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PERFECTOID SPACES AND THE HOMOLOGICAL
CONJECTURES

YVES ANDRE

Abstract

This is a survey of recent advances in commutative algebra, especially in mixed
characteristic, obtained by using the theory of perfectoid spaces. An explanation of
these techniques and a short account of the author’s proof of the direct summand con-
jecture are included. One then portrays the progresses made with these (and related)
techniques on the so-called homological conjectures.

1 The direct summand conjecture

Let R be a Noetherian (commutative) ring and S a finite ring extension, and let us consider
the exact sequence of finitely generated R-modules

(1-1) 0>R—>S—>S/R—0.

When does this sequence split? Equivalently, when is R — S pure, i.e. remains
injective after any base change? This holds for instance when R — § is flat, or when R
is a normal Q-algebra, but not in general (the embedding of Q[x, y]/(xy) in its normal
closure gives a counter-example, since it is no longer an embedding modulo x + y).

The direct summand conjecture, formulated by M. Hochster around 1969, claims that
(1-1) splits whenever R is regular. Hochster proved it when R contains a field Hochster
[1973]. R. Heitmann proved it in dimension < 3 R. C. Heitmann [2002].

Recently, the author proved it in general André [2016a]:

1.0.1 Theorem. (1-1) splits if R is regular.

This has many (non trivially) equivalent forms. One of them is that every ideal of a
regular ring R is contracted from every finite (or integral) extension of R. Another (more
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indirect) equivalent form is the following statement, which settles a question raised by L.
Gruson and M. Raynaud Raynaud and Gruson [1971, p. 1.4.3]":
1.0.2 Theorem. Any integral extension of a Noetherian ring descends flatness of modules.

We will see one more equivalent form below in the framework of the so-called homo-
logical conjectures (4.2).

2 The role of perfectoid spaces

2.1 Some heuristics. After Hochster’s work Hochster [1983], it is enough to prove the
direct summand conjecture in the case when R is a complete unramified local regular ring
of mixed characteristic (0, p) and perfect residue field k. By Cohen’s structure theorem,

one may thus assume R = W (k)[[x1, ..., x,]]-
In characteristic p, all proofs of the direct summand conjecture use the Frobenius en-
domorphism F in some way. In mixed characteristic, R = W (k)[[x1, ..., x,]] carries a

Frobenius-like endomorphism (acting as the canonical automorphism of W (k) and send-
ing x; to x{’ ), which however does not extend to general finite extensions S of R. To
remedy this, p-adic Hodge theory suggests to “ramify deeply”, by adjoining iterated p**
roots of p, x1, ..., x,. Doing this, one leaves the familiar shore of Noetherian commuta-
tive algebra for perfectoid geometry, recently introduced by P. Scholze [2012].

To begin with, W (k) is replaced by the non-Noetherian complete valuation ring X¢ :=

W (k)| pﬁ%"’] The valuation ring £° of any finite extension £ of the field K[%] satisfies:
(2-1

x+>xP? 1
F:L°%/p — &°/p issurjective, and £° is p »> -almost finite etale over X°,

this being understood in the context of almost ring theory, introduced by G. Faltings and
developped by Gabber and Ramero [2003], which gives precise meaning to “up to pﬁ%"’ -
torsion”; for instance, pﬂ%“—almost etaleness means that pﬁ%“Q goxe = 0. Actually,
Gabber and Ramero [ibid.] is much more general: it deals with modules over a commu-
tative ring up to £-torsion, for some idempotent ideal £. Going beyond the case of a val-

1 . .
uation ideal ¥ will be crucial: beside “p 7> -almost” modules, we will have to consider
“(pg) P* -almost” modules for some “geometric” discriminant g.

I¢f: Ohi [1996] for the equivalence. Gruson and Raynaud settled the case of a finite extension and outlined
that the transition to integral extensions is not a routine exercise.
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2.2 Perfectoid notions. In perfectoid geometry, one works with certain Banach? X-
algebras @. One denotes by @° the K?-subalgebra of power-bounded elements. One
says that @ is uniform if Q? is bounded, and that @ is perfectoid if it is uniform and

P
F:Q%p R @°/p is surjective. An example which plays a crucial role in the sequel

is O,-W(k)[pﬁ][[xl‘”l e Xt ]][%] , a deeply ramified avatar of R. Morphisms of per-
fectoid algebras @ — ® are continuous algebra homomorphisms (one then says that & is
a perfectoid ®-algebra).

