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HODGE THEORY AND CYCLE THEORY OF LOCALLY
SYMMETRIC SPACES

NicoLAS BERGERON

Abstract

We discuss several results pertaining to the Hodge and cycle theories of locally
symmetric spaces. The unity behind these results is motivated by a vague but fruitful
analogy between locally symmetric spaces and projective varieties.

1 Introduction

Locally symmetric spaces are complete Riemannian manifolds locally modeled on cer-
tain homogeneous spaces. Their holonomy groups are typically smaller than SO,, — the
holonomy group of a generic Riemannian manifold — and there are invariant tensors on
the tangent space that are preserved by parallel transport. It was first observed by Chern
[1957] that Hodge theory can be used to promote these local algebraic structures to struc-
tures that exist on the cohomology groups of locally symmetric spaces. This is very similar
to what happens for compact Kéhler manifolds. In fact the analogy between locally sym-
metric spaces and Kéhler manifolds — or rather complex projective varieties — is a fruitful
one in many aspects. In this report we shall discuss several instances of this analogy. We
don’t give proofs, we only state recent results that illustrate various items of the following
dictionary.

Projective varieties V C P” Locally symmetric spaces '\ S
Complexity degree volume
Hodge theory | Hodge-Lefschetz decomposition | Matsushima’s fomula and (g, K )-cohomology
Cycles Algebraic cycles Modular cycles
(Intersections of) Hyperplane sections | Sums of Hecke translates of modular cycles

Kodaira vanishing Theorem Vanishing theorems using spinors

Cohomology Lefschetz hyperplane Theorem Automorphic Lefschetz’ properties
Hodge Conjecture Hodge type theorems
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The following result (see Theorem 8 below), jointly obtained with Millson and Moeglin,
shows that the right side of the above dictionary may eventually shed some light on the
left (more classical) side.

Theorem. On a projective unitary Shimura variety uniformized by the complex n-ball,

any Hodge (r, r)-class with r € [0,n]\]%, 2| is algebraic.

Context. There has been a great deal of work on the cohomology of locally symmetric
spaces. This involves methods from geometry, analysis and number theory. We note in
particular that related topics have been discussed Harris [2014], Venkataramana [2010],
and Speh [2006] in the last three ICMs. Indeed, Harris [2014] contains an overview of
the program for analyzing cohomology of Shimura varieties developed by Langlands and
Kottwitz. It aims at attaching Galois representations to the corresponding cohomology
classes. Our point of view is closer to Venkataramana [2010] and Speh [2006] that discuss
conjectures that naturally fit into the above dictionnary. The latter has been very much
influenced by former works of Oda, Venkataramana, Harris-Li discussed in Venkatara-
mana [2010]. We also have borrowed some expository ideas from §3 of Venkatesh Takagi
lectures Venkatesh [2017].

2 Locally symmetric spaces

2.1 Symmetric spaces. A symmetric space is a Riemannian manifold whose group
of symmetries contains an inversion symmetry about every point. We will be mainly
concerned with symmetric spaces of non-compact type. Such a space S is associated to
a connected center-free semi-simple Lie group G without compact factor. As a manifold
S is the quotient G /K of G by a maximal compact subgroup K C Gj it is known that
all such K are conjugate inside G. One may easily verify that G preserves a Riemannian
metric on S. Unless otherwise specified our symmetric spaces S will always be assumed
to be of non-compact types.

For example, if G = PSLy(R), we can take K = PSO5, and the associated symmetric
space S = G /K can be identified with the Poincaré upper-half plane H? = {z € C
Im(z) > 0} and the action of G is by fractional linear transformations; it preserves the
standard hyperbolic metric |dz|? /Im(z)?.

If G = PSLy(C), we can take K = PSUs, and the associated symmetric space S can
be identified with the three-dimensional hyperbolic space H?>.

We shall be particularly concerned with cases where G is either a unitary group PU(p, q)
or an orthogonal group SOq(p, g). Thanks to special isomorphisms between low dimen-
sional Lie groups the symmetric spaces associated to PU(1, 1) and SOy (2, 1) are both
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isometric to the Poincaré upper-half plane H? and the symmetric space associated to
S0y(3, 1) is isometric to the three-dimensional hyperbolic space H?.

Another important case to consider is that of G = PSL,(R). Then we can take
K = PSO,,, and the symmetric space S can be identified with the space of positive def-
inite, symmetric, real valued n x n matrices A with det(4) = 1, with metric given by
trace(A™1dA)?.

2.2 Locally symmetric spaces. Locally symmetric spaces are complete Riemannian
manifolds locally modeled on some symmetric space S with changes of charts given by
restrictions of elements of G. It is known that all such manifolds are isometric to quotients
I'\S of S by some discrete torsion-free subgroup I' C G. One may measure the complex-
ity of a locally symmetric space by considering its volume, or equivalently the volume of
a fundamental domain for the action of I on S. We shall be only concerned with locally
symmetric spaces of finite volume; the group I is then a lattice in G — in many cases we
shall even restrict to compact locally symmetric spaces.

By a general theorem of Borel, any symmetric space S admits a compact manifold quo-
tient (S-manifold) I'\ S. In Borel’s construction I is a congruence arithmetic group. For
our purpose let us define these groups as those obtained by taking a semi-simple algebraic
Q-group H C SLy, and taking

2-1) {h € H(Q) : h has integral entries}.

Each such group is contained in an ambient Lie group, namely the real points of H. If
H(R) is isogeneous to G x (compact) the projection on the first factor maps the discrete
subgroup (2-1) onto a lattice T" in G. If the compact factor in H(R) is non-trivial then T is
necessarily co-compact in G. Finally, replacing the discrete group (2-1) by its intersection
with the kernel of a reduction mod £ map SLy(Z) — SLy(Z/{Z), one can obtain a
torsion-free lattice I'. We refer to the corresponding locally symmetric spaces I'\S as
congruence arithmetic.

2.3 Examples. Locally symmetric spaces play a central role in geometry. Here are
some important examples:

Shimura varieties. These appear in algebraic geometry as moduli spaces of certain types
of Hodge structures. E.g. for all g the moduli space X, of genus g quasi-polarized K3
surfaces identifies with a locally symmetric space associated to G = SOg(2, 19). Shimura
varieties themselves are quasi-projective varieties. They play an important role in number
theory through Langlands’ program.
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Complex ball quotients. By Yau’s solution to the Calabi conjecture, complex algebraic
surfaces whose Chern numbers satisfy ¢ = 3cq are quotients of the unit ball in C? by a
torsion-free co-compact lattice in PU(2, 1). Most famously, this includes the classification
of fake projective planes by Klingler [2003], Prasad and Yeung [2009] and Cartwright and
Steger [2010]. Picard [1881], Deligne and Mostow [1986] and Thurston [1998] give many
examples of ball quotients coming from natural moduli problems. Congruence arithmetic
ball quotients are particular Shimura varieties.

Hyperbolic manifolds. In dimension 3, according to Thurston’s geometrization conjec-
ture, proved by Perelman, a ‘generic’ manifold is hyperbolic. More generally, Gromov
theory of §-hyperbolic groups suggest that negative curvature is ‘quite generic.” However,
at least in dimension > 5, all known (to the author) constructions of closed manifolds that
can carry a negatively curved metric are essentially obtained by rather simple surgeries
on locally symmetric manifolds. These spaces therefore form a fundamental family of
examples in geometry and more generally play a crucial role in geometric group theory.

