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Abstract

It is a remarkable characteristic of some classes of low-dimensional dynamical

systems that their long time behavior at a short spatial scale is described by an

induced dynamical system in the same class. The renormalization operator that
relates the original and the induced transformations can then be iterated, and

a basic theme is that certain features (such as hyperbolicity, or the existence of

an attractor) of the resulting “dynamics in parameter space” impact the behav-

ior of the underlying systems. Classical illustrations of this mechanism include

the Feigenbaum-Coullet-Tresser universality in the cascade of period doubling

bifurcations for unimodal maps and Herman’s Theorem on linearizability of

circle diffeomorphisms. We will discuss some recent applications of the renor-

malization approach, focusing on what it reveals about the dynamics at typical

parameter values.
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1. Introduction

The concept of renormalization arises in many forms through mathematics and

physics. Our aim here is to discuss its incarnation as a tool in the analysis of

certain classes of dynamical systems. More particularly, we will be interested in

situations where renormalization gives rise to a non-trivial dynamical system

in parameter space.

Inducing is a common technique to try to understand the dynamics of a map

f (possibly partially defined) on some space X, restricted to a certain region

Y ⊂ X. An inducing procedure gives rise to a new map g on Y which at each

point coincides with some iterate of f , i.e., g(x) = fn(x)(x) for some positive
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integer n(x), at each x ∈ Y for which g is defined. The most usual choice of

inducing procedure (and essentially the only one we will need to consider) is

to take g simply as the first return map, so that n(x) is the smallest positive

integer such that fn(x)(x) ∈ Y . Naturally, this induced map may look quite

different from the original one.

It is a remarkable characteristic of certain classes of dynamical systems that

an inducing procedure can be defined which produces maps in the same class.

An example, to which we will come back to later, is the map f(x) = 3.5x(1−x)

on X = [0, 1]. The second iterate of f can be seen to restrict to a self-map of a

subinterval Y around the critical point 1/2. Both f and g = f 2 : Y → Y belong

to the class of unimodal maps of an interval, whose distinguishing feature is the

presence of a single turning point.

When an inducing procedure can be defined, acting on a certain class of

dynamical systems, it can be of course iterated, which will produce a sequence

of induced maps on successively smaller regions of space. A renormalization

operator is defined by considering the induced dynamics after a suitable coor-

dinate change (just affine rescaling in all situations we will consider), so that

all dynamics considered occur at a fixed spatial scale. This allows the renor-

malization operator to have interesting dynamics in itself, e.g., it might admit

a fixed point.

The actual implementation of the renormalization technique is naturally

quite dependent of the systems at hand, so most of this paper will be dedicated

to describing how it is applied in a few specific situations. We will focus on how

features of the renormalization dynamics have concrete repercussions on the

behavior or renormalized systems, and how this leads to the solution of very

natural problems.

The variations in the implementation of renormalization should not mask

the several underlying common themes in the cases of succesful application of

the renormalization approach:

1. The renormalizable dynamics is usually low-dimensional. This can be

thought of as a conformality issue: in large dimensions, the distinct in-

trinsic scales of the different directions may be rather difficult to account

for.

2. Renormalizable dynamical systems are not chaotic, i.e., iteration does

not produce too much complexity. This is because each unit of time, after

renormalization, represents several units of time of the original dynamics.

So if the Lyapunov exponent lim
1
n
ln |Dfn(x)|, which measures the expo-

nential rate of growth of the derivative, is positive, then it will increase

under renormalization. A similar consideration applies to entropy. It is

thus clear that in these situations the successive renormalizations must

diverge, and no interesting renormalization dynamics can take place.

3. Renormalization of non-linear dynamical systems takes place in an infinite

dimensional functional space, so identifying a renormalization attractor
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plays a crucial role: it basically constrains the possibilities of the small

scale behavior of the original dynamics.

4. Contrary to the renormalizable dynamics, the renormalization attractor

tends to display hyperbolicity: thus renormalization acts very chaotically.

A lot of the effectiveness of the renormalization approach is indeed due

to the fact that moderate disorder is usually more complicated to analyze

than large disorder (which, for instance, can bring into play very effective

probabilistic techniques).

While our focus here will be on nonlinear maps, renormalization can also

be a useful concept in the absence of nonlinearity. One example is given by

interval exchange transformations, i.e., bijections of an interval I with a finite

“singular set” and which restrict to translations on each interval not intersecting

the singular set. Once the size of the singular set is fixed, the renormalization

dynamics takes place in a finite (but large if the singular set is large) dimensional

parameter space, and is related to the Teichmüller flow in moduli spaces of

Abelian differentials [M], [V1], [V2]. In this case, the chaotic properties of the

renormalization dynamics lead to a particularly precise stochastic modeling,

and plays a key role in the description of the behavior of typical maps (see the

survey [A4] and references therein). Here we will only discuss the very particular

case where the singular set consists of exactly one point: in this case the interval

exchange transformation gives (after gluing the extremes of the interval) a rigid

rotation of the circle.

The case of rigid rotations is interesting for us since some natural classes

of nonlinear dynamics can be considered as nonlinear deformations of it. Here,

renormalization can be used as a way to reduce the amount of nonlinearity:

in terms of the dynamics of the renormalization operator, this corresponds to

showing that the finite dimensional subset of linear systems is an attractor. The

analysis of the renormalization dynamics is of course much simplified by the fact

that we already know from the beginning what is the “candidate attractor”,

and the only problem is in establishing that it indeed attracts orbits. However,

even in this simple situation, we will be able to identify an important theme,

which is the key role of a priori bounds, or precompactness of renormalization

orbits (which usually takes the form of a rough estimate on the nonlinearity).

In other words, before worrying about convergence to an attractor, we should

establish non-divergence.

If the nonlinearity is too large, renormalization can not hope to decrease

it, and a central problem is then the construction of the attractor itself. We

will discuss a recently developed approach to convergence of renormalization

in such a setting, in which the attractor is produced naturally by “iteration in

parameter space” (given suitable a priori bounds).