Perfectoid algebras enjoy three fundamental stability properties Scholze [2012]:

2.2.1 Tensorproduct. If® and C are perfectoid ®-algebras, sois 8®q C, and (B®g C)°

1 .
is p P> -almost isomorphic to B°®go C°.

2.2.2  Localization. The ring of functions @{f} on the subset of the perfectoid space
Spa(@, @?) where | f| < |g| holds is perfectoid, and @{%}0 is pﬂ%"’—almost isomorphic

to (i"((g—//) ad ) for some approximations f', g’ of f.g which admit iterated p'"-roots in

2.2.3 Finite etale extension. Any finite etale extension & of Q is perfectoid, and ®° is

a pﬂ%"’—almostﬁnite etale extension of ®°.
This generalization of 2-1 to perfectoid algebras is Faltings’s “almost purity theorem’
Faltings [2002] as revisited by Scholze [2012] and Kedlaya and Liu [2015].

B

Let us explain how the second assertion of 2.2.3 follows from the first following André [2016b,
p- 3.4.2]. The idea is to reduce to the case when ® is Galois over @ with Galois group G, i.e.
BC =Qand BRg B > [1G ®. This implies ®°F = @°. On the other hand, since ® is a finitely
generated projective @-module, 8 ®gq B8 = B&®g®, and one deduces from 2.2.1 (assuming ®
perfectoid) that 8° ® go B° — [[gB%isap g -almost isomorphism. To get rid of the completion,
one passes modulo p: ®?/p™ is almost Galois over R?/p™, hence almost finite etale, and a
variant of Grothendieck’s “équivalence remarquable” Gabber and Ramero [2003, p. 5.3.27] allows
to conclude that B? it itself almost finite etale over R°.

2.3 Direct summand conjecture: the case when S [%] is etale over R[%]. Let us go
back to the direct summand conjecture for R = W (k)[[x1,...,x,]]. The special case

Zhere and in the sequel, one can work with any perfectoid field ¥ (of mixed char. (0, p)), - i.e. complete,
non-discretely valued, and such that F is surjective on ¢ /p. An extensive dictionary between the langage
of commutative algebra and the language of non-archimedean functional analysis is presented in André [2016b,
p.2.3.1].
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when S [%} is etale over R [%] was settled by B. Bhatt [2014] and by K. Shimomoto [2016],
using 2.2.3. Here is a slightly different account, suitable to the sequel.
1 1

OiW (k) [p 7 ][[x!" ..., %2 |[3] and

Let us consider the perfectoid algebra @ >

notice that @° = U; W(k)[pﬁ][[xf' ..., x7"]] is a faithfully flat extension of R. By
assumption B := S ®pr @ is finite etale over &, hence by 2.2.3, B is pﬂ%"’—almost
finite etale, hence almost pure (in the sense: almost universally injective) over R°. A
fortiori, (1-1) almost splits after tensoring with ®°. In other words, if e € Extx(S/R, R)
denotes the class corresponding to (1-1), then pﬂ%"’ (e ® 1) = 0 in Exth(S/R,R) ®r
®° = Extgo ((S ®r @%)/@°, @°). One concludes that e = 0 by the following general

elementary lemma (applied to M = Re and & = pﬂ%"’(i"):

2.3.1 Lemma. André [2016a, p. 1.1.2] Let R be a local Noetherian ring, M a finitely
generated R-module, A a faithfully flat R-algebra. Let & be an idempotent ideal of A
such that RM4 =0and RN K #0. Then M = 0.