Teichmiiller spaces of flat unimodular metrics on tori R” /Z". These are locally sym-
metric spaces associated to PSL,, (R). Their cohomology groups are very tightly bound
to algebraic K-theory. In particular this viewpoint quite naturally leads to the famous
regulator of Borel.

2.4 Notation. We have already defined K C G and the associated Riemannian sym-
metric space S = G/K. Let g be the complexified Lie algebra of G and let G¢ be a
compact form of G. Let S¢ = G°/K be the compact dual of S. Let 6 be the Cartan
involution of G fixing K and let ¢ = p @ ¥ be the associated Cartan decomposition. We
normalize the Riemannian metric on S¢ such that multiplication by i in p becomes an
isometry Tex S — Teg S€.

From now on I'\ S’ will denote a finite volume locally symmetric S-manifold. In gen-
eral we try to reserve n for its real dimension, or complex dimension if S is Hermitian.

We denote by bi (M) the Betti numbers of a manifold M.

3 Hodge theory

For simplicity, in this section, we will assume that all the locally symmetric spaces T'\ S
we consider are compact. This excludes some of the important examples mentioned above.
However modified versions of the discussion below still apply and we will abusively ignore
this issue in the rest of this document.
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Being a compact manifold, the quotient I'\ S satisfies Poincaré duality. But, as men-
tioned in the Introduction, the Riemannian manifold I'\ S in general has a much smaller
holonomy group than SO,,, and one can show that this forces I'\ S to satisfy many more
constraints, see (3-5) and (3-6). These constraints can be understood in terms of coho-
mological representations, i.e. unitary representations & of G such that the relative Lie
algebra cohomology H *(g, K; ) is non-zero (see Section 3.2 below).

Since the general setup of (g, K)-cohomology is rather forbidding we will discuss in
more detail two special examples. But first, let us emphasize the analogy with projective
manifolds, or rather here with Kéhler manifolds.

3.1 Comparison with Kéihler manifolds. Hodge theory gives a way to study the co-
homology of a closed Riemannian manifold M. Indeed, each class in H*(M,C) has a
canonical ‘harmonic’ representative: a differential form w that represents this class and
is of minimal L? norm. Equivalently the form w is annihilated by the Hodge-Laplace
operator A. One gets

3-1 harmonic k-forms on M —> H*(M,C).
=RE(M)

Suppose furthermore that M is an n-dimensional complex Kdhler manifold. Then, its
holonomy group is contained in the unitary group U, C SOy, and there is an action of C*
on each tangent space that is preserved by parallel transport. This yields an action of C*
on differential forms with complex coefficients. A crucial aspect of the theory of Kéahler
manifolds is that this action preserves harmonic forms. It then follows from Hodge theory
that C* acts on the cohomology groups and this gives rise to the Hodge decomposition.

3.2 Matsushima’s formula. Let us now come back to the case of a compact locally
symmetric manifold I'\ S.

Because the cotangent bundle 7*(I'\S) is isomorphic to the bundle I'\G xx p* —
I'\G /K, which is associated to the principal K-bundle K — I'\G — T'\ S and the adjoint
representation of K in p*, the space of differential k-forms on I'\ S can be identified with
Homg (A¥p, C%®(I'\G)). The corresponding complex computes the (g, K )-cohomology
of C*®°(T'\G) — the subspace of smooth vectors in the right (quasi-)regular representation
of G in L*(T\G). One similarly defines the (g, K)-cohomology groups H*(g, K; )
of any unitarizable (g, K)-module (7, V). By a theorem of Harish-Chandra, the set of
equivalence classes of irreducible unitarizable (g, K )-modules is naturally identified with
the set of equivalence classes of irreducible unitary representations of G. In the following,
we will abusively use the same notation to denote an irreducible unitary representation
and its associated (g, K )-module of smooth vectors.
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The decomposition of A®p* into irreducible K-modules induces a decomposition of
the exterior algebra A*T*(T'\S) = I'\G xg A*(p*). This decomposition commutes with
the action of the Hodge-Laplace operator, giving birth to a decomposition of the cohomol-
ogy H*(I'\S, C) which refines the Hodge decomposition if S is Hermitian symmetric
and gives an analogous decomposition of the cohomology in the case S is not Hermitian.
In both cases we will call this decomposition of H*(I'\ S, C) the generalized Hodge de-
composition; it is better understood in terms of cohomological representations through
Matsushima’s formula:

(3-2) *(I\S,C) @m (m.D)H*(g.K; 7).

Here the (finite) sum is over (classes of) irreducible unitary representations of G such
that H*(g, K; ) # 0 and m(7,T) is the (finite) multiplicity with which 7 occurs in the
quasi-regular representation L?(I'\G).

Cohomological representations of G are classified in terms of the 6-stable parabolic
subalgebras ¢ C g. Let @ = [ @ u be the #-stable Levi decomposition of q. We have
u=uN¥f@unp. Put R = dim(u N p). The line AR(u N p) generates an irreducible
representation V (q) of K in ARp.

The classification of unitary irreducible cohomological representations of G associates
to each 0-stable parabolic subalgebras g C g a cohomological representation A4 charac-
terized by the property that the only irreducible K-representation common to A®*p and A4
is the representation V' (q). Moreover, every cohomological representation is an A4, see
Vogan and Zuckerman [1984].

Each H*(g. K; A4 ) identifies with the cohomology — with degree shifted by R — of the
compact symmetric space associated to a subgroup L C G¢ with complexified Lie algebra
[. In particular, the component corresponding to the trivial representation of G in (3-2) is
isomorphic to H*(S¢, C). In the Hermitian case we recover Hirzebruch proportionality
principle.

If @ belongs to H&(T'\S,C) and, under the Matsushima decomposition (3-2), lies
in the component corresponding to some A, with R = dim(u N p), by analogy with
the notion of primitive class in the Hodge- Lefschetz decomposition, we refer to @ as a
strongly primitive class of type Agq.

3.3 Two families of examples.

3.3.1 Compact quotients of the symmetric space associated to PU(p, g). Then the
holonomy group is contained in U, x U, and S¢ is the complex Grassmannian Gr, (C?*9)
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of p-planes in CPT4, We first consider the decomposition of A®p* into irreducible K-
modules. The symmetric space S being of Hermitian type, the exterior algebra A®p de-
composes as:

(3_3) /\0 p — /\.p/ ® /\.p//

where p’ and p” respectively denote the holomorphic and anti-holomorphic tangent spaces.
In the case ¢ = 1 —then S is the complex ball of dimension p — it is an exercise to check
that the decomposition of (3-3) into irreducible modules recovers the usual Lefschetz de-
composition. But, in general, the decomposition is much finer, and it is hard to write
down the full decomposition of (3-3) into irreducible modules. Indeed: as a representa-
tion of GL ,(C) x GL4(C) the space p’ is isomorphic to V. @ V* where V. = C? (resp.
V_ = C1) is the standard representation of GL,(C) (resp. GL,(C)) and the decomposi-
tion of A®p’ is already quite complicated (see Fulton [1997, Equation (19), p. 121]):

(3-4) ARV @ V) = P Sa(Ve) ® Sax (Vo)™
AFR

Here we sum over all partitions of R (equivalently Young diagrams of size |A| = R) and
A* is the conjugate partition (or transposed Young diagram).