1.1. Outline of the remaining of the paper. The sections in this

paper are arranged roughly according to “increasing nonlinearity”.
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We start by quickly going through the case of rigid rotations in §2, as a

preamble to addressing circle diffeomorphisms in §3. Our focus will be on Her-

man’s celebrated work on linearization. Essentially, renormalization admits a

global attractor corresponding to the locus of rigid rotations, and this allows

one to obtain global results by reducing to the “local case” of nearly linear

systems.

We next consider the setting of one-frequency cocycles, where one “adds

nonlinearity” to rigid rotations through a projective extension in §4. Here a

“linear attractor” still exists, but it is no longer a global one, and understanding

the nature of the obstruction to convergence has important repercussions.

We then discuss a bit about the role of renormalization in the analysis of

the boundary of the basin of attraction of the linear attractor §5. For one-

frequency cocycles, this regards the (still poorly understood) “onset of diver-

gence” of renormalization, while for circle diffeomorphisms one just allows for

some degeneration, in the form of critical points of inflection type.

This is followed by a much more detailed treatment of the renormalization

theory of unimodal maps, with a critical point of turning type, in §6, which

was first developed in connection with the Feigenbaum-Coullet-Tresser univer-

sality phenomenon. A key issue we will explore is the need to construct the

renormalization attractor using the renormalization dynamics itself.

Acknowlegements

I am grateful to Amie Wilkinson, Carlos Matheus and David Damanik for
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2. Rigid Rotations

In this section, we will consider translations on R/Z, that is, f(x) = x+α where

we may assume that 0 ≤ α < 1. In this case, one can define a renormalization

operator based on the classical continued fraction algorithm, and hence to the

Gauss map G(x) = {x−1} = x − [x−1] (where {·} and [·] denote, respectively,

the fractional and the integer parts of a real number) as follows. Let us assume

for definiteness that α is irrational, so α has an infinite continued fraction

expansion

α =
1

a1 +
1

a2 + · · ·

, (1)

with ai positive integers. Consider also the continued fraction approximants

pn/qn, given inductively by the formulas p0 = 0, q0 = 1, p1 = 1, q1 = a1, and

for n ≥ 2, pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2 . We recall that pn/qn
approximate α from alternate sides, so that βn = (−1)n(qnα − pn) > 0. Then
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αn = βn/βn−1 are irrational numbers in (0, 1) obtained by applying successively

the Gauss map: αn = Gn(α).

The first return map to [0,α) = [0,β0 ) has the form f ′(x) = x+(a+1)α−1

for x ∈ [0,β1) and f ′(x) = x + aα − 1 on [β1,β0 ). This discontinuous map

on an interval can be seen as a continuous map on the circle by “gluing the

extremal points” 0 and α, via the translation x '→ x + α. Since the gluing

map is a translation, the “new” circle has an Euclidean structure and can be

identified with the original one of R/Z (this encodes the rescaling part of the

renormalization procedure). It is easy to see that in the new coordinates the

first return map is again a rigid translation by ± α1, the sign depending on

whether the identification does or does not reverse orientation. Here it will be

most convenient to take an identification that reverses orientation, so that the

renormalization of x '→ x+α is x '→ x+α1, so that the renormalization operator

acting on rigid irrational translations is just the Gauss map α '→ G(α) acting

on the parameter space (0, 1) ∩ Q.

The Gauss map is of course a classical example of a chaotic dynamical sys-

tem [Man]. It preserves the probability measure dµ =
1

ln 2
dx

1+x
, with respect to

which it has a positive Lyapunov exponent. The strong mixing properties of the

Gauss map have of course many applications in the analysis of the distribution

of continued fraction coefficients.

3. Diffeomorphisms of the Circle

The rigid rotations of the circle we discussed in the previous section form a

finite dimensional subset in the infinite dimensional space of orientation pre-

serving smooth diffeomorphisms of the circle. To what extent do the dynamics

of nonlinear diffeomorphisms behave as a linear one?

The answer to this question begins with the combinatorial theory of Poincaré

[MS]. Any orientation preserving homeomorphism of the circle f has a well

defined rotation number ρ(f) (defined up to an integer), which captures the

speed in which orbits “go around the circle”. This is most easily defined as the

reduction modulo 1 of the translation number lim(Fn(x)−x)/n of an arbitrary

lift F : R→ R of f (capturing this time the drift of F -orbits), which is readily

seen to exist.1 Notice that for a rigid rotation f : x '→ x+α we have ρ(f) = α.

For an arbitrary homeomorphism, we have:

1. f has a periodic orbit (of period q) if and only if ρ(f) is rational (of the

form p/q with (p, q) = 1). In this case, every f -orbit is asymptotic to a

periodic orbit.

1Letting mn and Mn be the minimum and maximum of F

n(x) − x for x ∈ R/Z (or
which is the same, for x ∈ [0, 1], since F

n(x + k) = F

n(x) + k for each k ∈ Z), we see that
0 ≤ Mn − mn ≤ 1. Since mn is supperadditive and Mn is subadditive, the limits of mn/n

and Mn/n must exist and coincide.
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2. If ρ(f) is irrational then the orbits of f have the same combinatorial

structure of the orbits of the translation x '→ x + ρ(f): for each n, the

cyclic order of (fk(x))n−1
k=0 is the same as that of (kρ(f))n−1

k=0 .

We will from now on restrict our attention to the most interesting case

when ρ(f) is irrational. Let I stand for the set of diffeomorphisms of the circle

with irrational rotation number. In this case, it emerges from the combinatorial

description of the orbits that there is a semi-conjugacy to the linear model, i.e.,

a continuous surjective map h : R/Z → R/Z satisfying h(f(x)) = h(x) + ρ(f)

(h is essentially unique, the only freedom available being postcomposition with

arbitrary rigid rotations). The natural question is whether the orbit structure

is the same also from the topological point of view: is f actually conjugated to

the linear model, i.e., is h in fact a homeomorphism? This is answered quite

satisfactorily by Denjoy’s topological theory. At the level of homeomorphisms, it

is easy to find counterexamples: one can blow up an orbit of a rigid rotation with

irrational rotation number to create so-called wandering intervals (an interval

which is disjoint of all positive iterates but does not lie in the basin of attraction

of a periodic orbit). Carrying out this construction more carefully, one gets

C1 Denjoy counterexamples, but Denjoy proved that there are no C2 Denjoy

counterexamples: every C2 diffeomorphism with irrational rotation number is

topologically conjugated to a rigid rotation [MS].2

3.1. Renormalization dynamics. Recall that if f is a rigid rotation,

the n-th renormalization of an irrational rotation of the circle f : x '→ x + α

can be obtained by taking the first return map to an interval [x, fqn−1(x)] with

endpoints identified. We would like to extend this definition to an arbitrary

smooth diffeomorphism with rotation number α, but we must be careful with

the gluing procedure: just gluing with a translation (which generates a circle

with Euclidean structure) is not natural here and will in general not produce

a diffeomorphism, but only a homeomorphism. The natural way to glue is to

use the dynamics itself, i.e., the map fqn−1 , to generate a “smooth circle”, on

which the first return map indeed acts smoothly.

