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Abstract. Consider a smooth one-parameter family t !→ ft of dynamical systems ft, with |t| < ϵ.
Assume that for all t (or for many t close to t = 0) the map ft admits a unique physical invariant
probability measure µt. We say that linear response holds if t !→ µt is differentiable at t = 0 (possibly
in the sense of Whitney), and if its derivative can be expressed as a function of f0, µ0, and ∂tft|t=0.
The goal of this note is to present to a general mathematical audience recent results and open problems
in the theory of linear response for chaotic dynamical systems, possibly with bifurcations.
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1. Introduction

A discrete-time dynamical system is a self-map f : M → M on a space M . To any point
x ∈ M is then associated its (future) orbit {fn(x) | n ∈ Z+} where f0(x) = x, and
fn(x) = fn−1(f(x)), for n ≥ 1, represents the state of the system at time n, given the “ini-
tial condition” x. (If f is invertible, one can also consider the past orbit {f−n(x) | n ∈ Z+}.)
In this text, we shall always assume that M is a compact differentiable manifold (possibly
with boundary), with the Borel σ-algebra, endowed with a Riemannian structure and thus
normalised Lebesgue measure. Many natural dynamical systems are “chaotic” (in particu-
lar, a small error in the initial condition will grow exponentially with time) and best under-
stood via ergodic theory. The ergodic approach often starts with finding a “natural” invariant
probability measure µ (a probability measure is invariant if µ(f−1(E)) = µ(E) for every
Borel set). Lebesgue measure is not always invariant, although there are important excep-
tions such as the angle-doubling map x $→ 2x modulo 1 on the circle, hyperbolic linear
toral automorphisms such as the “cat map” A0 defined in (3.2) below, or symplectic diffeo-
morphisms. However, many interesting dynamical systems which do not preserve Lebesgue
admit a “physical” invariant probability measure: The ergodic basin of an f -invariant prob-
ability measure µ is the set of those initial conditions for which time averages converge to
the space average for every continuous function ϕ : M → C, i.e., the set

{x ∈M | lim
n→∞

1

n

n−1∑

k=0

ϕ(fk(x)) =

∫
ϕ dµ , ∀ϕ ∈ C0}.
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An invariant probability measure µ is called physical if its ergodic basin has positive Lebesgue
measure.

If µ is f -invariant and absolutely continuous with respect to Lebesgue then, if it is in
addition ergodic, it is a physical measure because of the Birkhoff ergodic theorem. It was
one of the breakthrough discoveries of the 60’s, by Anosov and others, that many natural
dynamical systems (in particular smooth hyperbolic attractors) admit finitely many physical
measures, while in general they do not admit any absolutely continuous invariant measure.
Physical measures are sometimes called SRB 1 measures after Sinai, Ruelle, and Bowen,
who studied them in the sixties [65].

Instead of a single discrete-time dynamical system f , let us now consider a one-parameter
family t !→ ft of dynamical systems on the same space M , where t ∈ [−, ϵ, ϵ], for ϵ > 0. We
assume that the map t !→ ft is “smooth” (i.e., Ck for some 1 < k ≤ ∞), taking a suitable
topology in the image, e.g., that of Cℓ diffeomorphisms, or (piecewise) Cℓ endomorphisms
of M , for some ℓ > 1. We can view ft as a perturbation of the dynamics f := f0. Let us
assume that there exists a closed set Λ, containing 0 as an accumulation point, such that the
map ft admits a unique physical measure for every t ∈ Λ. (We shall give examples where
this assumption holds below.) The question we are interested in is: Does the map t !→ µt

inherit any of the smoothness of t !→ ft at the point t = 0? In particular, is t !→ µt is
differentiable at t = 0 (possibly by requiring k and ℓ large enough)?