2.4 The perfectoid Abhyankar lemma. In the general case, S @ g @ is no longer etale
over @: one must take into account a discriminant g € R of § [%] over R [%] This suggests
to try to generalize 2.2.3 to ramified extensions of perfectoid algebras. It turns out that this
is possible, provided one extracts suitable roots of g in the spirit of Abhyankar’s lemma.
This leads to replace everywhere “p 7 _almost” by “(pg) 7 -almost”, thereby ex-
tending the basic setting of almost ring theory beyond the usual situation of a non-discrete

valuation ring. This also leads to introduce the notion of almost perfectoid algebra, where

4 1
F:Q%°p e / p is only assumed to be (pg) 7> -almost surjective André [2016b,
p. 3.5.4].

2.4.1 Theorem. André [ibid.] Let Q be a perfectoid X-algebra, which contains a com-
1

patible system of p-power roots g »/ of some non-zero-divisor g € @°. Let &' be a finite

etale @[é]-algebm. Let ® be the integral closure ofg_l’%”@ in ®, so that (B[é] =®.

Then ® is almost perfectoid, and for any n, ®8°/p™ is (pg)ﬂ%’o-almostﬁnite etale
(hence (pg) P%”-almostﬂat) over @°/p™.

(If g = 1, one may use Gabber and Ramero [2003, p. 5.3.27] again to conclude that
®°? is itself almost finite etale over @ and recover 2.2.3).

The basic idea is to look at the pro-system of algebras of functions @/ := Gl{p?j} on
complements of tubular neighborhoods of the hypersurface ¢ = 0 in the perfectoid space

Spa(@, ®?), resp. at the pro-system @/ := @& ®q[i] @{%}. Each @/ is perfectoid
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(2.2.2), and each ®/ is finite etale over @/, hence perfectoid; moreover B/° is pﬁ%"’—
almost finite etale over ®/° by almost purity (2.2.3). One can show that 8 is isomorphic
to lim B/°, and that the latter has the asserted properties,

However, in the sequel, the identification of (lim (Bf")[ ] with the integral closure of

g “7 @ in B plays no role; changing notation, we will set ® := (lim 8/%)] p] which is
a uniform Banach algebra, and sktech the proof that ® is almost perfectoid and that for

1
every m, ®°/p™ is (pg) P> -almost finite etale over @° / p™
The proof involves six steps.
1)Foranyr € N[ L1 lim(@7°/ p") is (pg) = -almost isomorphic to R° / p”. This is essentially

Scholze’s perfectoid version of Riemann’ s extension theorem Scholze [2015, p. I1.3. 1] (hint: if R
denotes @/ p” for short, @7°/p” is pﬂ"o -almost isomorphic to R/ := R[(?) > 1; the key

idea is that for j/ > j + rpk¥, R/ — R/ factors through R/¥ := ZS<# R(%)S, so that
-

lim R/ = lim R/ k; on the other hand, the kernel and cokernel of R — R/ k are killed by g raised to
a power which tends to 0 when j, k — c0). Passing to the limit r — oo, it follows that lim @ /¢ =
g_P%"’ @, and this also holds under the weaker assumption that & is almost perfectoid, ¢f. André
[2016b, p. 4.2.2].

2) lim!(®/°/ p") is pg) * -almost zero. The technique is similar to the one in 1), ¢f. André
[ibid., p. 4.4.1].

3) lim(®/°/ p) LY lim(®/°/p) is (pg) 7 _almost surjective. Indeed, taking the limit of the

exact sequence 0 — (Bfo/p RN ®/°/p — (Bf”/pﬁ — 0, one deduces from 2) (forr = ijl),

that lim(®7°/p) — lim(®/°/p? Z )is (pg) 7 _almost surjective; on the other hand, ®/°/p 7 RN
®7°/p is an isomorphism because ®/ is perfectoid.

4) ® is almost perfectoid. From 3), it suffices to show that the natural map

. . 1
®°/p = (lim®’/°)/p — lim(®’?/p) is a (pg) »> -almost isomorphism. It is easy to see that
it is injective André [ibid., p. 2.8.1], and on the other hand, the composition limz ; (8/°/p) =
®°° — (lim ®/°)/p — lim(®/°/ p) is almost surjective by 3).