Unfortunately there is no canonical way to identify the smooth circle with

the canonical one (R/Z), so this procedure does not really yield a renormaliza-

tion operator acting on I. This issue can be resolved by considering Z2 -actions

as the basic object to be renormalized. Without going into details of this defi-

nition, we shall say that the renormalizations become more and more linear if

after rescaling (by an affine map [x, fqn−1(x)] → [0, 1]), both the gluing map

and (each of the two smooth branches of) the first return map converge to

translations (say, in the C∞-topology if one is dealing with smooth maps).

A simple feature of the renormalization dynamics is that since the combina-

torics of the renormalized map only depend on the combinatorics of the orbits

of the original one, it is clear that the rotation number transforms as for the

2See also [Y1] and [DKN] for more recent results on absence of wandering intervals.
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renormalization of rigid translations, i.e., via the Gauss map. Thus renormal-

ization can be seen as fibering over the Gauss map, and if global convergence

of renormalization is established the fibers will thus be identified with stable
manifolds. We shall see similar situations later, where the existence of a good

“candidate stable manifold” will turn out to be central to the analysis of con-

vergence in some more nonlinear situations.

Let us describe the parts of the strategy in the proof of convergence of renor-

malization (assuming sufficient smoothness) which are perhaps most significant

in getting an idea of why global convergence takes place.

The first step in most proofs of convergence of renormalization involves the

proof on non-divergence (in the form of establishing suitable a priori bounds).
For circle diffeomorphisms, the crucial such bound comes from the Denjoy-

Koksma inequality. It gives an estimate on distortion which implies, in par-

ticular, that Dfqn is bounded for all n (this already prevents the existence

of wandering intervals, and hence gives Denjoy’s Theorem on topological lin-

earizability). It was a remarkable discovery of Herman [H1] that iteration always

leads to cancellations of high order derivatives of fqn , and thus to global conver-

gence of renormalization. After subsequent work of Yoccoz [Y2], this mechanism

was understood in terms of the chain rule for the Schwarzian derivative,

Sf =
D3f

Df
−

3

2

(

D2f

Df

)2

, (2)

which gives

Sfn
=

n−1
∑

k=0

(Sf ◦ fk
)(Dfk

)
2 . (3)

The control of distortion coming from the Denjoy-Koksma inequality gives

Dfk
(x) ∼ C

ln(f
k(x))

ln(x)
, 0 ≤ k ≤ qn − 1, (4)

where ln(y) is the length of the interval [y, fqn(y)]. This allows one to control

the term (Dfk)2 : indeed the intervals (fk(x), fk+qn(x)) are disjoint for 0 ≤ k ≤

qn − 1, so that
∑qn−1

k=0 ln(f
k(x)) ≤ 1 and

|Sfqn(x)| ≤ C max
0≤k≤qn−1

ln(f
k(x))

ln(x)2
, (5)

Since the Schwarzian derivative has order 2, rescaling kills the large term

1/ln(x)
2 . Using that limn→∞ supy ln(y) = 0 (by Denjoy’s Theorem giving topo-

logical conjugacy with irrational rotations), one gets that, after rescaling, the

Schwarzian derivative of both the gluing map and the first return map is indeed

going to 0.

Convergence to a linear attractor can be immediately used as a ways of

“global to local” reduction. We will now discuss the most famous example of

such an application.
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3.2. Linearization. Let us continue our discussion of how the dynamics

of circle diffeomorphisms resemble that of rigid rotations, assuming enough reg-

ularity to guarantee that f is topologically linearizable. The next step is to ask

whether the local geometry of the orbit structure is also the same. For instance,

given three nearby points in the same orbit, are the ratios between distances

close to those for the rigid rotation? This (properly quantified) property is ac-

tually equivalent to C1-linearizability, that is, to h being a C1 diffeomorphism.

It is easy to see that no condition on the regularity of f will be sufficient

to guarantee C1-linearizability. Indeed, if f is any nonlinear diffeomorphism of

the circle whose lifts extend holomorphically to an entire map C → C there

exists θ ∈ R such that fθ : x '→ f(x) + θ has irrational rotation number but is

not C1-linearizable. This can be seen as follows:

1. θ '→ ρ(fθ) is a continuous non-decreasing map R/Z→ R/Z of degree 1,

2. It follows that ρ(fθ) ∈ Q/Z for a dense countable subset of the closure

Kf of {θ ∈ R/Z, ρ(fθ) ∈ R! Q}.

3. If θ is such that ρ(fθ) = p/q, then every orbit of fθ is asymptotic to one

of finitely many periodic orbits.3 In particular,

inf
n≥1

inf
x∈R/Z

Dfn
θ (x) = 0 (6)

for any such θ.

4. A Baire category argument shows that (6) holds in fact for generic θ ∈ Kf ,

which implies that fθ is not C
1-conjugate to a rigid translation. (Note that

for generic θ ∈ K(fθ), we do have ρ(fθ) /∈ Q/Z.)

What we wanted to highlight by giving the above argument is that in it one

clearly sees that a source of trouble to C1-linearizability comes from “conta-

gion” from rational rotation numbers. It turns out that positive results can be

obtained if, besides regularity, one assumes that the rotation number is badly

approximable by rational numbers.