As such, the question is not well defined, because we must be more precise regarding
both the domain Λ and the range {µt | t ∈ Λ} of the map t !→ µt. If Λ contains a neigh-
bourhood U of 0, then differentiability is understood in the usual sense, and differentiability
properties usually hold throughout U . However, if Λ does not contain 2 any neighbourhood
of 0, “differentiability” of t !→ µt on Λ should be understood in the sense of the Whitney
extension theorem, as was pointed out by Ruelle [49]. In other words, the map t !→ µt is
called Cm at 0 ∈ Λ for a real number m > 0 if this map admits a Cm extension from Λ to
an open neighbourhood of 0. If 0 ≤ m < 1 this is just continuity or Hölder continuity on a
metric set. For m = 1, e.g., then “µt is C1 in the sense of Whitney on Λ at t = 0” means
that there exists a continuous function µ(1)

s , defined for s ∈ Λ, so that

µs = µ0 + sµ(1)
s +Rs , with Rs = o(|s|) , ∀s ∈ Λ .

In order to give a precise meaning to = o(|s|), we need to be more specific regarding the
topology used in the range. Even if µt has a density with respect to Lebesgue, the L1 norm of
this density can be too strong to get differentiability. What is often suitable is a distributional
norm, i.e., the topology of the dual of Cr for some r ≥ 0 (r = 0 corresponds to viewing µt

as a Radon measure). In other words, the question is the differentiability of

t !→
∫

ϕ dµt .

where the “observable” ϕ belongs to Cr(M). In some cases (Cr(M))∗ can be replaced by
a space of anisotropic distributions (see §3.1).

We emphasize that considering a strict subset Λ0 ⊂ Λ containing 0 as an accumulation
point may change the class of Whitney-Cm maps at 0: A given map µt defined on Λ could

1The notions of SRB and physical measures do not always coincide, see [65]. In the present expository note, we
shall ignore this fact.

2One could also decide to restrict Λ even if it originally contains a neighbourhood of 0.
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be (Whitney) Cm at 0 ∈ Λ0, but not (Whitney) Cm at 0 ∈ Λ. It seems fair to take a
“large enough” Λ, for example by requiring 0 to be a Lebesgue density point in Λ (i.e.,
limr→0 m(Λ ∩ [−r, r])/(2r) = 1), or at least 0 not to be a point of dispersion in Λ (i.e.,
limr→0 m(Λ ∩ [−r, r])/(2r) > 0).

We shall focus on 0 < m ≤ 1. (Higher differentiability results, including formulas, can
be obtained [47] if one makes stronger smoothness assumptions on the individual dynamical
systems x %→ ft(x) and on the map t %→ ft.) If we can prove, under some assumptions on
the family ft, on the set Λ, and on k, ℓ, and r, that the map t %→ µt is differentiable at 0 ∈ Λ,
then it is natural to ask if there is a formula for

∂t

∫
ϕ dµt|t=0

in terms of f0, µ0, ϕ, and the vector field v0 := ∂tft|t=0. If such a formula exists, it is
called the linear response formula (it gives the response to first order of the system in terms
of the first order of the perturbation). We shall assume that the perturbation takes place in
the image point, i.e., there exists vector fields Xs so that

vs := ∂tft|t=s = Xs ◦ fs , ∀s, t ∈ [−ϵ, ϵ] . (1.1)

(If each fs is invertible, the above is just a definion of Xs.) The mathematical study of
linear response has been initiated by Ruelle. In § 3.1, we shall present his pioneering result
[44] on smooth hyperbolic systems (Axiom A attractors). Let us just mention now the key
linear response formula he obtained in [44] for smooth hyperbolic attractors ft and smoooth
observables ϕ:

∂t

∫
ϕρt dx|t=0 =

∞∑

j=0

∫
⟨X0, grad(ϕ ◦ f j

0 )⟩ dµ0 , (1.2)

where the sum is exponentially converging. In [46], Ruelle had shown how to derive (1.2)
from heuristic arguments, which suggested to consider the following susceptibility function
associated to ft and ϕ:

Φt(z) =
∞∑

j=0

∫
zj⟨X0, grad(ϕ ◦ f j

0 )⟩ dµ0 . (1.3)

Under very weak assumptions, the power seriesΦt(z) (often denotedΦt(eiω)) has a nonzero
radius of convergence. If the radius of convergence is ≤ 1 and the series in the right-hand-
side of (1.2) does not converge, Ruelle [48, (∗∗)] suggested that the value at z = 1 could
sometimes be obtained by analytic continuation, possibly giving the linear response formula.
However, caution is necessary, as it was discovered since then (see Section 4.2 below) that
linear response fails [7] in cases where a meromorphic continuation was known to exist [49],
(see also the presentation of the results of [8] in Section 4.1.)