5) 8 — ®’ factors through a g P> -almost isomorphism (B{%} £ ®/ . The factorization
comes from the fact that 8/ =~ ®/ { 2. }, and one constructs an almost inverse to (B{ 2. } Y
as follows (cf. André [1b1d p.- 4.4.4)): the integral closure of ®° in ®’ maps to the mtegral closure
®7/° in ®/, which is p P°° -almost B/° (by almost purity). Passing to the limit and inverting pg,
one gets a morphism ®’ —> (B[g], and the sought for inverse is induced by § ® 1 .

6) for every m, 8°/p™ is ( pg) S _almost finite etale over ®° / p™. This is the decisive step:

how to keep track of the almost finite etaleness of 8/ over @/° at the limit? As in 2.2.3, the
idea is to reduce to the case when ®' is Galois over @[é] with Galois group G, i.e. (®)%
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GZ[%] and ®’ ®@[1] ® 5 [lg ®. It follows that ®/ is G-Galois over @7, and (as in 2.2.3) that
(Bjo®ajg ®7° - [[g®°isa pp%"’—almost isomorphism. Passing to the limit, (and taking into
account that by 4) and 5), 8®g ® is an almost perfectoid algebra, and BR g (B{p?j} ~ B/ Qg B,
so that one can apply 1)), one concludes that @° — ®°Y and B°Qgo B° — [1g ®° are (pg)P%"’—
almost isomorphisms. To get rid of the completion, one passes modulo p™: B¢/ p™ is almost Galois
over @%/p™, hence (pg) 75 _almost finite ctale (in constrast to 2.2.3, one cannot conclude that B¢

1
is (pg) P> -almost finite etale over Q° since p may not belong to (pg) g ). O

2.5 Infinite Kummer extensions. In order to extend the strategy of 2.3 to the general
case by means of the perfectmd Abhyankar lemma, one has first to adjoin to the perfectoid

algebra U; W (k)[p o N e xi ]][;} the iterated p*”-roots of a discriminant g. At
finite level i, it seems very difficult to control the extension

1

WE)pr [x ... x2 g7, =)°

|-

a4 L4 ) . .
which is bigger than W (k)[p» |[[x{"" ..., x/" |]lg o ], but things turn easier at the infi-
nite level, thanks to the perfectoid theory.

2.5.1 Theorem. André [2016a, p. 2.5.2] Let @ be a perfectoid X-algebra, and let g € R°
1
be a non-zero divisor. Then for any n, (g 1’°° Y2/ p™ is p P> -almost faithfully flat over

Q°/p™.

The basic idea is to add one variable T, consider the perfectoid algebra C:= GZ(TP%"’)
and look at the ind-system of algebras of functions C; := (9{ £ on tubular neighbor-

hoods of the hypersurface T = g in the perfectoid space Spa(@ G").

The proof involves three steps.

7) Q(gﬂ%"’)" is pﬂ%o—almost isomorphic to cgﬁni C{. This is an easy consequence of the
general fact that for any uniform Banach algebra 8 and f € ®°, cgl'Eni (B{%}O is pl’%"’-almost
isomorphic to (8/ f ®)?, ¢f. André [2016b, p. 2.9.3].

8) C¢ contains a compatible system of p-power roots of s?me non-zero-divisor f; such that C
is pl)%"’—almost isomorphic to cgli\mj G(U)"/(pﬁ U-— f;.? ). This is one instance of Scholze’s
approximation lemma Scholze [2012, p. 6.7]; one may assume f; = T — g mod p%.

9) G(U)"/(pﬁ U - fl”%, p™) is faithfully flat over ®°/p™. One may replace p™ by any

1

positive power of p, e.g. pr’/*'. Since C is perfectoid, there is g;; € € »°°)? such that gl’} =
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L o . 1 -
g mod p. Then f;.pj =Tr/ —g;; mod pr/™ and CU)°/(pr’ U—f;."] ,pr/ ) =~
1

-1 1 1 ;
(@e/pr/*)[T T JUV/(T P/ — gij), afree R/ p »/ ' -module.