However, the classification of cohomological representations we just alluded to implies
that very few of the irreducible submodules of A®p* can occur as refined Hodge types of
non-trivial cohomology classes. This is very analogous to the Kodaira vanishing theorem.
The proof indeed makes a crucial use of a ‘Dirac inequality’ due to Parthasarathy, see
Borel and Wallach [2000, Lemma I1.6.11 and §11.7]. The vanishing theorem thus obtained
generalizes a celebrated result of Matsushima [1962].

The K-types V (q) that can occur are determined by admissible pairs of partitions (A, i)
i.e. partitions A and p as in (3-4) and such that if A (resp. p) is on the top left (resp. bottom
right) corner of the rectangle p X ¢ as pictured below (with p = 4,9 =7, = (6,6, 2,0)
and u = (5,2,1,0)), the complementary boxes form a disjoint union of rectangles p; x
g1 U...U pr x g, (in the example below 1 x 2 U 1 x 3 U 1 x 1), see Bergeron [2009,
Lemme 6].

L]
L]
¥|*x| @ | @

k| x|k

We denote by V (A, i) the corresponding K-type. In particular the K-module V(1) :=
V(A,0) is isomorphic to S (V1) ® Sy« (V-)*. In general V (A, u) is isomorphic to the
Cartan product of V(1) and V (u)*. The first degree where such a K-type can occur in
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the cohomology is R = |A| 4+ |u|. More precisely, it contributes to the cohomology of
bi-degree (|A[, |i|) in the Hodge-Lefschetz decomposition and we have:

H*(q,K; Ag) = H* R(Gr), (CP1T91) x ... x Gr, (CPrtdr) C).

Matsushima’s formula (3-2) then strongly refines the Hodge-Lefschetz decomposition of
compact quotients I'\ S.

Example. Take p = 2 and ¢ = 2. Compact quotients I'\ S’ are 4-dimensional complex
manifolds. Their Betti numbers satisfy the relation by = bg_j because of Poincaré duality.
They moreover decompose as sums by = Y p+q—k 71 of Hodge numbers that satisfy
hP4 = p?9P. But more is true: the vector (bo, ..., bg) of Betti numbers of a compact
quotient I'\ S is actually of the form

(-5 + 2h*° + (k" —=1) 230 4 p21) Tk

O, ONOFOR
OO RO OFROO
OO, ONOHFHOO
OO OO, OOO
eNeNoNBel = leNole]

for some integer k > 0. The first vector indeed corresponds to the component of the
trivial representation in Matsushima’s formula. The second term corresponds to the com-
ponents of the cohomological representations A with R = 2 that contribute either to the
holomorphic or anti-holomorphic cohomology. Their associated pairs of partitions (4, i)
are

L] * |k

The third term corresponds to the components of the (unique) cohomological representa-
tion Aq with R = 2 that contributes to the cohomology of bi-degree (1,1). Its associated
pair of partitions (A, u) is

And so on...

3.3.2 Compact quotients of the symmetric space associated to SOy (p, ¢). Eventhough
these are not Hermitian in general, Matshushima’s formula still makes sense. Considera-
tions, similar to those in the unitary case, show that cohomological representations of G are
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essentially' parametrized by partitions A = (X1,...,4,), withg > 21 > ... > 1, >0,
such that the pair (1, 1) is admissible.

Example. Take p = 5 and ¢ = 4. Compact quotients I'\ S are 20-dimensional real man-
ifolds. Their Betti numbers satisfy the relation by = boy_ because of Poincaré duality.
But more is true: the Betti numbers of a compact quotient I\ S actually verify the relations

(3-6) by =by = b3 =0, bg> 2b6 and b10 > 3b6

Hyperbolic manifolds of dimension #n correspond to p = n and ¢ = 1. Then Mat-
sushima’s formula essentially gives no restrictions on the Betti numbers.’

Among the family of symmetric spaces associated to SOg(p, ¢), the ones where ¢ = 2
are — up to exchanging the roles of p and ¢ — the only Hermitian spaces; these are of
complex dimension n = p. In these cases, K C O, X Oy acts on p = C" ® (C?)*
through the standard representation of O,, on C” and the standard representation of O on
C2. Denote by CT and C~ the C-span of the vectors e; +iep and e; — ies in C2. The
two lines CT and C~ are left stable by O,. This yields a decomposition p = p™ & p~
which corresponds to the decomposition given by the natural complex structure on pg. For
each non-negative integer k the K-representation Akp = AK (pt @ p~) decomposes as
the sum:

/\kp — @ /\err R /\SD_-
r+s=k
The K-representations A”p+t ® ASp~ are not irreducible in general: there is at least a
further splitting given by the Lefschetz decomposition:

min(7,s)
/\rp+ NPT = @ Tr—l,s—L-
£=0
One can check that for 2(r +s) < n each K-representation t, s is irreducible. Moreover in
the range 2(r + ) < n only those with r = s can occur as a K-type V (g) associated to a
cohomological representation. One can moreover check that each 7, , is irreducible as long
as r < n; it is isomorphic to some V' (q) and corresponds to the partition A = (2;, 05— ).>
Let us denote by A, , the corresponding cohomological representation. We have:

C ifr<i=j<n-—r 2i#n
H"(q,K;Ar;) =4 C+C if2i =2 =n
0 otherwise.

I'This is completely true only if both p and g are odd.
2To be precise it gives no restriction at all if 7 is odd and one recovers that by 2 is evenifn is even.
3When 2(r + s) > n the partitions (2, 15, 0p—r—s) also correspond to cohomological representations.
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In the particular case where n is even and (r,r) = (0,0) — so that Ay is the trivial
representation —we have H* (g, K; Ago) = H*(S¢, C), where S¢ = SO(n+2)/SO(n) x
SO(2) is the complex quadric. The space H*(S¢, C) has a basis {1, c1, c%, . Cil_l, e},
where ¢y is the Chern class of the complexification of the line bundle arising from the
standard representation of SO(2), i.e. the Kéhler form on S¢, and where e is the Euler
class of the vector bundle arising from the standard representation of SO(n).

4 Betti numbers of locally symmetric manifolds

One may wonder:
what are the Betti numbers of a random locally symmetric space ?

A classical theorem of Gromov (see Ballmann, Gromov, and Schroeder [1985]) bounds
from above the Betti numbers of a locally symmetric space by a constant (depending only
of the dimension) times its volume. It is therefore natural to investigate the growth of
the Betti numbers as the volume tends to infinity. The analogous question for complex
hypersurfaces in P"*1 is classical.

4.1 Comparison with projective hypersurfaces. The fundamental projective invari-
ant of an n-dimensional algebraic variety V' C P¥ is its degree d which is also equal to
the volume — with respect to the standard Kéhler form on PV — divided by n!.