Before we sketch the contents of this note, we make two simple but essential remarks
on (1.2). First note that the higher-dimensional version of the Leibniz expression (Xρ)′ =
X ′ρ+Xρ′ reads

ρ divX + ⟨X, grad ρ⟩ .
Second, defining the transfer operator associated to an invertible 3 dynamical system ft

3See (2.1) for the noninvertible version.
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(acting, e.g., on L∞ or L1) by

Ltϕ(x) =
ϕ(f−1

t (x))

| detDft(f
−1
t (x))|

,

we have
∫
Lt(ϕ) dx =

∫
ϕ dx, for all ϕ (since the dual of Lt preserves Lebesgue mea-

sure, this is the change of variable formula in an integral). If the transfer operator has a
nonnegative fixed point Ltρt = ρt ∈ L1, then µt = ρt dx is an absolutely continuous invari-
ant probability measure for ft and thus (if ergodic) a physical measure. In this case, if the
eigenvalue 1 for Lt is simple and isolated, Ruelle’s formula (1.2) and integration by parts
give,

∂t

∫
ϕρt dx|t=0 =

∞∑

j=0

∫
⟨X0, grad(ϕ ◦ f j

0 )⟩ρ0 dx

= −
∞∑

j=0

∫
ϕ ◦ f j

0 (ρ0 divX0 + ⟨X0, grad ρ0⟩) dx

= −
∞∑

j=0

∫
ϕLj

0(ρ0 divX0 + ⟨X0, grad ρ0⟩) dx

= −
∫

ϕ(1− L0)
−1(ρ0 divX0 + ⟨X0, grad ρ0⟩) dx . (1.4)

Note that the residue of (1 − zL0)−1(ρ0 divX0 + ⟨X0, grad ρ0⟩) dx at z = 1 vanishes,
because Lebesgue measure is the fixed point of L∗0, and the manifold is boundaryless, so that∫
(ρ0 divX0 + ⟨X0, grad ρ0⟩)dx = 0, by integration by parts. The “metaformula” (1.4) for

linear response in the last line can be guessed by applying perturbation theory to the fixed
point ρt of the operator Lt. We shall see in § 3.1 instances where the above is a rigorous
argument, even in cases where µt is not absolutely continuous with respect to Lebesgue
(then, µt is a distribution, enjoying smoothness along unstable directions), and in Section 4
instances where the computation above is invalid, even in cases where µt is in fact absolutely
continuous with respect to Lebesgue. We emphasize that the tricky point is that the resolvent
(1 − zL0)−1 is evaluated at an expression involving differentiation of ρ0: While ρ0 itself
often belongs to a space on which L0 has nice spectral properties, this is not always true for
its derivative.

The note is organised as follows: In § 2, we give a complete proof of linear response in
the baby toy model of smooth locally expanding circle maps. Section 3 contains an account
of two nontrivial occurrences of linear response in chaotic dynamics: The breakthrough [44]
of Ruelle for smooth hyperbolic systems is presented in § 3.1, while Dolgopyat’s result [20]
in a (not necessarily structurally stable) partially hyperbolic case is stated in § 3.2. The next
section, which contains both recent results and open problems, is devoted to situations where
linear response is violated: We consider first the toy model of piecewise expanding interval
maps, presenting in § 4.1 our results [9, 10] with Smania, and those with Marmi–Sauzin
[8]. Then, we focus on the – more difficult – smooth, nonuniformly expanding, unimodal
interval maps, discussing in § 4.2 the work of Ruelle [51], together with our work with
Smania [11, 12], and our recent paper with Benedicks and Schnellmann [7]. Finally, § 4.3
contains a brief account of the techniques of proofs in [7].
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The survey published by Nonlinearity in 2008 [6] contains a broad viewed account of
the results, open problems, and conjectures at the time, with an emphasis on the role played
by critical points (or more generally homoclinic tangencies) in the breakdown of linear re-
sponse. That survey is thus complementary to the present more introductory presentation.
(In view of the page limitation for this contribution, we sometimes do not give fully ex-
plicit statements and definitions, the reader is invited to consult the quoted references for
clarification.)