3.3. The KAM Theorem. Let us consider first the local version of the

linearizability problem, where one restricts considerations to circle diffeomor-

phisms close to linear. It can be attacked by a fast iteration scheme (KAM,

after Kolmogorov, Arnold and Moser), first introduced by Kolmogorov in the

treatment of a considerably more complicated conjugacy problem [Kol]. We will

restrict ourselves to give an idea of the setup. Let us assume that we can write

f : x '→ x+ ρ(f) + ϵv(x), with v regular and ϵ small, and let us try to solve for

3Here we use that f

q

θ
(x) = x has at most finitely many solutions, which follows from the

hypothesis on the holomorphic extension of the lift.
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some regular conjugacy close to the identity, h : x '→ x+ ϵw(x) between f and

some x '→ x+ β. Writing the conjugacy equation, one gets

x+ ρ(f) + ϵv(x) + ϵw(f(x)) = x+ ϵw(x) + ρ(f), (7)

i.e.

v(x) = w(x)− w(f(x)). (8)

Since f is close to the translation by ρ(f), it is reasonable to approximate (8)

by the cohomological equation v(x) = w(x)− w(x+ ρ(f)). To solve it we must

assume that v has average 0 (integrate both sides), in which case a smooth

solution w always exists provided v is smooth and ρ(f) is Diophantine in the

sense that rational approximations can be only polynomially good (in terms of

the denominators of the continued fraction approximations, this gives ln qn+1 =

O(ln qn)), as can be seen by considering the Fourier series expansion. Since f(x)

is assumed to have rotation number exactly ρ(f), it can be shown that the

average of v is close to 0, so following this procedure we get an approximate

solution of (8). With such a solution in hand, we can obtain an approximate

conjugacy between f and the rigid translation (in this one step, we only manage

to conjugate f with another nonlinear map, but which is closer to the linear

model). Iterating this process again, we should obtain a sequence of conjugacies

hn between f and maps with decreasing nonlinearity, the desired conjugacy

appearing only as the limit of the hn.

We are of course skipping the core of the argument here, which is that there

is loss of regularity which is apparent when solving the cohomological equation.

The full treatment was given by Arnold [Ar] in the case where f is analytic

(the obtained conjugacy is analytic as well in this case), the smooth case is due

to Moser, see, e.g., [H1].

3.4. The Herman-Yoccoz Theorem. While the hypothesis that f

be close to a rigid rotation is obviously important in the argument above,

Arnold advanced the daring conjecture that his linearizability theorem should

also hold in general. This later became the Herman-Yoccoz Theorem [Y2]:

Theorem 1. Let f be a smooth (respectively, analytic) orientation preserv-
ing diffeomorphism of the circle with Diophantine rotation number. Then f is
smoothly (respectively, analytically) conjugated to a rigid rotation.

A weaker version of this theorem was first proved by Herman [H1], as-

suming a stricter (but still full measure) condition on the rotation number.

Following the lucid account of Sullivan [S3], we will focus on this version since

it is the one that illustrates most transparently the importance of convergence

of renormalization (more precise results can be associated with an estimate on

the rate of convergence), taking only a few lines. Indeed, let f be a smooth

diffeomorphism with Diophantine rotation number. Its renormalizations are

becoming closer and closer to rigid rotations. Assume first that the rotation
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number of f is fixed by the Gauss map (for instance, it is the golden mean).

Then it is clear that at some point the renormalizations belong to the “do-

main of convergence of the KAM algorithm”, so the renormalization will be

linearizable. It follows f itself is linearizable: Since linearizability concerns the

local geometry of orbits (c.f. the beginning of §3.2), it must be invariant under

renormalization. In general the rotation number does change under renormal-

ization, and while the Diophantine class is invariant under the Gauss map, the

“Diophantineness” (measured in the quantification of the Diophantine condi-

tion ln qn+1 = O(ln qn)) may degenerate at each step, and with it the size of the

region where the KAM algorithm works. But at least for almost every rotation

number, there will be infinitely many times for which the renormalized rotation

numbers satisfy a fixed Diophantine condition (e.g., ln qn+1 ≤ 10 ln qn): this is

immediate from the ergodicity of the Gauss map. For such rotation numbers,

we do not need to worry about trying to hit a moving target (comparing the

speed of convergence of renormalization with the possible decrease in range of

the KAM method), thus global linearizability follows.

Remark 3.1. As Sullivan notes in [S3], Herman did not use the renormalization

language, though his work fitted perfectly into it. The full renormalization

formalism was implemented in this context by Khanin-Sinai [SK].

4. One-frequency Cocycles

We now consider a situation where renormalization presents a finite-dimensional

local attracting set (again corresponding to setting the nonlinearity to zero) but

which clearly can not be a global attractor. It is the precise understanding of

the obstructions to convergence of renormalization that plays an important role

in establishing a global theory.

4.1. The local character of linearizability in two dimen-
sions. A few years after establishing the global nature of linearizability of

diffeomorphisms of the circle satisfying suitable arithmetic conditions, Herman

wrote another seminal paper [H2]. According to the title, it is about both “a

method to minorate Lyapunov exponents” and “some examples showing the

local character of the Arnold-Moser Theorem in dimension 2”.

The examples discussed by Herman are analytic diffeomorphisms of T2 that

are isotopic to the identity, fiber over a rigid irrational rotation, and act pro-

jectively in the second coordinate. They can be written as a skew-product, or

cocycle, (α, A) : (x,w) '→ (x + α, A(x) · w) where A : R/Z → SL(2,R) is an

analytic map homotopic to a constant. The iterates of a cocycle have the form

(α, A)n = (nα, An) with An(x) = A(x+(n−1)α) · · ·A(x). A class of particular

interest consists of one-frequency Schrödinger cocycles, where

A = A(E−v)
=

(

E − v −1

1 0

)

, (9)
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with v an analytic map R/Z → R and E some real constant. Schrödinger

cocycles are relevant to the analysis of one-frequency Schrödinger operators

H = Hα,v. These are bounded self-adjoint operators on ℓ2 (Z) of the form

(Hu)n = un+1 + un−1 + v(nα)un, (10)

since a formal solution of Hu = Eu satisfies

(

un

un−1

)

= An(0)

(

u0

u−1

)

.

