Séminaire de théorie des nombres

Le 22 février 2010 à $14 h$

Rational values of the Riemann zeta function

Exposé de David Masser (University of Basle)

Résumé : It is classical that the values

$$
\begin{gathered}
\zeta(0)=-\frac{1}{2}, \zeta(-1)=-\frac{1}{12}, \zeta(-2)=0, \zeta(-3)=\frac{1}{120} \\
\zeta(-4)=0, \ldots, \zeta(-11)=\frac{691}{32760}, \ldots
\end{gathered}
$$

at non-positive integers are all rational. By contrast the values

$$
\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \ldots, \zeta(12)=\frac{691 \pi^{12}}{638512875}, \ldots
$$

are all irrational thanks to the transcendence of π. Apéry proved in 1978 that $\zeta(3)$ is irrational, but we still do not know that $\zeta(5)$ is irrational. However Ball and Rivoal proved in 2001 that the number of irrationals among $\zeta(3), \zeta(5), \zeta(7), \ldots, \zeta(2 n+1)$ is at least $c \log n$ for some $c>0$ independent of n. Even less is known about $\zeta(x)$ at rational x, say with $2<x<3$. We sketch a proof that the number of these x with denominator at most n, such that $\zeta(x)$ is rational also with denominator at most n, is at most $C\left(\frac{\log n}{\log \log n}\right)^{2}$ for some C also independent of $n \geq 3$.