We refer to Ruelle’s articles [46, 48, 52] for motivation, applications to physics, and more
conjectures. See also the interesting approach of Hairer and Majda [25], including references
of applications to climate-change. In the present note, we do not discuss linear response for
continuous time dynamics [17, 50], or for dynamical systems in infinite dimensions (such as
coupled map lattices [27, 28]).

2. The toy model of expanding circle maps

In this section we present a proof of linear response in the (baby) toy model of smooth
expanding circle maps. The result and proof are well known (and simpler than the analogous
arguments in [9, 24]), but we are not aware of any reference.

Let M = S1 be the unit circle, and let f : S1 → S1 be a C2 map which is λ-locally
expanding, i.e., there exists λ > 1 so that |f ′(x)| ≥ λ for all x. It is known [38] that
such an f admits a unique absolutely continuous invariant probability measure µ = ρ dx.
This measure is mixing and therefore ergodic. So a C2 locally expanding map f admits a
unique physical measure. In fact, ρ is C1, and it is everywhere strictly positive. The transfer
operator 4

Lϕ(x) =
∑

f0(y)=x

ϕ(y)

|f ′0(y)|
(2.1)

is bounded on C1(S1). It is known (see [4], e.g., for the relevant references to Ruelle and
others) that ρ is a fixed point of L, that the eigenvalue 1 of L (acting on C1(S1)) has algebraic
multiplicity equal to one, and that the rest of the spectrum of L is contained in a disc of
radius strictly smaller than one. (Thus, L acting on C1(S1) has a spectral gap.) Note that the
eigenvector of L∗ for the eigenvalue 1 is just normalised Lebesgue measure (by the change
of variable formula).

Fix λ > 1, and consider a C2 path t #→ ft for t ∈ (−ϵ, ϵ), where each ft is now C3 and
locally λ-expanding (then, Lt acts on C2, and ρt ∈ C2). Assume that ∥ft − fs∥C3(S1,S1) =
O(|t−s|). Then, using the fact that Lt (acting on C2(S1) or C1(S1)) satisfies the following
Lasota-Yorke (or Doeblin-Fortet) 5 inequalities

∥Lk
tϕ∥Cj ≤ Cξk∥ϕ∥Cj + Ck∥ϕ∥Cj−1 , ∀ϕ , ∀k ≥ 1 , j = 1, 2 , (2.2)

(with uniform 0 < ξ < 1 and C ≥ 1), together with 6

∥(Lt − L0)ϕ∥C1 = O(|t|)∥ϕ∥C2 ,

one obtains strong stochastic stability:

4The number of terms in the sum is a constant finite integer ≥ 2, the degree of the map.
5What is essential here is the compact embedding of Cj – the strong norm – in Cj−1 – the weak norm.
6See Step 1 in the proof of Theorem 2.2 for a stronger claim.



530 Viviane Baladi

Theorem 2.1 (Strong stochastic stability, [14]). There exists C > 0 so that

∥ρt − ρs∥C1 ≤ C|t− s| , ∀ t, s ∈ (−ϵ, ϵ) .

In addition, for any t there exists τ < 1, so that, for all s close enough to t, the spectrum
of Ls, acting on C1(S1) or C2(S1), outside of the disc of radius τ consists exactly in the
simple eigenvalue 1.

The above result implies that t &→ µt is Lipschitz, taking the C1 topology of the density
ρt of µt in the image.

Assume now further (this does not reduce much generality) that vt = ∂sfs|s=t can be
written as vt = Xt ◦ ft with Xt ∈ C2. Then, we have linear response:

Theorem 2.2 (Linear response formula). Viewing ρt ∈ C2 as a C1 function, the map t &→ ρt
is differentiable, and we have

∂sρs|s=t = −(1− Lt)
−1((Xtρt)

′) , ∀t ∈ (−ϵ, ϵ) .