In case V C P"*! is an hypersurface, by standard arguments involving Lefschetz Hy-
perplane Theorem and Poincaré duality (see e.g. Gayet and Welschinger [2014, Lemma
3]), we have by (V) = by (P") for k # n. On the other hand, the Euler-Poincaré charac-
teristic of V' is equal to

X(V) = (ealTy), V) = 2 [(1 =)™ = 1] 4n 4 2

It follows that the growth of the Betti numbers of V' with respect to the degree d is given
by

0o(1) ifk #n
@D =0 vy + 01) = amtt 1 0@n) itk =,

4.2 Asymptotics of Betti numbers of locally symmetric manifolds. It is not obvious
at all that large volume locally symmetric S-manifolds should have related topological
behavior. However, one consequence of Abert, Bergeron, Biringer, Gelander, Nikolov,
Raimbault, and Samet [2017] and Abert, Bergeron, Biringer, and Gelander [n.d.] is the
following theorem that is analogous to (4-1).
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Theorem 1. Suppose that G has property (T) and rank at least two. The growth of the
Betti numbers of locally symmetric S-manifolds is given by

o (vol(T'\S)) ifk # LdimS
PRINS) =0 289 vol(1\$) + 0 (vol (1)) ifk = L gim s.

Example. Letn > 3 and let (I';,) be a sequence of distinct torsion-free lattices in SL, (R).
Then for all k, we have bg (I'y,) = o(vol(T',,\SL, (R))) as m — +oo0.

Hyperbolic spaces have a rank one group of isometries and it is not hard to construct ex-
amples of large volume hyperbolic manifolds with very different topologies, see e.g. Berg-
eron [2017] for many examples. This allows in particular to construct counter-examples to
the conclusion of Theorem 1. However recent works of Fraczyk [2016] and Fraczyk and
Raimbault [n.d.] imply that this conclusion holds for congruence arithmetic hyperbolic
manifolds. More generally they prove:

Theorem 2. Let S be arbitrary. The growth of the Betti numbers of congruence arithmetic
S-manifolds is given by

o (vol(T'\S)) ifk # 5 dimS
br(I'\S) = v)f,l((S;C)) vol(T\S) 4 o (vol(T'\S)) ifk = ;dim S.

Outside the middle degree it is hard to guess what should be the ‘true’ growth rate of the
Betti numbers. For congruence arithmetic real hyperbolic manifolds I'\ H", associated to
a fixed rational group H (see Section 2.2), it was suggested by Gromov (see Sarnak and
Xue [1991]) that

(4-2) br(T\H") <p.s vol(I'\H")1+¢,

Cossutta and Marshall [2013] suggest — and actually prove in a quite general situation —
that the best exponent is in fact 2j /n as long as k # (n £ 1)/2. See Marshall [2014] for
similar results on other classes of symmetric spaces.

Remark. In a way that is quite similar to Bismut’s proof of Demailly’s asymptotic
Morse inequalities (see Bismut [1987] and Demailly [1985]) for projective varieties, the
existence of an upper bound sublinear in the volume is related (see e.g. the influential
Sarnak and Xue [1991]) to the existence of a spectral gap for the Hodge-Laplace operator
acting on differential k-forms with k # (n £ 1)/2:

Theorem 3. Let k be different from (n +1) /2. There exists a positive constant e = g(n, k)
such that for any congruence arithmetic real hyperbolic manifolds T\H", the first non-
zero eigenvalue of the Hodge-Laplace operator of T\IH" acting on differentiable k-forms
is bounded below by .
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This was conjectured in Bergeron and Clozel [2005] and proved in Bergeron and Clozel
[2013].

When k = (n + 1)/2 there is no spectral gap — the corresponding cohomological
representation of G is ‘tempered’ — and we do not know what to expect for the growth of
by (T'\H™"). However for particular sequences of I'’s, Calegari and Emerton [2009] were
able to prove an upper bound sublinear in the volume, see also Bergeron, Linnell, Liick,
and Sauer [2014].

4.3 Explicit computations. Matsuhima’s formula and the classification of cohomolog-
ical representations imply many restrictions on the Betti numbers (e.g. in small degree
some vanishing results or equality with the corresponding Betti numbers of S¢). Apart
from these restrictions, explicit computations of the Betti numbers of a fixed locally sym-
metric space ['\ S in terms of the algebraic data defining I" is usually a challenge. Very
few cases are known. One of the first results of this type is the computation, by J.-S. Li
[1996], of the dimension of the L2?-cohomology space of degree g of certain congruence
arithmetic quotients of the Siegel upper half space of genus g.

The proof is divided into two parts. First, relying on previous works of Howe, Jian-
Shu Li proves that the cohomology is generated by certain theta series. Then he computes
the dimension of the space generated by these theta series. More recently in Bergeron,
Millson, and Moeglin [2017] and Bergeron, Z. Li, Millson, and Moeglin [2017] we were
able to prove that a large part of the cohomology of certain locally symmetric spaces
associated to SOg(n, 2) is generated by certain theta series. Using previous computations
by Bruinier [2002] of dimensions of the spaces generated by these theta series we get
explicit expressions for certain Betti numbers. We prove in particular:

Theorem 4. The rank of the Picard group of the moduli space X ¢, defined in Section 2.3,
is

3lg+24 1 1 SN k2 k2
 aRE TSR M i B3

—Og — — €eZ,0<k<g-1
24 1% 76T T o ag—a 1g —4 =r=8
where
0, if'g is even, (£%)-1  ifg=1 mods3,
%= (§§Z§) otherwise, £ (4‘2—,15) + (gT_l) otherwise,

and () is Jacobi symbol.

5 Cycle theory

Let M be a (closed) manifold. So far, we have computed the cohomology of M using
smooth differential forms. We could as well have used currents. The resulting cohomology
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groups H*(M,C) are the same (and similarly for the groups occurring in the Hodge-
Lefschetz or Matsushima decompositions). If Z is a closed orientable submanifold of real
co-dimension k, it is an integral cycle and, by Poincaré duality, it defines a class cl(Z) in
H¥(M, C). The integration current on Z is closed of degree k and represents the image
ofcl(Z) in HK (M, C).

By a classical theorem of Thom, any class in the rational cohomology groups H (M, Q)
is a rational multiple of the cycle class cl(Z) of a (maybe disconnected) co-dimension &
closed submanifold. When M is locally symmetric, it is natural to ask if one can restrict
our choices of closed submanifold, e.g. to certain locally symmetric subspaces associated
to subgroups H C G.

5.1 Comparison with projective varieties. In case M is a projective non-singular al-
gebraic variety V' C P¥ over C, it is natural to restrict to closed analytic subspaces
Z C V, or equivalenly, by Chow’s theorem, to algebraic cycles. Let p be the complex co-
dimension of Z in V. Two analytic subvarieties of complementary dimension meeting in
isolated points have a non-negative local intersection number. Since we can find a linear
subspace PV =2 in PV meeting V in isolated points, it follows that the cycle class cl(Z)
is non-zero in H2?(V,C). Now the integration current on Z is closed of type (p, p).
The class cl(Z) in H??(V, C) is hence of type (p, p). Rational (p, p)-classes are called
Hodge classes. They form the group Hdg” (V, Q) = H?P(V,Q) N H?-?(V), and Hodge
posed the famous:

Hodge Conjecture. On a projective non-singular algebraic variety over C, any Hodge
class is a rational linear combination of cycle classes cl(Z) of algebraic cycles.

Hodge also proposed a further conjecture, characterizing the subspace of H*(V, Q)
spanned by the images of cohomology classes with support in a suitable closed analytic
subspace of complex codimension k. Grothendieck observed that this further conjecture
is false, and gave a corrected version of it in Grothendieck [1969].