2.6 Conclusion of the proof of the direct summand conjecture. One chooses g €

R such that S [é] is etale over R[é]. One then follows the argument of 2.3, replac-
1

~ L ol ol . . ;
ing @ = U;W (k) [prxy oo xn ]][%] by the “infinite Kummer extension” @ :=

1 1

(U; W (k) [p#} [ xf ) [%]) (gp%”). One introduces the finite etale extension ® :=
S ®r @[;] of @[], and one replaces 8 = S ®g @ in 2.3 by B := (lim B/?)[;], noting
that B is the S-algebra lim 8/°. Translating Th. 2.4.1 and Th. 2.5.1 in terms of almost
purity modulo p™, and reasoning as in 2.3 (using the same lemma), one obtains that (1-1)
splits modulo p™ for any n André [2016a, §3]. A Mittag-Leffler argument (retractions of
R/p™ — S/ p™ form a torsor under an artinian R/p™-module Hochster [1973, p. 30])
shows that (1-1) itself splits. a

2.7 Derived version. In , B. Bhatt revisits this proof and proposes a variant, which
differs in the analysis of the pro-system @/°/p” occurring in the proof of Th. 2.4.1: he
strengthens step 1) by showing that the pro-system of kernels and cokernels of (@ /p”) ; —
(®@7°/p"); is pro-isomorphic to a pro-system of (pg) 7 _torsion modules; this allows to
apply various functors before passing to the limit j — oo, whence a gain in flexibility.
More importantly, he obtains the following derived version of the direct summand conjec-
ture, which had been conjectured by J. de Jong:

2.7.1 Theorem. Bhatt [n.d.] Let R be a regular Noetherian ring, and f : X — Spec R
be a proper surjective morphism. Then the map R — RI'(X, Ox) splits in the derived
category D(R).

3 Existence of (big) Cohen—Macaulay algebras

3.1 Cohen—Macaulay rings and Cohen—Macaulay algebras for the non-Cohen-Macaulay
rings. Let S be alocal Noetherian ring with maximal ideal m and residue field k. Recall
that a sequence x = (X1, ..., X,) inm is secant’ if dim S /(x) = dim S —n, and regular if
for every i, multiplication by x; is injective in S /(x1,...,x;—1)S. Any regular sequence

3following Bourkaki’s terminology (for instance); it is also often called “part of a system of parameters”,
although gr, S may not be a polynomial ring in the “parameters” x; (it is if x is regular).
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is secant, and if the converse holds, S is said to be Cohen—Macaulay. Regular local rings
have a secant sequence generating m, and are Cohen—Macaulay.

Cohen—Macaulay rings form the right setting for Serre duality and the use of local ho-
mological methods in algebraic geometry, and have many applications to algebraic com-
binatorics Bruns and Herzog [1993]. When confronted with a non-Cohen—Macaulay ring
S, one may try two expedients:

1) Macaulayfication: construct a proper birational morphism X — Spec S such that all
local rings of X are Cohen—Macaulay. This weak resolution of singularities, introduced
by Faltings, has been established in general by T. Kawasaki [2000]. Hovewer, secant
sequences in S may not remain secant (hence not become regular) in the local rings of X ;
this motivates the second approach:

2) Construction of a Cohen—Macaulay algebra*: an S-algebra C such that any secant
sequence of S becomes regular in C, and mC # C.

The existence of Cohen—Macaulay algebras implies the direct summand conjecture:
indeed, if C is a Cohen—Macaulay algebra for a finite extension S of a regular local ring
R, it is also a Cohen—Macaulay R-algebra; this implies that R — C is faithfully flat,
hence pure, and sois R — S.

3.2 Constructions of Cohen—-Macaulay algebras. The existence of a (big) Cohen—
Macaulay algebra was established by Hochster and C. Huneke under the assumption that
S contains a field Hochster and Huneke [1995]. One may assume that S is a complete
local domain. In char. p > 0, one may then take C to be the fotal integral closure of S
(i.e. the integral closure of S in an algebraic closure of its field of fractions). This is no
longer true in the case of equal char. 0, which can nevertheless be treated by reduction to
char. p >> 0 using ultraproduct techniques.