Note that Xtρt is C2 by assumption. Since integration by parts on the boundaryless
manifold S1 gives

∫
(Xtρt)′ dx = 0, the residue of the simple pole at z = 1 of the resolvent

(z − Lt)−1 (acting on C1(S1)) vanishes at (Xtρt)′.
We now prove Theorem 2.2, assuming Theorem 2.1:

Proof of Theorem 2.2. The proof consists in three steps, to be proved at the end:

Step 1: Considering Lt as a bounded operator from C2(S1) to C1(S1), we claim that the
map t &→ Lt is differentiable, and that, for every t ∈ (−ϵ, ϵ), we have

Mt(ϕ) := ∂sLs(ϕ)|s=t = −X ′
tLt(ϕ)−XtLt

(
ϕ′

f ′

)
+XtLt

(
ϕf ′′

(f ′)2

)
.

(This step will use vt = Xt ◦ ft.)
Step 2: Let Πt(ϕ) = ρt ·

∫
ϕ dx be the rank one projector for the eigenvalue 1 of Lt acting

on C1(S1). Then, for every t ∈ (−ϵ, ϵ), we have

∂sρs|s=t = (1− Lt)
−1(1−Πt)Mt(ρt) .

(Note that ρt ∈ C2, but Mt is an operator from C2(S1) to C1(S1).)

Step 3: For every t ∈ (−ϵ, ϵ), we have

(1− Lt)
−1[(1−Πt)Mt(ρt)] = −(1− Lt)

−1((Xtρt)
′) .

Theorem 2.2 follows from putting together Steps 2 and 3. To conclude, we justify the
three steps:

Proof of Step 1. We must show that the operators defined for s ̸= t by

Rt,s :=
Lt − Ls

t− s
−Mt

satisfy lims→t ∥Rt,s∥C2(S1)→C1(S1) = 0. We start by observing that the number of branches
of fs (which is just its degree) does not depend on s. So for any fixed t and any x, each
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inverse branch for f−1
s (x), for s close enough to t, can be paired with a well-defined nearby

inverse branch f−1
t (x). For two such paired branches, we get, since ϕ ∈ C2, each fs is C3,

and t "→ ft is C2, that

ϕ(f−1
t (x)

|f ′t(f−1
t (x))|

− ϕ(f−1
s (x)

|f ′s(f−1
s (x))|

= O(t2)− (t− s)X ′
t(x)

ϕ(f−1
t (x)

|f ′t(f−1
t (x))|

− (t− s)Xt(x)

[
ϕ′(f−1

t (x)

f ′t(f
−1
t (x)|f ′t(f−1

t (x)|
− ϕ(f−1

t (x)f ′′t (f
−1
t (x)

(f ′t(f
−1
t (x)))2|f ′t(f−1

t (x)|

]
.

Proof of Step 2. Fix t. By Theorem 2.1, we can find a positively oriented closed curve γ in
the complex plane so that, for any s close to t, the simple eigenvalue 1 of Ls is contained in
the domain bounded by γ, and no other element of the spectrum of Ls acting on C2(S1) lies
in this domain. Step 2 then uses classical perturbation theory for isolated simple eigenvalues
of bounded linear operators on Banach spaces (see [29], e.g., see also [36] for the use of
similar ideas to get spectral stability), which tells us that, for any ϕ ∈ C2 so that Πs(ϕ) =∫
ϕ dx = 1, we have

ρs =
1

2iπ

∮

γ
(z − Ls)

−1ϕ(z) dz . (2.3)

(We used that
∫
ρs dx = 1 for all s and L∗s(dx) = dx.) Next, for z ∈ γ, we have the identity

(z − Lt)
−1 − (z − Ls)

−1 = (z − Lt)
−1(Lt − Ls)(z − Ls)

−1 ,

where we view (z − Ls)−1 as acting on C2(S1), the difference (Lt − Ls) as an operator
from C2(S1) to C1, and (z − Lt)−1 as acting on C1(S1). Letting s tend to t, and recalling
Step 1, we have proved

∂s(z − Ls)
−1|s=t = (z − Lt)

−1Mt(z − Lt)
−1 .