5.2 Modular and symmetric cycle classes. Let us come back to locally symmetric
manifolds I'\ S. To any connected center-free semi-simple closed subgroup H C G cor-
responds an embedding of the symmetric space Sy associated to H into S. If ' N H
is a lattice, the inclusion Sz <> S induces an immersion of real analytic varieties (I' N
H)\Su — I'\S whose associated cycle class in H*(I'\ S, C) we denote by Cj,. We will
refer to these classes as modular classes. When I'\ S is non-compact, C}; is sometimes
compactified to give a cycle on a natural compactification of I'\\S but we won’t discuss
these issues here.
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Examples. 1. When S is the real hyperbolic n-space H”, the modular classes in I"\ H"
are the cycle classes of totally geodesic immersed submanifold of finite volume.

2. In complex ball quotients, cycle classes of finite volume quotients of sub-balls give
examples of modular classes. These are the only modular classes that are cycle classes of
algebraic cycles but there might be other modular classes: to the inclusion SOg(n,1) C
PU(n, 1) corresponds a totally real geodesic embedding of the real hyperbolic n-space
into the complex n-ball that may projects onto a non-zero modular classes.

3. The moduli space X, of genus g quasi-polarized K3 surfaces — that identifies with
a locally symmetric space associated to G = SOg(2, 19) — can have arbitrarily large Pi-
card group (see Theorem 4) and, more generally, many classes of cycles in their Chow
groups. In particular there are many cycles coming from Noether-Lefschetz theory: the
locus parametrizing the K3 surfaces with Picard number strictly greater than some positive
integer r < 19 = dimc X is indeed a countable union of subvarieties of co-dimension r.
The cycle classes of the irreducible components of this locus are modular classes associ-
ated to subgroups H C G isomorphic to SOg(2, 19 — r). As in the case of ball quotients
there are also non-algebraic modular classes.

There are a number of results on modular classes, but our current knowledge never-
theless appears to be quite poor: a large part of the literature on modular classes is only
concerned in establishing the non-vanishing of these classes. As in the case of analytic
subspaces of projective varieties, this has been addressed using the intersection numbers
of these cycles, see e.g. Millson [1976], Millson and Raghunathan [1980], and Kudla
and Millson [1990]. This has also been addressed using tools coming from representation
theory, see especially Tong and Wang [1989] and J.-S. Li [1992]. This non-vanishing
question is usually too hard to study for a given manifold; one simplifies the problem by
‘stabilizing’ it, that is to say by considering towers of finite coverings rather than a single
manifold. Let us say that a modular class C II_} is virtually non-zero if there exists a finite
index subgroup I C I" such that the modular class C II_}/ is non-zero in H*(I"\ S, C).

The following conjecture — see Bergeron [2006] for more details (in particular with
respect to non-compact quotients I'\S) — provides a quite general answer to the question
of the virtual non-vanishing of modular classes. To our knowledge this conjecture encom-
passes all known results. It has been (or can be) checked in most classical situations (see
especially Bergeron [2006], Bergeron [2008], and Bergeron and Clozel [2013, 2017]). To
formulate it, let us first distinguish some particular modular symbols. Say that a closed
subgroup H C G is a symmetric subgroup of G if there exists an involution t of G such
that H = GT is the connected component of the identity in the group of fixed points of
7. We will refer to the corresponding modular classes C }; as symmetric modular classes.
All the modular classes from the examples above are symmetric.
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Conjecture 5. Assume for simplicity that '\ S is compact. A symmetric modular class CII;
is virtually non-zero in the strongly primitive part of the cohomology of degree dim S —
dim Sy if and only if rankc (G /H) = rankc (K /(K N H)).

5.3 Hodge types of modular classes. Keeping in mind the analogy with projective
varieties, the next step is to determine on which Hodge types of the cohomology of I'\ S
modular classes can project non-trivially. Up to now it seems to have been addressed only
in few particular cases. As explained in his 2002 ICM talk Kobayashi [2002], jointly with
Oda, Kobayashi has devised a sufficient criterion for a modular class to be annihilated by
a sr-component in Matsushima’s decomposition (3-2). Their proof is based on a theory of
discrete branching laws for unitary representations of G. The most interesting cases they
can deal with are compact quotients of the symmetric space S = SOg(2n,2)/SO2, X
SO,. If T'\S is a compact S-manifold, the contribution of the trivial representation of
G to Matsushima’s formula (3-2) yields a natural injective map of cohomology groups
H*(S¢,C) c H*(T'\S, C); in particular we shall see the Euler class e € H""(S¢,C),
defined in Section 3.3.2, as an element in H™" (T'\ S, C). Kobayashi and Oda then prove:

Theorem 6. The Hodge (n,n)-type component of a modular class C; with H = SOg(2n, 1)
is proportional to the Euler class e.

These modular classes are cycle classes of totally real, totally geodesic submanifolds of
real dimension 27 into I'\ § which is a Kahler manifold of complex dimension 2n. In case
n = 1 the space S is a product H? x H? and the cycles derived from H are obtained by
‘partial complex conjugation’ of algebraic cycles with respect to the complex conjugation
on the second factor of S. Then Theorem 6 is equivalent to the well-known fact that the
cycle class of a closed analytic (complex) co-dimension 1 subspace in a compact algebraic
surface over C has no Hodge (2, 0) + (0, 2)-type components.

Beside the representation theoretic method of Kobayashi and Oda, a classical work of
Kudla and Millson [1990] suggests another approach. Kudla and Millson indeed provide
explicit dual forms to some natural modular classes in locally symmetric spaces associated
to classical groups. From this, one can derive serious restrictions on the possible Hodge
types to which these modular classes can contribute. Let’s describe the two main families
of examples.

5.3.1 Quotients of the symmetric space associated to PU(p, g). Letnotations be as in
Section 3.3.1. Let ¢g € H?4(S¢, C) be the top Chern class of the g-dimensional vector
bundle over S¢ = U,.,/U, x U, associated to the standard representation of Uy, i.e.
the ¢-th power of the Kéhler form of S¢. Here again if I'\S is a compact S-manifold,
the contribution of the trivial representation of G to Matsushima’s formula (3-2) yields
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a natural injective map of cohomology groups H*(S¢,C) Cc H*(T'\S, C) and we shall
see the Chern class ¢; € H?4(S¢, C) as an element in H?4(T"\ S, C). Wedging with ¢,
corresponds to applying the g-th power of the Lefschetz operator associated to the Kéhler
form on I'\S, and we define the subset SH*(T'\ S, C) of special cohomology classes in
H*(T\S,C) by

min(p—a,p—b)

(5-1) H*(I'\S.C) = @ @ ckHOP*A(T\§, C),

a,b=0

where H?*2:2*4(T'\§, C) denotes the generalized Hodge subspace of the cohomology
corresponding to the pair of partitions (A, ) with A an a by ¢ rectangle and  a b by ¢
rectangle. As with the usual Hodge-Lefschetz decomposition, we have:

D
H*(I\S.C) = € SH*"(I'\S.C)
a,b=0

where the (usual) primitive part of the subspace SH?%P4(I'\S,C) is exactly
H@*¢bxa(T\§, C).