Just as for diffeomorphisms of the circle, one can define a rotation vector
(as the reduction modulo 1 of the drift in R2 of a lift). The first coordinate

of the rotation vector is obviously α, while the second is called the fibered ro-
tation number. For Schrödinger cocycles, there is a beautiful reinterpretation

[AS] of the fibered rotation number of (α, A(E−v)), as 1−N(E) where N is the

integrated density of states of the operator Hα,v, which gives the limiting pro-

portion of eigenvalues of restrictions of Hα,v (to intervals of increasing length)

that lie in (−∞, E]. In particular, for fixed v, any rotation vector (α,β) can be

realized by choosing E appropriately.

In [H2], Herman discusses how the Arnold-Moser (KAM) Theorem gives

a local linearization theorem in this setting: If the rotation vector satisfies a

Diophantine condition then analytic linearizability holds, provided A is suf-

ficiently close to a constant. (The use of KAM methods in connection with

quasiperiodic Schrödinger operators was pioneered by Dinaburg-Sinai [DS].)

On the other hand, [H2] also introduces Herman’s famous “subharmonicity

method” to minorate the Lyapunov exponent

L = lim
1

n

∫

ln ∥An(x)∥dx. (11)

For Schrödinger cocycles, it implies that if v is a non-constant trigonometric

polynomial
∑

|k|≤m
ake

2πikx with |am| > 1 then L > 0.

The positivity of the Lyapunov exponent is incompatible with even topo-

logical linearizability, since it implies in particular that the dynamics of

(α, A) is not distal (if sup ∥An(x)∥ = ∞ then there exist y ̸= y′ such that

inf d(An(x) · y,An(x) · y
′) = 0). Thus by choosing v and E appropriately one

obtains a non-linearizable cocycle which neverthless has a Diophantine rotation

vector.

Remark 4.1. Even near constants, there are uniformly hyperbolic cocycles, for

which ∥An(x)∥ grows exponentially fast uniformly on x, and in particular have

positive Lyapunov exponents. The locus of uniformly hyperbolic cocycles is

open and quite simple to analyze, much like the complement of the closure

of circle diffeomorphisms with irrational rotation number. The examples con-

structed by Herman have a rather different nature, since the rotation vector of a

uniformly hyperbolic cocycle is linearly dependent over the rationals. Cocycles

with a positive Lyapunov exponent but which are not uniformly hyperbolic are

called nonuniformly hyperbolic.
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4.2. The basin of the renormalization attractor. Just as in the

case of circle diffeomorphisms, one can try to define a renormalization operator

acting on cocycles by considering the first return map to the annulus [x0 , x0 +

qnα] × R/Z, where we identify the boundary circles via (x, y) '→ (x+qnα, Aqn(x)·

y). We will again omit the details of the formalized definition in terms of Z2 -

actions.

As usual, if the Lyapunov exponent is positive then renormalization mag-

nifies it, so the renormalization orbits can not converge to any attractor (recall

the second theme listed in the introduction). Starting with a cocycle with Dio-

phantine rotation vector which is sufficiently close to linear, so that the KAM

Theorem applies, the successive renormalizations become increasingly linear.

Thus the locus of linear cocycles behaves as a local, but not global (since it

misses the Herman’s examples), attractor for cocycles with Diophantine rota-

tion vectors.4

What is in fact the basin of the renormalization attractor? Naturally, it is

contained in the locus of zero Lyapunov exponents. Since the basin of a local

attractor is by nature open, and the locus of zero Lyapunov exponents is closed

(this is a deep result of Goldstein-Schlag [GoSc] and Bourgain-Jitomirskaya

[BJ]), the inclusion is in fact strict. In [AK1], [AK2], it is shown that there is,

however, equality “modulo 0”. For simplicity, we state the result for Schrödinger

cocycles:

Theorem 2. Let α ∈ R ! Q and v : R/Z → R be analytic. Then for almost
every E ∈ R, if the Lyapunov exponent of (α, A(E−v)) is zero then the successive
renormalizations of (α, A(E−v)) become increasingly linear.

A much more detailed analysis of the “critical set” separating converging

and diverging orbits of the renormalization operator has been carried out more

recently as a part of a program to produce a global theory of one-frequency

Schrödinger operators [A1], [A2], [A3]. It shows that (for fixed Diophantine α),

the critical set is not only of zero measure, but it has zero measure inside a
codimension one subset. This more precise description is important because the

analysis of a single Schrödinger operator depends on a one-parameter family of

cocycles: it allows us to make statements about every energy E in the spectrum

of almost every potential.

5. Hitting the Limits of Linear Attractors

In the analysis of one-frequency cocycles, it is clear that the renormalization

dynamics is not going to be governed by a nice attractor once the nonlinearity is

4The analysis can be extended considerably beyond Diophantine rotation vectors, but the
arguments are not as simple as just applying the KAM Theorem.
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so large that the Lyapunov exponent becomes positive.5 A more subtle problem

concerns the renormalization of critical cocycles, at the onset of nonuniform

hyperbolicity (see Remark 4.1). Their renormalizations can no longer converge

to linear cocycles, but they could still be governed by an attractor. One reason

to hope for it is the way renormalization acts on the Lyapunov exponent of

complexifications: for critical cocycles one has, for ϵ > 0 small,

lim
n→∞

1

n
ln ∥An(x+ ϵi)∥ = 2πωϵ, (12)

where ω is a positive integer called the acceleration (this “quantization” prop-

erty was only recently discovered, in [A1]). This simple dependence behaves

perfectly under renormalization, so that a renormalized critical cocycle is a

critical cocycle with the same acceleration. Thus the acceleration measures an

irreducible amount of nonlinearity of critical cocycles (since cocycles close to a

constant must have zero acceleration), which contrary to a positive Lyapunov

exponent does not grow with renormalization.

However, since it is known that if the matrix products An(x) remain

bounded for all times, then renormalization must converge to the linear at-

tractor [AK2], it seems unrealistic to expect for renormalization to converge

in the traditional sense. Maybe it might be necessary to modify the definition

of the renormalization operator, perhaps by introducing nonlinear changes of

coordinates? Let us note that a very different kind of renormalization mecha-

nism [HS] has been previously considered in the analysis of some features of

criticality, in the particular case of the critical Almost Mathieu Operator (with

potential v(x) = 2 cos 2πx). This especially symmetric (under so-called Aubry

duality [GJLS]) model has the remarkable property that the associated cocy-

cles are critical for all energies in the spectrum, and because of (numerically)

observed self-similarity in the spectrum, it is very tempting to imagine that

there is a renormalization attractor somewhere in the picture. The situation

here may be related to the (even less understood) breakdown of KAM behavior

in area-preserving maps (discussed, e.g., in [McK]).