Finally, taking (as we may) ϕ = ρt ∈ C2 in (2.3),

∂sρs|s=t =
1

2iπ

∮

γ
(z − Lt)

−1Mt(z − Lt)
−1ρt(z) dz

=
1

2iπ

∮

γ
(z − Lt)

−1Mt(ρt(z))

z − 1
dz .

An easy residue computation completes Step 2.

Proof of Step 3. It suffices to show Mtρt −ΠtMtρt = −(Xtρt)′. Step 1 implies

Mtρt = −X ′
tρt −XtLt

(
ρ′t
f ′t
− ρtf ′′t

(f ′t)
2

)
.

Now we use that ρ′t = (Ltρt)′ ∈ C1 and

(Ltϕ)
′(x) =

∑

ft(y)=x

ϕ′(y)

|f ′t(y)|
1

f ′t(y)
−

∑

ft(y)=x

ϕ(y)f ′′t (y)

|f ′t(y)|(f ′t(y))2
,
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to see that
Lt

(
ρ′t
f ′t
− ρtf ′′t

(f ′t)
2

)
= ρ′t .

We have shown that Mtρt = −(Xtρt)′, so that
∫
Mtρt dx = 0 and ΠtMtρt = 0, ending

the proof of Step 3, and thus of the theorem.

3. Linear response

3.1. Smooth hyperbolic dynamics (structural stability). A C1 diffeomorphism f : M →
M is called Anosov if there exist a Df -invariant continuous splitting TM = Eu ⊕ Es of
the tangent bundle and constants C > 0 and λ > 1 so that, for any x ∈ M , all n ≥ 1, all
v ∈ Es(x), and all w ∈ Eu(x),

∥Dfn
x (v)∥ ≤ Cλ−n∥v∥ , ∥Df−n

x (w)∥ ≤ Cλ−n∥w∥ . (3.1)

Thus, Anosov diffeomorphisms are generalizations of the linear hyperbolic map

A0 =

(
1 1
1 2

)
(3.2)

on the two-torus. Indeed (we refer to [30], e.g., for the basics of hyperbolic dynamics), a
small smooth perturbation of A0 is an Anosov diffeomorphism. Anosov diffeomorphisms
f admit (finitely many) SRB measures as soon as they are C1+ϵ, and the SRB measure is
unique if the diffeomorphism is transitive.7 For Axiom A diffeomorphisms, hyperbolicity (i.e.,
the existence of the continuous splitting Eu ⊕ Es) is assumed only at TxM for points x in
the nonwandering set Ω; in addition, periodic orbits are assumed to be dense in Ω. Smale’s
horseshoe is a famous Axiom A diffeomorphism, but SRB measures exist in general only
for Axiom A attractors, such as the solenoid. (Anosov diffeomorphisms are special cases
of Axiom A attractors.) An important property of Axiom A diffeomorphisms is structural
stability: If f0 is an Axiom A diffeomorphism, and ft is close to f0 (in the C1 topology),
then ft is also Axiom A, and, in addition f0 is topologically conjugated to ft, i.e., there is a
one-parameter family 8 of homeomorphisms ht so that ft = ht ◦ f0 ◦ h−1

t .
Linear response holds for smooth hyperbolic systems: After pioneering results of de

la Llave et al. [40] and Katok et al. [31], Ruelle proved the following landmark theorem
([44, 45], see also [26]):

Theorem 3.1 (Linear response for smooth hyperbolic systems). Let M be a compact Rie-
mann manifold. Let t )→ ft be a C3 map from (−ϵ, ϵ) to C3 diffeomorphisms ft : M →M .
Assume that each ft is a topologically mixing Axiom A attractor, and let µt be its unique
SRB probability measure. Then for any ϕ ∈ C2, the map t )→

∫
ϕ dµt is differentiable on

(−ϵ, ϵ). In addition, setting Xt = ∂fs|s=t ◦ f−1
t , we have

∂s

∫
ϕ dµs|s=t =

∞∑

j=0

⟨grad(ϕ ◦ f j
t ), Xt⟩ dµt , (3.3)

7Transitivity is automatic if f is volume preserving. It is conjectured that all Anosov diffeomorphisms on
connected compact manifolds are transitive.