Now the proof of Bergeron, Millson, and Moeglin [2016, Theorem 8.2] implies the
following:

Proposition 7. Let r be a non-negative integer with r < p and let C}; be a modular
class in H*4(T'\S, C) with H = PU(p —r.q). Then Cy, is an algebraic class and it is
contained in SHdg" (I'\S, Q) := SH"™?"4(I'\S,C) N H?>"4(I'\S, Q).

5.3.2 Quotients of the symmetric space associated to SO (p,q). Similarly and with
notations as in Section 3.3.2, any modular class C},, with H isomorphic to a smaller
orthogonal group fixing a positive subspace, is contained in

(5-2) SH*(T\S,C) = @/ @2 ek H™ 4 (I'\5,C).

Here ¢, is zero if ¢ is odd and is the Euler class arising from the standard representation
of SO, if g is even. We then write SHdg" (I'\ S, Q) = SH™¥(T'\S,C) N H™(T'\ S, Q).

Examples 1. If ¢ = 1 the space S is the p-dimensional hyperbolic real space and the
subspace SH*(T'\ S, C) is in fact equal to the full cohomology group H*(I'\ S, C).
2. If ¢ = 2 the space is Hermitian and we have:

SH*(I'\S.C) = ®”_,H"" (I'\S. C).

Beware that in this case the Euler class e5 is the class of the Kihler form that we denoted
c1 in Section 3.3.2.
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5.4 Hodge type theorems. Modular cycle classes belong to a subspace
SHdg®(T'\ S, Q) of the full cohomology group H*(T'\S,C). Everything is therefore in
place to raise a question analogous to the Hodge Conjecture:

Do modular cycle classes span the subspace SHdg®(T'\ S, Q)?

We shall see that it is too much to hope for in general, but surprisingly enough this is close
to be true in several interesting cases. Let us again consider our two main families of exam-
ples. Both cases are dealt with in joint works with Millson and Moeglin. The proofs rely
heavily on Arthur’s classification Arthur [2013] of automorphic representations of classi-
cal groups which depends on the stabilization of the trace formula for disconnected groups
discussed in Waldspurger’s 2014 ICM talk Waldspurger [2014] and recently obtained by
Mceeglin and Waldspurger [n.d.].

5.4.1 A Hodge type theorem for quotients of the symmetric space associated to
PU(p,q). Even in the simple case where p = 2 and ¢ = 1 — so that S is the complex
2-ball — it was proved by Blasius and Rogawski [2000] that there exist compact quotients
I'\'S such that the space of Hodge (1, 1)-classes is not spanned by modular classes. How-
ever, vaguely stated, the main result of Bergeron, Millson, and Moeglin [2016] asserts
that for congruence arithmetic quotients I'\ S (with arbitrary p and ¢’s) the special coho-
mology SH™ (I'\ S, C) is generated, for n small enough, by cup products of three types of
classes:

* classes in SH?4(I'\S,C);

» holomorphic and anti-holomorphic special cohomology classes, i.e. classes in SH *?(T'\ S, (
and SH%*(I'\S,C);

» modular cycle classes of Section 5.3.1.

5.4.2 A Hodge type theorem for quotients of the symmetric space associated to
SOo(p,q). Inthatcase, vaguely stated, the main result of Bergeron, Millson, and Moeglin
[2017] states that as long as 7 is less than % p and %( p +¢q — 1), the ‘primitive’ subspace
H"™4(T\S,C) of SH™(T'\ S, C), in the decomposition (5-2), is spanned by projections
of modular cycle classes.

5.5 Applications.

5.5.1 . The most striking consequences of the above mentioned ‘Hodge type theorems’
concern the cases where S is a complex ball or a real hyperbolic space. Indeed, in these
cases SH*(I'\S,C) = H*(I'\S, C) and we obtain the two following theorems.
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We first have to define more precisely the congruence arithmetic locally symmetric
space we deal with: let E be either a totally real number field or a totally imaginary
quadratic extension of a totally real number field. In both cases we denote by F the max-
imal totally real subfield of E. Now let V be a E-vector space of dimensionn + 1 > 3
andleth : V x V — E be a Hermitian form with respect to the conjugaison of E/F,
such that / is of signature (n, 1) at one real place of F and definite at the others. Let H be
the semi-simple algebraic Q-group obtained from the algebraic F-group SU(%) by restric-
tion of scalars. To any congruence subgroup in H(Q) we attach a congruence arithmetic
quotient I'\'S' where S is the real hyperbolic n-space, if E = F, and the complex n-ball,
otherwise.

Theorem 8. Suppose that T'\S is a closed complex n-ball quotient and let
r € [0,n]\]%. 2[. Then every Hodge class in H*" (I'\S, Q) is algebraic.

Remarks. 1. Beware that here modular cycle classes do not span, even in co-dimension 1.
One has to consider arbitrary (1, 1)-classes.

2. In small degree one can even confirm Hodge’s generalized conjecture in its original
formulation (with Q coefficients).

Theorem 9. Suppose that T\S is a real hyperbolic n-manifold. Then, for all r < n/3,
the Q-vector space H™ (T'\S, Q) is spanned by classes of totally geodesic cycles.

Remarks. 1. In Bergeron, Millson, and Moeglin [2017] we provide strong evidence that
Theorem 9 should not hold above the degree n/3.

2. When 7 is even, all congruence arithmetic real hyperbolic #n-manifolds are of the
simple type described above. However, when 7 is odd, there are other types of congruence
arithmetic real hyperbolic #-manifolds. These do not contain totally geodesic immersed
co-dimension 1 submanifolds. Still, they may have a non-zero first Betti number. Theo-
rem 9 therefore cannot hold for general (congruence arithmetic) hyperbolic manifolds.

5.5.2 . When G = SOg(n,2) the space S is Hermitian and our general ‘Hodge type
theorem’ again specializes into new cases of the Hodge conjecture. Let us emphasize
the even more special case of the moduli spaces K¢ (in which cases we have n = 19): a
theorem of Oguiso [2009] indeed implies that any curve on K, meets some of the Noether-
Lefschetz (NL) divisors described in Example (3) of Section 5.2. So it is natural to ask
whether the Picard group Picg (¥, ) of X with rational coefficients is spanned by NL-
divisors. This was conjectured to be true by Maulik and Pandharipande, see ‘Noether-
Lefschetz Conjecture’ Maulik and Pandharipande [2013, Conjecture 3]. More generally,
one can extend this question to higher NL-loci on g. In Bergeron, Z. Li, Millson, and
Moeglin [2017], we prove:
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Theorem 10. Forall g > 2and all r < 4, the cohomology group H*" (X ¢, Q) is spanned
by NL-cyles of codimension r. In particular (taking r = 1), Picg(Xg) = H?(Xg, Q) and
the Noether-Lefschetz Conjecture holds on X4 for all g > 2.

Remark. Before Bergeron, Millson, and Moeglin [2017], He and Hoffman [2012] consid-
ered another interesting special case of our general ‘Hodge type theorem,’ that of smooth
Siegel modular threefolds ¥ where p = 3 and ¢ = 2. They prove that Pic(Y) ® C =
HUY'(Y) is generated by Humbert surfaces.