A similar (but much more well understood) situation concerns the case of

analytic circle maps. Diffeomorphisms of the circle form an open set where

renormalization acts quite nicely, but what about the critical circle maps in its

boundary? Those are still homeomorphisms, and so have a well defined rota-

tion number, but the critical points introduce an irreducible (conserved under

renormalization) amount of nonlinearity. There is a well-developed renormaliza-

tion theory in this case, particularly about the main component of the bound-

ary of diffeomorphisms, consisting of critical circle maps with a single critical

5It might be still possible to obtain results describing the asymptotics of the diverging
renormalization orbits, but currently there is nothing more than interesting heuristics in this
direction.
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point: as it turns out, there exists a renormalization attractor, and this lies

behind fundamental rigidity results (see [FM1], [FM2], [Ya1], [Ya2], [KT]).6

If one goes beyond critical circle maps, one starts dealing with non-invertible

maps of the circle. We will however go in a slightly different direction, and

discuss next non-invertible maps of the interval, focusing on the particular

class for which much of the renormalization theory was developed.

6. Analytic Unimodal Maps

Let f : I → I be an analytic unimodal map. Thus f has a unique critical

point, which is of turning type (maximum or minimum) and located in intI.

By an affine change of coordinates, we may normalize it so that the critical

point is at the origin and f(x) = f(0) + xd + O(xd+1) for some even integer

d ≥ 2, called the degree. Basic examples of analytic unimodal maps are given

by the (appropriate restrictions of) unicritical polynomials x '→ xd + c (for

the suitable range of c ∈ R for which an invariant interval exists). The precise

domain of definition of a unimodal map is not of too much importance, since

it only concerns trivial aspects of the dynamics.

A unimodal map is called renormalizable if there is an interval I ′ ⊂ I

around 0 and an integer n > 1 such that fn(I ′) ⊂ I ′ but f j(I ′) ∩ intI ′ = ∅ for

1 ≤ j ≤ n − 1. Then f ′ = fn : I ′ → I ′ is again unimodal. The set of possible

values of n form a finite or infinite sequence n1 < n2 < ..., such that nj |nk for

j < k. The normalization of (the appropriate restriction) of fnj is called the j-

th renormalization. The renormalization operator R takes each renormalizable

map f to its first renormalization Rf , and the j-th renormalization is obtained

by iterating it j-times. If Rjf is renormalizable for every j ∈ N, f is called

infinitely renormalizable.

The renormalization period of f is n = n1, while the renormalization com-

binatorics of f is the permutation of π : {0, ..., n− 1}→ {0, ..., n− 1} such that

π(j) < π(k) if and only if f j(0) < fk(0). All integers n ≥ 2 do arise as the

renormalization periods of some unimodal map. The renormalization combina-

torics is not, in general, determined by the period. We let Σ be the countable

set of all possible renormalization combinatorics.

The existence of a critical point has the important consequence that all

renormalizations have an “irreducible nonlinearity”. While in the situations

considered in §3 and §4 we could readily define an invariant set which was a

candidate to be a renormalization attractor, proving any kind of convergence

6Particularly Khanin-Teplinsky show (using exponential convergence of renormalization)
that for analytic circle homeomorphisms with a single critical point of fixed odd degree d ≥ 3,
any two maps with the same irrational rotation number must be C1-conjugate. This is in stark
contrast with the situation for circle diffeomorphisms, as no kind of Diophantine condition is
necessary.
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of renormalization for unimodal maps will involve constructing the attractor in

the process.

Important aspects of the dynamics of unimodal maps are impacted by the

degree, and most especially by whether d = 2 (the quadratic case) or d > 2

(the higher degree case). The ultimate source of this difference lies in a specific

“decay of geometry” property valid in the quadratic case but not in the higher

degree case, which diminishes the importance of nonlinearity in small scales

before the first renormalization. This impacts, in particular, the analysis of

attractors of the unimodal dynamics: in the quadratic case, Milnor’s notion

of topological and measure-theoretical attractor coincide [L1],7 but this is not

true, in general, in sufficiently high degree [BKNS].

6.1. Feigenbaum-Coullet-Tresser phenomenon. Renormaliza-

tion of unimodal maps is most well known for its role in the understanding of

universality in the period doubling bifurcation. Considering, say, the quadratic

family pc(x) = x2 + c, which define unimodal maps for c ∈ [−2, 1/4], one sees

that for c close to 1/4, the iterates of the critical point are asymptotic to a

fixed point. This persists as one decreases the parameter c, until a moment c0
at which the so-called saddle-node bifurcation takes place. Just below it, the

fixed point becomes repelling, but a nearby period 2 cycle emerges, which still

attracts the critical orbit. This again persists until another moment c1, where

another saddle-node bifurcation takes place and a period 4-cycle emerges. Pro-

ceeding in this way, one defines the sequence of period-doubling bifurcation

moments ck (at which a 2k-cycle gives birth to a 2k+1-cycle). The remarkable

fact is that ck converges at a geometric rate, so that

ck − ck+1

ck+1 − ck+2

→ 4.669... (13)

(this limit is called the Feigenbaum constant). But the big surprise is that

if one considers another family of analytic unimodal maps fc with quadratic

critical point (say, close to the quadratic one, to avoid transversality issues),

one gets a very different sequence of bifurcation moments c̃k, but which still

converge geometrically with the same rate. The Feigenbaum constant is a uni-

versal quantitative feature of the cascade of period doubling bifurcations for

unimodal maps with a quadratic critical point. For fixed higher degree d,

the same phenomenon occurs (with a “Feigenbaum constant” associated to

each d).