The remaining case of mixed characteristic was settled in André [2016a], using the
same perfectoid methods, so that one has:

3.2.1 Theorem. Any local Noetherian ring S admits a (big) Cohen—Macaulay algebra
C.

In the case of a complete local domain S of char (0, p) and perfect residue field k (to which
one reduces), one proceeds as follows. Cohen’s theorem allows to present .S as a finite extension of
R = W([x1,...,xz]]. One first considers the R-algebra

L L . .

@ = (OWE P |[xf .o n%mgmo

4since it would be too restrictive to impose that C is Noetherian, one often speaks of “big” Cohen-Macaulay

algebra.



PERFECTOID SPACES AND THE HOMOLOGICAL CONJECTURES 303

and the S-algebra 8° = lim ®/° as above 2.6. It follows from Th. 2.4.1 and Th. 2.5.1 that ®° is
(pg) il -almost isomorphic to a faithfully flat R algebra modulo any power of p. From there, one
deduces that the sequence (p, x1,...,Xp) is “(pg)!’%”-almost regular” in B°.

To get rid of “almost”, Lemma 2.3.1 is no longer sufficient: instead, one uses Hochster’s tech-
nique of monoidal modifications Hochster [2002]Hochster and Huneke [1995]. After mi-completion,
one gets a S-algebra C in which (p, x1, ..., x,), as well as any other secant sequence of S, becomes
regular. O

Subsequently, using the tilting equivalence between perfectoid algebras in char. 0 and
in char.p and applying Hochster’s modifications in char.p rather than in char.0, K. Shi-
momoto [2017] shows that in Th. 3.2.1, in mixed characteristic, C can be taken to be
perfectoid. In particular, if S is regular, it admits a perfectoid faithfully flat algebra (one
may speculate about the converse).

3.3 Finite and fpqc covers. Since Cohen—Macaulay algebras for regular local rings are
faithfully flat, Th. 3.2.1 implies André [2016a]:

3.3.1 Theorem. Any finite cover of a regular scheme is dominated by a faithfully flat
quasi-compact cover.

If regularity is omitted, Spec(Q|x, y]/(xy)) and its normalization provide a counter-
example.

4 Homological conjectures

4.1 Origins from intersection theory. Under the influence of M. Auslander, D. Buchs-
baum and J.-P. Serre, commutative algebra has shifted in the late 50s from the study of
ideals of commutative rings to the homological study of modules (¢f. their characterization
of regular local rings by the existence of finite free resolutions for any finitely generated
module, resp. for the residue field).

Serre proved that for any three prime ideals p, g, r of a regular local ring R such that r
is a minimal prime of p+q, htr < ht p+ht g Serre [1965]. The special case r = 1 can be
amplified: for any ideals I, J of R such that I + J is m-primary, dim R/l +dim R/J <
dim R.

This is no longer true if R is not regular, and attempts to understand the general situation
led to the so-called homological conjectures ¢f. Bruns and Herzog [1993, ch. 9], Hochster
[2007].

4.2 Intersection conjectures. Let (R, m) be local Noetherian ring.
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The first “intersection conjecture” was proposed by Peskine and Szpiro [1973], proved
by them when R contains a field by reduction to char. p and Frobenius techniques, and
later proved in general by P. Roberts using K-theoretic methods Roberts [1987]. It states
that if M, N are finitely generated R-modules such that M ® N has finite length, then
dim N < pd M. It implies that R is Cohen—Macaulay if and only if there is an R-module
M of finite length and finite projective dimension (in the spirit of Serre’s characterization
of regular rings, which is the case M = k), resp. if there is an R-module M of finite
injective dimension.

Indeed, one may take N = R and deduce that dim R < pd M; by the Auslander-Buchsbaum
formula, pd M = depth R — depth M, so that the inequality depth R < dim R is an equality. The
second assertion follows from the fact that id M = depth R Bass [1963].

The “new intersection conjecture”, also proved by Peskine and Szpiro [1973] and
Roberts [1987], states that for any non exact complex Fo of free R-modules concentrated
in degrees [0, s| with finite length homology, s > dim R.