6 Automorphic Lefschetz properties

Almost 40 years ago Oda [1981] proved that the Albanese variety of a congruence arith-
metic complex ball quotient is spanned by the Hecke translates of the Jacobian of a fixed
Shimura curve. This implies a version of the Lefschetz Theorem on the injection of the
cohomology to Shimura curves that can arguably be considered as the starting point of the
analogy between locally symmetric spaces and projective varieties that we are discussing
here. Since Oda’s pioneering work, a number of criteria have been developed to deter-
mine if some Hecke translate of a given cohomology class on a locally symmetric space
restricts non-trivially to a given locally symmetric subspace. Venkataramana’s ICM 2010
talk Venkataramana [2010] was devoted to this subject. We shall therefore insist on results
obtained since then.

6.1 Comparison with projective varieties. Let VV C P¥ be a projective non-singular
algebraic variety and V' N H a hyperplane section of V. Then we have the

Lefschetz Hyperplane Theorem. The restriction map
(6-1) H'(V,Q)— H' (VN HQ)
is an isomorphism for i < n — 2 and injective fori =n — 1.
This theorem in fact contains two quite different statements:
1. the map (6-1) is injective fori < n,
2. themap H;(V N H,Q) — H;(V,Q) is injective for i > n.
6.2 Restriction to special cycles. The Lefschetz Hyperplane Theorem applies to com-
pact quotients I'\S of Hermitian symmetric spaces but modular classes are not ample.

However, one may consider all the translates of these modular classes under Hecke oper-
ators and ask for a weaker Lefschetz property for the collection of these Hecke translates.
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And a large number of such ‘weak Lefschetz properties’ indeed hold even when the sym-
metric space S is not Hermitian, see e.g. Bergeron [2006]. Since the general results require
a rather forbidding amount of notation we restrict our discussion to the special situation
of Section 5.5.1.

In this situation, to any non-degenerate, indefinite, subspace W C V defined over
E we attach a special cycle 'y \Sw — I'\S. It is of real dimension m[E : F|. The
following theorem is our analogue of the first part of Lefschetz Hyperplane Theorem.

Theorem 11. For every m < n, there exist (m + 1)-dimensional subspaces Wy, ..., W
in V such that the restriction map

(6-2) H'(T\S.Q) > @ H' (T'w;\Sw;. Q)
F

is injective for all i < %m[E : F and fori = %m[E : F]if T\S is closed.

The theorem can be reformulated using Hecke correspondences: to any F-rational
element g of the isometry group of 2 we may associate a finite correspondence (I' N
g 'Tg)\S = TI'\S where the first projection is the covering projection and the sec-
ond projection is induced by the multiplication by g. Write C; : H*(I'\S,Q) —
H*(T'\S, Q) for the induced endomorphism. Theorem 11 then says that if « is a non-zero
class in H'(I'\S,Q) of degree i < i dimg Sy, then there exists a g such that Cy(a)
pulls back non-trivially to I'y \ Sy .

For compact ball quotients, the theorem is due to Oda [1981] in degree i = 1, and
to Venkataramana [2001] — confirming a conjecture of Harris and J.-S. Li [1998] — for
all degrees. The essential point (in the case n = m + 1) is that a linear combination
of the divisors I'y, \Sw, — I'\S gives a particular ample class, the hyperplane class in
the canonical projective embedding of I'\S. The Lefschetz property then follows from
the hard Lefschetz theorem. For non-compact ball quotients, one can combine Venkatara-
mana’s idea with the study of compactifications, see Nair [2017]. It may appear quite
surprising that the theorem holds for real hyperbolic manifolds. This is again a topolog-
ical consequence of the spectral gap Theorem 3. This approach gives a unified proof of
Theorem 11, see Bergeron and Clozel [2013, 2017].

6.3 Another type of Lefschetz property. As for the second part of Lefschetz Hyper-
plane Theorem, let us mention the following homotopical analogue of it, see Bergeron,
Haglund, and Wise [2011].

Theorem 12. A closed arithmetic hyperbolic manifold T\H" virtually retracts onto any
of its co-dimension 1 modular cycle.
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In other words: if A\H"”~! — T"\H" is a totally geodesic immersion and if we write
t : A — T for the corresponding (injective) morphism, there exists a finite index subgroup
I" C T and a morphism r : IV — A such that ((A) is contained in IV and ro¢ : A — A is
the identity map. In particular the induced map

Hi (A\H”il, Q) —> Hi (F/\Hn, Q)

is injective for all i > 0.

The proof of Theorem 12 is very specific to arithmetic hyperbolic manifolds that con-
tain co-dimension 1 modular cycles; it uses that the group I' may be ‘cubulated’ (in the
sense of Wise [2014]). It is a very interesting open question to decide which lattices of
SOq(n, 1) can be cubulated, but it is known that lattices in all other real simple Lie groups
cannot. Of course, this does not prevent Theorem 12 to hold for other locally symmetric
spaces, but to my knowledge no other examples are known to (homotopically) retract onto
a locally symmetric proper subspace except for a small finite number of beautiful exam-
ples, due to Deraux [2011], of complex 2-ball and 3-ball quotients that retract onto one of
their totally geodesic submanifolds.

However, thanks to spectral gap properties as in Theorem 3, the homological conse-
quences of Theorem 12 are more tractable in general, see Bergeron [2006]. In the special
situation of Section 5.5.1 one can for example prove the following analogue of the second
aspect of Lefschetz Hyperplane Theorem, see Bergeron and Clozel [2013].

Theorem 13. Suppose that T'\S is closed. Let W be a subspace of V. There exists a finite
index subgroup I'" C T such that the natural map

(6-3) H;(Ty\Sw.Q) — H;(I"\S.Q)

is injective for all i > % dimp S.

6.4 Some refined analogies with specific projective varieties: Abelian varieties. The-
orem 9 is an analogue, in constant negative curvature, of the classical fact that cycle classes
of totally geodesic flat sub-tori span the cohomology groups of flat tori. In fact if 4 is an
Abelian variety, in most interesting cohomology theories H®(A) is an exterior algebra on
H'(A). Inparticular, if A is sufficiently general, the algebra of Hodge classes is generated
in degree 1 and the Hodge conjecture follows.

Quite surprisingly, in small degrees, the cohomology rings of congruence arithmetic
locally symmetric manifolds enjoy structural properties very analogous to those of Abelian
varieties. Here again we discuss only the special situation of Section 5.5.1. Suppose
furthermore that '\ S is closed and write Hdg®(T'\S, Q) = H*(T'\S,Q) if E = F, i.e.
if § is a real hyperbolic space H”. First, the proofs of Theorems 8 and 9 imply:
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Theorem 14. The natural morphism of algebras
(6-4) A® Hdg'(T'\S, Q) — Hdg*(I'\S, Q)
is onto in degree < n/3.

As opposed to what happens with Abelian varieties, the map (6-4) is not injective in
general (already when I'\ S is a real hyperbolic surface). The next theorem — see Bergeron
and Clozel [2013, 2017] — nevertheless shows that it is injective “up to Hecke correspon-
dences.’

Theorem 15. Let o and B two cohomology classes in H®*(T'\S, Q) of respective degrees
k and L withk +{ < % dimg S. Then, there exists some rational element g of the isometry
group of h such that

Cr(e) AB #0in H (M, Q).