8The map t !→ ht is smooth and its derivative αt solves the twisted cohomological equation (4.4), see also [6]
and references therein.
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where the series converges (exponentially).

In this situation, one shows that the susceptibility function (1.3) is holomorphic in a disc
of radius strictly bigger than one.

Ruelle exploited symbolic dynamics in [44, 45]. For a more modern approach, using
anisotropic Banach spaces, see the work of Gouëzel and Liverani ([23, Thm 2.8] for Anosov,
and [24, Prop. 8.1] for Axiom A). The modern approach is much simpler, since the transfer
operators Lt of the diffeomorphisms ft all have a uniform spectral gap on the same Banach
space B of anisotropic distributions, which contains, not only the SRB measure µt, but also
its “derivative.” The “metaformula” (1.4) can then be easily justified rigorously.

3.2. Mild bifurcations. In § 4 we shall see examples where the breakdown of structural
stability (the presence of bifurcations in the family ft) is mirrored by a breakdown of lin-
ear response. However, structural stability is not necessary to obtain linear response – and
neither is the spectral gap 9 of the transfer operator Lt. We briefly describe a result of
Dolgopyat [20] on a class of partially hyperbolic maps. We consider partially hyperbolic
diffeomorphisms f : M → M on a smooth compact manifold M , i.e., we assume the tan-
gent bundle is decomposed into invariant bundles Ec ⊕ Eu ⊕ Es, where Eu and Es are
both nontrivial and enjoy (3.1). A partially hyperbolic diffeomorphism f is called an Anosov
element of a standard abelian Anosov action if the central bundle Ec of f is tangent to the
orbits of a C∞ action gt of Rd so that fgt = gtf (see [32, 33]). Assume further that f
admits a unique physical (SRB) measure µ, whose basin has total Lebesgue measure. The
action is called rapidly mixing if for any m ≥ 1 there exists C ≥ 1 and a (gt-admissible)
class of smooth functions F so that, for all subsets S in a suitable class of unstable leaves of
f , any ϕ ∈ F , and for any smooth probability density ψ on S, we have

∣∣∣∣
∫

S
(ϕ ◦ fn)(x)ψ(x) dx−

∫
ϕ dµ

∣∣∣∣ ≤ C∥ϕ∥F∥ψ∥n−m .

We refer to [20] for precise definitions of the objects above and of u-Gibbs states, we just
recall here that SRB measures are u-Gibbs states. Dolgopyat’s result follows:

Theorem 3.2 (Linear response for rapidly mixing abelian Anosov actions [20]). Let f be
a C∞ Anosov element of a standard abelian Anosov action so that f has a unique SRB
measure and is rapidly mixing. Then, for any C∞ one-parameter family of diffeomorphisms
t )→ ft through f0 = f , choosing for each t a u-Gibbs state νt for ft (which can be the SRB
measure if it exists), we have that

∫
ϕ dνt is differentiable at t = 0 for any ϕ ∈ C∞, and the

linear response formula (3.3) holds. (See [20, p. 405] for the linear response formula.)

Besides giving a new proof in the Anosov case, applications of Theorem 3.2 include:

• time-one maps f of Anosov flows, which are generically rapidly mixing;
• toral extensions f of Anosov diffeomorphisms F defined by

f(x, y) = (F (x), y + ω(x)) , x ∈M , y ∈ Td , ω ∈ C∞(M,Td) ,

which are generically rapidly mixing (under a diophantine condition).

It seems important here that structural stability may only break down in the central direc-
tion. This allows Dolgopyat to use rapid mixing to prove that most orbits can be shadowed,
a key feature of his argument.

9See the work of Hairer and Majda [25].



