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Résumé : It is classical that the values
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at non-positive integers are all rational. By contrast the values
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are all irrational thanks to the transcendence of �. Apéry proved in 1978
that �(3) is irrational, but we still do not know that �(5) is irrational.
However Ball and Rivoal proved in 2001 that the number of irrationals
among �(3), �(5), �(7), . . . , �(2n + 1) is at least c log n for some c > 0
independent of n. Even less is known about �(x) at rational x, say

with 2 < x < 3. We sketch a proof that the number of these x with
denominator at most n, such that �(x) is rational also with denominator
at most n, is at most C( logn

log logn
)2 for some C also independent of n ≥ 3.
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