For complex ball quotients Theorem 15 is due to Venkataramana [2001]. Parthasarathy
[1982], Clozel [1992, 1993] and Venkataramana [2010] have general results of this type for
other Hermitian spaces, see also Bergeron [2004]. In Bergeron [2006] we consider more
general non Hermitian locally symmetric spaces. Here again the key input is a spectral
gap theorem.

7 Periods

Algebraic varieties admit a panoply of cohomology theories, related over C by compar-
ison isomorphisms. These give rise to different structures on the cohomology groups.
Comparing two such structures leads in particular to the rich theory of periods.

When dealing with general locally symmetric manifolds we don’t have all these co-
homology theories at our disposal anymore. However, using the canonical Riemannian
structure on S, we can extract some numerical invariants from the cohomology, which we
call ‘period matrices.’

7.1 Comparison with projective varieties. If I is a smooth projective variety defined
over Q, the vector space H*(V, C) has a natural Q-structure HX, (X /Q): choose a cover
of V by Zariski affine open sets defined over QQ and use algebraic differential forms with
coefficients in Q. A comparison theorem, due to Grothendieck, gives a natural isomor-
phism HY (X/Q) ® C =~ H*(V,C).

One calls periods the matrix coefficients of the comparison isomorphism

HE(X/Q)® C = HY(V,Q)® C
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between algebraic de Rham cohomology and singular cohomology after choosing Q-bases
in both groups. In general these two different Q-structures are transcendent with respect
to each other and periods are fundamental numerical invariants, see e.g. Kontsevich and
Zagier [2001].

7.2 Period matrices of locally symmetric spaces. Let us come back to locally sym-
metric manifolds I'\'S. Through the isomorphism (3-1), the Riemannian structure on S
induces a positive definite quadratic form on each cohomology group H/(I'\ S, Z) mod-
ulo torsion. Letting b = b;(I'\S), we encode the above data into a matrix

M= (/ wg) € GLy(R)
Yk 1<k,l<b

where the y, € H;(T'\S,Z) project to a basis for H;(I"\ S, Z) modulo torsion and the
wg’s are an orthonormal basis for the space of harmonic j-forms on I'\ S. The matrix M is
well-defined up to multiplication on the left by GL;(Z) and on the right by an orthogonal
matrix.

As an element of GLp (Z)\GLp(R)/Op, the matrix M is characterized by its determi-
nant and its image in the locally symmetric space that parametrizes the space of flat b-
dimensional tori of unit volume. In analogy with the classical Schottky problem, it would
be interesting to analyse the locus of the latter as I varies. Let us restrict our attention to
the apparently simpler question of bounding the determinant.

7.3 Regulators. Following Bergeron and Venkatesh [2013] and Bergeron, Sengiin, and
Venkatesh [2016] we call ‘degree j regulator’ the determinant of the degree j period
matrix of I'\ §; we denote it by R; (T'\S).

Note that |[Ro(T'\S)| = 1/+/vol(T'\S), |R,(T'\S)| = {/vol(T\S), and by Poincaré
duality, we have |R; (I'\S)R,—; (I'\\S)| = 1. We propose the following:

Conjecture 16. Fix S and j. The growth of the degree j regulators of congruence arith-
metic of S-manifolds is given by

log |R; (T\S)] = o(vol(T\S)).

In the next paragraph we relate Conjecture 16 to the geometric complexity of cycles
needed to generate H; (I'\S,R). ‘Hodge type theorems’ like Theorem 9 suggest that the
conjecture could be tractable when j is far enough from the middle degree. In general one
can think of Conjecture 16 as an attempt to shed little light on the mysterious cycle theory
of locally symmetric spaces near the middle degree.
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7.4 Backto cycles. Ourreason to believe in Conjecture 16 is that, roughly speaking, we
expect homology classes on congruence arithmetic manifolds to be represented by cycles
of low complexity. In our general situation, these cycles are not algebraic at all but one
may still hope that their topological complexity reflects the arithmetic complexity of their
(Langlands-)associated varieties.

In Bergeron, Sengiin, and Venkatesh [2016] we formulate and study the following pre-
cise conjecture in a simple interesting case, namely, that of congruence arithmetic hyper-
bolic 3-manifolds.

Conjecture 17. There is an absolute constant C such that, for any congruence arith-
metic hyperbolic 3-manifold T\H?, there exist immersed surfaces S; of genus less that
vol(T\H?)€ such that the [S;]s span Ho(I'\H? R).

To relate Conjecture 17 with Ro(I'\H?), we study the relationship between two norms
on the second homology group: the purely topological Gromov-Thurston norm and the
more geometric ‘harmonic’ norm. Refining Bergeron, Sengiin, and Venkatesh [ibid., Propo-
sition 4.1] Brock and Dunfield [2017] show that these two norms are roughly proportional
with explicit constants depending only on the volume and injectivity radius* of '\ H?.
Now, assuming Conjecture 17, each [S;] has Gromov-Thurston norm — and therefore
harmonic norm — which is bounded by a polynomial in vol(I'\H?). Thus Hadamard’s
inequality shows that | Ry (I'\H?3)| < vol(I'\H3)C?: (N\H?)

Remarks. 1. Conjectures 16 and 17 are false if the manifolds are not assumed to be con-
gruence arithmetic: Brock and Dunfield [ibid., Theorem 1.5] indeed construct a sequence
of closed hyperbolic 3-manifolds M, (whose injectivity radii stay bouded away from 0)
with

log | Ry (M)

0.
vol(M,) g

vol(M,) — oo, b1 (My) =1 and lim sup
n

2. Under well believed number theoretic assumptions, in Bergeron, Sengtin, and Venkatesh

[2016] we notably verify Conjecture 17 when I'\H? is a congruence cover of a Bianchi
manifold with 1-dimensional cuspidal cohomology associated to a non-CM elliptic curve.
In that case the proof indeed relate the complexity of the Hy-cycle to the height of the as-
sociated elliptic curve (i.e., the minimal size of A, B so that its equation can be expressed
as y2 = x3 + Ax + B). That this might be a general phenomenon was also suggested in
Calegari and Venkatesh [2012].

“4which is expected to be uniformly bounded away from 0 on arithmetic manifolds
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8 Some regrets

Many other interesting questions could (should?) have been discussed in this survey. Hy-
perbolic 3-manifolds form a particularly rich and interesting family of locally symmetric
manifolds. However: Matsushima’s formula gives no restriction on their cohomology
and most of these manifolds do not contain totally geodesic immersed submanifolds. It
may therefore appear that hyperbolic 3-manifolds are not really connected with our general
story. This is not quite true: Agol [2013, 2014] proof of the celebrated “Virtual Haken Con-
jecture’ suggests considering ‘almost geodesic’ cycles rather than just geodesic ones. We
haven’t addressed the rich relation between the cohomology of locally symmetric spaces
and number theory. Let us simply say that our original motivation for Conjectures 16
and 17 came from the study of torsion homology and its relation with Galois representa-
tions Scholze [2014]. Finally Venkatesh’s program Venkatesh [2017] suggests fascinating
relations between the period matrices of Section 7.2 and periods (in the usual sense) of
automorphic forms.

Acknowledgments. [would like to thank Miklos Abert, Tsachik Gelander, Laurent Clozel,
Etienne Ghys, Frédéric Haglund, Zhiyuan Li, John Millson, Colette Moeglin, Peter Sar-
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helpful conversations over the years on the material related to this survey.
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