. We remark that the category which Caruso used is dilerent
from ours but they can be proved to be equivalent by using a generalization of [Bre98a,
Proposition 2.3.1.2], as mentioned in the proof of [Car08, Theorem 4.2.1]. O]

Remark 6.0.14. This theorem is false without the restrictioner<p ! 1.

From now on, we bx a non-negative integer such thater <p ! 1. Then Mod,r’!S is
an abelian category.

Lemma 6.0.15. For any morphism f : M1 ) M2y in Mod/r’!soo, the underlying module
of Ker(f) is the kernel of the morphism f : M1 ) M2 in the category of S-modules. A
Similar statement is true for Coker(f ).

Proof. By Lemma 6.0.5, the kernel and the image of the underlying morphisnfi : M 1)

M in the category of S-modules together with the induced Frobenius maps are objects
of Mod;gm. It is easy to see that the kernel equipped with the induced Frobenius map
is indeedKer(f) in the category Mod;'!soo. So we can assumé : M1 ) M is injective.
Then Mg _ (f) is also injective. In fact, let L be the kernel of Mg __(f) and we choose
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a quasi-inverse functorMs_ of Ms_. Let h : L ) M, be the image of the inclusion
L) Ms_(M1) under Ms_. Then f 1 h = 0, which implies h = 0. In consequence, we
havelL = 0. Put M = Coker(f). By Theorem 6.0.12 and Theorem 6.0.13, we get an exact
sequencdd) M) My) Ms_(M)) Ointhe exact categoryMod;’!Soo (where the class
of the exact sequences is as debPned in DepPnition 6.0.1). So we hisle_(M ) is isomorphic
to M,/ M1 as S-modules. In particular M 2/ M 1 has nou-torsion. By Lemma 6.0.5, the
module M »/ M 1 equipped with the induced Frobenius map is an object oMod;'!Soo. It is
easy to check thatCoker(f ) is isomorphic toM »/ M 1 equipped with the induced Frobenius
map. O

Corollary 6.0.16. The full subcategory Mod;’fsl of Mod;’!soo is an abelian category.

Proof. For any morphismf : M1) M3 in Mod/r’!sl, Ker(f) and Coker(f ) are then both
killed by p. By Lemma 6.0.5, they areu-torsion free. SoKer(f) and Coker(f ) are in the

category Mod’g . O

Let ModFI;'!Soo denote the full subcategory ofMod;'fsoo spanned by the objects that
are isomorphic to@®/; S/p? asS-modules. In particular, ModFI;'!Soo contains Mod;'!sl.

Lemma 6.0.17. For any M + MOd/r’!Soo, the quotient M/p is in MOd;’!Sl'

Proof. Consider the morphismM)! * M in Mod;'!soo. SinceMod;'!Soo is an abelian category,
we know that M/p is also in Mod;'!S . It is killed by p and has nou-torsion by Lemma
6.0.5, thereforeM /p is in Mod;'!sl. O

We now reformulate Lemma 5.1.9 by using the categories we have debned.
Lemma 6.0.18. Let M be in Modys . If pM is in ModFI}g , so is M.

Proof. By Lemma 6.0.17, we haveM /p + Mod,r’!soo. Then this lemma follows from Lemma
5.1.9. O

Lemma 6.0.19. LetL ) M be an injection in MOd/r’!S AfM s in MOdFI/r’!S , s01s L.

Proof. We show that pL is in ModFI;"SOC, then this lemma follows from Lemma 6.0.18.
Consider the mappL ) pM. We proceed by induction on the minimal integer such that
p"M =0. If n =1, this is easy. Assume that whem < m this lemma is true. Then when
n=m, pL is also inModFI}g_asp™ *(pM) = 0. We are done. O

Theorem 6.0.20. The category MOdFI;’!SOO 1s an abelian category.

Proof. For any morphismf : M1 ) M3 in ModFI/r’!Soo, we need to showL = Ker(f)
and C= Coker(f) are also in the categoryModFI;'!Sm. For the kernel L, this follows from
Lemma 6.0.19. For the cokernelC, we proceed by induction on the minimal integermn such
that p"M, = 0. Without loss of generality, we can assumé is an injection.
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When n = 1, we have M 1,M, are both in Mod/r'!sl. Then by Corollary 6.0.16, we
see that C is also in Mod;'!Sl ( ModFI;'!SOO. Now suppose the statement is true when
n <m. When n = m, consider the sequenceM ) pM2 ) pC. Then there is a short
exact sequenced ) L) pMa/pMy) pC) 0. Sincep™ YpM2/pM4) = 0, by the
assumption, we getpC is in ModFI/r'!Soo. Then by Lemma 6.0.18, we see thaC is also in
ModFI,”SOO. This Pnishes the proof. O

Theorem 6.0.21. There is an equivalence of categories : MOdFI;‘!SOO:MOd/r’ESOO

Proof. We just need to prove that every objectM in Mod;'!soo is also in ModFI/r'!Soo. To
see this, we proceed by induction on the minimal integen such that p"M =0.

When n = 1, this follows from Lemma 6.0.18. Now suppose the statement is true when
n<m. Then whenn = m, we know that pM is killed by p™" 1. So by the assumption, we
have pM + ModFI/r’!Soo. By Lemma 6.0.18, we can obtain thatM + ModFI,r'!Sw. We are
done. O

So Theorem 6.0.21 and Corollary 6.0.6 provide another proof of Theorem 5.2.1.

Theorem 6.0.22. For any i & r < %1, we have H'S tor» the torsion submodule of the

Breuil-Kisin cohomology group of a proper smooth formal scheme over Ok , is in the cate-
gory MOdFI/r’!SOC, i.e. H'S tor # P, Sipai.
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