Dynamics of the renormalization operator comes into play because the lim-

iting parameter of the cascade of period doubling bifurcations corresponds

to an infinitely renormalizable unimodal map f , with nj = 2j . According to

7By definition, an attractor should have a large basin (of points which are asymptotic to
the attractor). If largeness is understood in terms of Baire category one gets the topological
notion, while if it is understood in terms of Lebesgue measure one gets the measure-theoretical
one.
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the Renormalization Conjectures, advanced by Feigenbaum and Coullet-Tresser

([F], [TC]), the renormalizations Rnf should converge to a universal (for each

fixed degree) unimodal map f∗, a solution of the Feigenbaum-Cvitanovic equa-

tion f 2
∗
(λx) = λf∗(x). Moreover, in some suitable functional space, the deriva-

tive of renormalization at f∗ should be hyperbolic, and its spectrum outside the

unit disk should consist of a single simple eigenvalue: In other words, f∗ should

be an hyperbolic fixed point with one-dimensional unstable direction. One can

show that the Renormalization Conjectures imply that the cascade of period

doubling bifurcations undergone by a generic (i.e., satisfying a transversality

condition) family does indeed converge geometrically at a rate given precisely

by the value of the eigenvalue of DRf∗ which lies outside the unit disk.

There is a long history to the Renormalization Conjectures, which were

initially addressed in a formal computer assisted proof of Lanford [La] (dealing

with the existence and hyperbolicity of a renormalization fixed point in the

quadratic case), see [L4] and references therein.

6.2. Role in the measure-theoretical analysis of parame-
ters. While beautiful, the theory of the period doubling bifurcation only con-

cerns the most ordered part of the dynamics of unimodal maps. Through the

whole cascading process, one only faces dynamics displaying attracting periodic

orbits, and only at the limit of the cascade one gets something more compli-

cated (the attractor is no longer a periodic orbit, but the suitable limit of pe-

riod 2k-orbits, i.e., a Cantor set restricted to which the dynamics is conjugate

to translation by one in the ring of 2-adic integers).

On the other side of the parameter space (c = −2 for the quadratic family),

one gets a very different situation. The map x '→ x2
− 2, also called the Ulam-

Neumann map, possesses an invariant probability measure which is equivalent

to the restriction of Lebesgue measure to [−2, 2]. This measure is ergodic and

so Lebesgue almost every orbit is equidistributed with respect to it.

The Ulam-Neumann map shows that unimodal dynamics is consistent with

chaos (the invariant measure has a positive Lyapunov exponent), but looks quite

unstable. Indeed, Lyubich [L2] and Graczyk-Swiatek [GS] proved that in the

quadratic family there exists an open and dense set of parameters correspond-

ing to regular unimodal maps (for which the critical point is asymptotic to an

attracting periodic orbit). However Jakobson [J] showed that there is a positive

measure set of parameters c (near −2) corresponding to stochastic unimodal

maps (with an absolutely continuous invariant probability measure with pos-

itive Lyapunov exponent). Thus while only regular behavior is “topologically

robust”, both regular and stochastic behaviors are “measure-theoretically ro-

bust”. Such results extend to more general analytic unimodal maps, the density

of regular behavior being however much harder in higher degree [KSS].

With these preliminaries, we can now present the main result on the

measure-theoretic dynamics of unicritical polynomials (in the quadratic case,

it is due to Lyubich [L5]).
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Theorem 3 ([AL1], [AL2]). Almost every unicritical polynomial xd+c is either
regular or stochastic.

What about infinitely renormalizable maps? Those are neither regular nor

stochastic, so to get to Theorem 3 one must show in particular that infinitely

renormalizable parameters correspond to a zero Lebesgue measure set of param-

eters.8 While the explanation of the Feigenbaum-Coullet-Tresser phenomenon

lies in understanding the dynamics of the renormalization operator of period 2

(governed by a single hyperbolic fixed point), here we will need to understand

the full renormalization dynamics, incorporating all renormalization combina-

torics.

It follows from the density of regular parameters that the set of infinitely

renormalizable parameters in the unicritical family (with d fixed) is homeo-

morphic to the set of irrational numbers in (0, 1). Indeed, the combinatorics of

successive renormalization behaves much like the digits in the continued fraction

expansion of an irrational number: Any sequence of renormalization combina-

torics is realized by a unique parameter value. This hints to the fact that “along

the direction of the unicritical families” the dynamics of renormalization should

resemble to some extent the shift on NN.

If instead of specifying the full renormalization combinatorics one merely

specify the the combinatorics of the first n renormalizations, one obtains an

interval (or renormalization window) of parameters. The idea of the measure-

theoretic analysis of infinitely renormalizable parameters is that the renormal-

ization window is a distorted copy of the full parameter space. Corresponding,

e.g., to the tame end of the parameter space consisting of regular dynamics,

one finds accordingly a region of regular parameters inside the renormalization

window. If we can control the distortion involved in the renormalization pro-

cess, we will conclude that there are “definite gaps” in arbitrarily small scales

around any infinitely renormalizable parameter. Thus the set of infinitely renor-

malizable parameters has no Lebesgue density point, and must thus have zero

Lebesgue measure.

The control of the dynamics of renormalization needed in the argument lies

behind a deep generalization of the Renormalization Conjectures. A program in

this direction was initially advanced by Sullivan [S1] in the case of bounded com-

binatorics, in the sense that one restricts considerations to infinitely renormal-

izable maps f such that the renormalization periods of Rkf is bounded (inde-

pendently of k) by some fixed (but arbitrary) constant. In this setting, Sullivan

[S2] (see also [MS]) constructed a global renormalization attractor (homeomor-

phic to the Cantor set FZ for a finite part F ⊂ Σ), McMullen [McM] proved

exponential convergence to the attractor, and Lyubich proved that the renor-

malization attractor is hyperbolic (a Smale horseshoe) with one-dimensional

unstable direction [L4]. The hyperbolicity of the full renormalization operator

8Of course, the proof of Theorem 3 involves a substantial understanding of non-infinitely
renormalizable dynamics [MN], [L3], [AKLS], [ALS], which we will not go through here.
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was proved by Lyubich in the quadratic case [L5]. In this tour de force, the

analysis of exponential contraction depends on special fine geometry features

of the complex dynamics of quadratic polynomials [L2].