The “improved new intersection conjecture” is a variant due to E. Evans and P. Evans
and Griffith [1981], in which the condition on F, is “slightly” relaxed: the H;.( are of
finite length and there exists a primitive cyclic submodule of Hj of finite length. They
proved it, assuming the existence of (big) Cohen-Macaulay algebras®, and showed that
it implies their “syzygy conjecture”. In spite of appearances, the passage from the new
intersection conjecture to its “improved” variant is no small step’: in fact, according to
Hochster [2007] and S. Dutta [1987], the latter is equivalent to the direct summand con-
jecture.

On the other hand, in the wake of the new intersection conjecture (and motivated by the
McKay correspondence in dimension 3 and the “fact” that threefold flops induce equiv-
alences of derived categories), T. Bridgeland and S. Iyengar obtained a refinement of
Serre’s criterion for regular rings assuming the existence of Cohen—Macaulay algebras
Bridgeland and Iyengar [2006, p. 2.4].

By Th. 1.0.1 and Th. 3.2.1, the improved new intersection conjecture and the Bridgeland-
Iyengar criterion thus hold inconditionally:

4.2.1 Theorem. Let R be a Noetherian local ring and Fe be a complex of finitely gener-
ated free R-modules concentrated in degree [0, s, such that Hxq(F.) has finite length.

1. If Hy(F,) contains a cyclic R-submodule of finite length not contained in mHy (F,),
then s > dim R.

Sif R is Cohen—Macaulay, the Buchsbaum-Eisenbud criterion gives a condition for the exactness of Fe in
terms of codimension of Fitting ideals of syzygies. In general, the same condition guarantees that Fe @ C is
exact for any Cohen—Macaulay R-algebra C Bruns and Herzog [1993, p. 9.1.8].

6 K -theoretic techniques failed to make the leap.
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2. If Hyo(F.) has finite length and contains k as a direct summand, and s = dim R,
then R is regular.

And so does the syzygy conjecture:

4.2.2 Theorem. Let R be a Noetherian local ring and M a finitely generated R-module
of finite projective dimension s. Then fori € {1,...,s — 1}, the i-th syzygy module of M
has rank > i.

4.3 Further work around the homological conjectures using perfectoid spaces.

4.3.1 . In2017, Heitmann and L. Ma show that Cohen—Macaulay algebras can be con-
structed in a way compatible with quotients S — S /p by primes of height one’. Using
arguments similar to Bhatt’s derived techniques, they deduce the vanishing conjecture for
maps of Tor Hochster and Huneke [1995]:

4.3.1 Theorem. R. Heitmann and Ma [2017a] Let R — S — T be morphisms such that
the composed map is a local morphism of mixed characteristic regular local rings, and S

is a finite torsion-free extension of R. Then for every R-module M and every i, the map
Tor® (M, S) — Tor® (M, T) vanishes.

They obtain the following corollary, which generalizes results by Hochster and J. Roberts,
J.-F. Boutot et al.:

4.3.2 Corollary. R. Heitmann and Ma [ibid.] Let R — S be a pure, local morphism, with
S regular. Then R is pseudo-rational, hence Cohen—Macaulay.

4.3.2 . In2017,Maand K. Schwede define and study perfectoid multiplier/test ideals in
mixed characteristic, and use them to bound symbolic powers of ideals in regular domains
in terms of ordinary powers:

4.3.3 Theorem. Ma and Schwede [2017] Let R be a regular excellent Noetherian domain
and let I C R be a radical ideal such that each minimal prime of I has height < h. Then
for everyn, 1h") < 7.

Here ") denotes the ideal of elements of R which vanish generically to order hn at
I. When R contains a field, the result was proved in Ein, Lazarsfeld, and Smith [2001]
and Hochster and Huneke [1990].

7weak functoriality of Cohen-Macaulay algebras in general has been since announced by the author Andre
[2018].
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4.3.3 . Anefficient and unified way of dealing with questions related to the homological
conjectures in char. p is provided by “tight closure theory”, which has some flavor of
almost ring theory. Using Th. 2.4.1 and Th. 2.5.1 above, Heitmann and Ma give evidence
that the “extended plus closure” introduced in R. C. Heitmann [2001] is a good analog of
tight closure theory in mixed characteristic R. Heitmann and Ma [2017b].
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