We should note that it is quite important to choose an appropriate func-

tional setting to study the dynamics of the renormalization operator. Following

Douady-Hubbard [DH], it is natural to consider the action of renormalization

in spaces of polynomial-like germs: These may be thought of as obtained from

unicritical polynomials by suitable hybrid deformations of the complex struc-

ture of the Riemann sphere (by Douady-Hubbard’s Straightening Theorem).

In this setting, the hybrid classes provide natural candidate stable manifolds

of renormalization, being easily seen to be forward invariant under renormal-

ization. Establishing that the hybrid classes are actually stable manifolds is a

crucial step in the construction of the renormalization attractor.

6.2.1. Convergence of renormalization. One central point of [AL1] is that

convergence along the candidate stable manifolds can be derived from beau a
priori bounds (a concept introduced by Sullivan). This is a rough geometric

control that is known to hold in general and translates to universal precom-
pactness of the renormalization orbits, by exploiting the global dynamics of the

renormalization operator. While it is beyond the point of this paper to discuss

how the necessary a priori bounds (due to [LS] and [LY]) are obtained, we can

give some ideas about how they lead to convergence.

The candidate stable manifolds can be endowed with a complex structure,

which is respected by renormalization. It is important to note that we only get

this complex structure by allowing deformations which are not real symmetric,

and hence do not correspond to actual unimodal maps, and the beau a priori

bounds only concern, in principle, the real-symmetric deformations.

The hybrid classes are all equivalent to a same functional space E , hence

the action of the renormalization operator along the family of all hybrid classes

of infinitely renormalizable maps corresponds to the action of a certain “renor-

malization groupoid” R acting holomorphically on E . Naturally, R respects the

real trace E
R
⊂ E corresponding to legitimate unimodal deformations.

Using a version of the Schwarz Lemma, one obtains non-expansion of the

renormalization groupoid, which together with the beau a priori bounds in

E
R implies that R is almost periodic. An abstract analysis of almost periodic

groupoids shows that either the renormalization groupoid is uniformly con-

tracting or the lack of contraction is detected by a non-constant holomorphic

idempotent P in its limit set ω(R).

We want to show that any holomorphic idempotent in ω(R) is non-constant.

By holomorphicity, it is enough to show non-constancy along E
R. The beau a

priori bounds imply that P (ER) is a compact set, and since P is a sufficiently

regular idempotent, it must be a manifold. As expected from a deformation

space, ER turns out to be contractible, so its image by an idempotent is con-

tractible as well. Since the only contractible compact manifold is a point, we
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conclude that P |E
R must be indeed constant. This implies, by contradiction,

that the renormalization groupoid is uniformly contracting, as desired.

Remark 6.1. The argument above uses only a few properties of the renormal-

ization groupoid (holomorphicity, real-symmetry, and appropriate precompac-

ness along E
R), and can be used to establish uniform contraction of any other

groupoid with those properties. In particular, finer geometric properties of in-

finitely renormalizable maps (that tend to be quite dependent on the combina-

torics and degree) can play no role. In previous, more restricted, approaches,

contraction was always ultimately obtained as a consequence of such less robust

features.
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[GoSc] Goldstein, M.; Schlag, W. Hölder continuity of the integrated density of

states for quasi-periodic Schrödinger equations and averages of shifts of sub-

harmonic functions. Ann. of Math. (2) 154 (2001), no. 1, 155–203.

[GJLS] Gordon, A. Y.; Jitomirskaya, S.; Last, Y.; Simon, B. Duality and singular

continuous spectrum in the almost Mathieu equation. Acta Math. 178 (1997),

no. 2, 169–183.

[GS] Graczyk, J.; Swiatek, G. Generic hyperbolicity in the logistic family. Ann. of

Math. (2) 146 (1997), no. 1, 1–52.
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Astérisque No. 261 (2000), 239–252.

[M] Masur, Howard Interval exchange transformations and measured foliations.

Ann. of Math. (2) 115 (1982), no. 1, 169–200.

[MS] de Melo, Welington; van Strien, Sebastian One-dimensional dynamics.

Springer-Verlag, Berlin, 1993.

[McM] McMullen, C. Renormalization and 3-manifolds which fiber over the circle.

Annals of Mathematics Studies, 142. Princeton University Press, Princeton,

NJ, 1996.

[SK] Sinai, Ya. G.; Khanin, K. M. Smoothness of conjugacies of diffeomorphisms

of the circle with rotations. Uspekhi Mat. Nauk 44 265 (1989), 57–82, 247.

[S1] Sullivan, D. Quasiconformal homeomorphisms in dynamics, topology and

geometry. Proc. ICM-86, Berkeley II, A.M.S., Providence, RI (1987), 1216–

1228.

[S2] Sullivan, D. Bounds, quadratic differentials, and renormalization conjectures.

AMS Centennial Publications II, Mathematics into Twenty-first Century,

417–466, 1992.

[S3] Sullivan, D. Reminiscences of Michel Herman’s first great theorem. Gaz.

Math. No. 88 (2001). Société Mathématique de France, Paris, 2001. pp. 91–

94.

[TC] Tresser, C.; Coullet, P. Itérations d’endomorphismes et groupe de renormal-

isation. C. R. Acad. Sci. Paris 287A (1978), 577–580.

[V1] Veech, William A. Gauss measures for transformations on the space of inter-

val exchange maps. Ann. of Math. (2) 115 (1982), no. 1, 201–242.

[V2] Veech, William A. The Teichmüller geodesic flow. Ann. of Math. (2) 124

(1986), no. 3, 441–530.



Dynamics of Renormalization Operators 175

[Ya1] Yampolsky, Michael The attractor of renormalization and rigidity of towers

of critical circle maps. Comm. Math. Phys. 218 (2001), no. 3, 537–568.

[Ya2] Yampolsky, Michael Hyperbolicity of renormalization of critical circle maps.

Publ. Math. Inst. Hautes Études Sci. No. 96 (2002), 1–41.

[Y1] Yoccoz, J.C. Il n’y a pas de contre-exemple de Denjoy analytique. C. R.

Acad. Sci. Paris Sér. I Math. 298 (1984), no. 7, 141–144.
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Norm. Sup. (4) 17 (1984), no. 3, 333–359.