534 Viviane Baladi

4. Or else

The results stated in § 3.1 gave at the time some hope [49] that linear response could hold
(at least in the sense of Whitney) for a variety of nonuniformly hyperbolic systems. In
the present section we shall state some results obtained since 2007 which indicate that the
situation is not so simple. We would like to mention that numerical experiments and physical
arguments already gave a hint that something could go wrong (see [21], e.g., for fractal
transport, see [35]).

4.1. Piecewise expanding interval maps. Piecewise expanding maps can be viewed as
a toy model for the smooth unimodal maps to be discussed in § 4.2. The setting is the
following: We let I = [−1, 1] be a compact interval, and consider continuous maps f : I →
I with f(−1) = f(1) = −1, and so that f |[−1,0] and f |[0,1] are C2, with infx ̸=c |f ′(x)| ≥
λ > 1. Such a map is called a piecewise expanding unimodal map (for λ). Lasota and Yorke
[39] proved in the 70’s that such a map posesses a unique absolutely continuous invariant
probability measure µ = ρ dx, which is always ergodic. In fact, the density ρ is of bounded
variation. If µ is mixing, we have exponential decay of correlations for smooth observables,
which can be proved by using the spectral gap of the transfer operator Lt defined by (2.1)
acting on the Banach space BV of functions of bounded variation, see e.g. [4]. We set
c = c0 = 0, and we put ck = fk(c) for k ≥ 1.

Consider now a C1 path t $→ ft, with each ft a piecewise expanding unimodal map.
Assume in addition that f0 = f is topologically mixing on [c2, c1] (then µ = µ0 is mixing),
that c1 < 1, and that c is not a periodic point of f0 (this implies that f0 is stably mixing,
i.e., small perturbations of f0 remain mixing). Then, applying [39], each ft admits a unique
SRB measure µt = ρt dx (and each transfer operator Lt has a spectral gap on BV , the
corresponding estimates are in fact uniform). Keller [34] proved that the map

t $→ ρt ∈ L1(dx)

is Hölder for every exponent η < 1. In fact, Keller showed

∥ρt − ρs∥L1 ≤ C|t− s|| log |t− s|| . (4.1)

From now on, we assume that each ft is piecewise C3, that the map t $→ ft is C2, and that
v = ∂tft|t=0 = X ◦ f . An example is given by taking the tent maps

ft(x) = a+ t− (a+ t+ 1)x , if x ∈ [0, 1] ,

ft(x) = a+ t+ (a+ t+ 1)x , if x ∈ [−1, 0] ,
(4.2)

choosing 0 < a < 1 so that 0 is not periodic for fa and so that fa is mixing (note that
X0(x) = (a+ 1)−1(x+ 1)). Observe that structural stability is strongly violated here: ft is
topologically conjugated to fs only if s = t [18]. In other words, the family ft of tent maps
undergoes strong bifurcations.

A piecewise expanding map is called Markov if c is preperiodic, that is, if there exists
j ≥ 2 so that cj is a periodic point: fp(cj) = cj for some p ≥ 1. (In this case, one
can show that the invariant density is piecewise smooth, and the susceptibility function is
meromorphic.) A Markov map is mixing if its transition matrix is aperiodic, stable mixing
then allows to construct easily mixing tent maps.

It turns out that Keller’s upper bound (4.1) is optimal, linear response fails:
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Theorem 4.1 (Mazzolena [42], Baladi [5]). There exist a Markov piecewise expanding in-
terval map f0, a path ft through f0, with a C∞ observable ϕ, a constant C > 0, and a
sequence tn → 0, so that

∣∣∣∣
∫

ϕ dµtn −
∫

ϕ dµ0

∣∣∣∣ ≥ C|tn|| log |tn|| , ∀n .

Setting v = v0 = ∂tft|t=0, and assuming v = X ◦ f , we introduce

J (f, v) =
∞∑

j=0

v(f j(c))

(f j)′(c1)
=

∞∑

j=0

X(f j(c1))

(f j)′(c1)
. (4.3)

If J (f0, v0) = 0 (a codimension-one condition on the perturbation v or X), we say that
the path ft is horizontal (at t = 0). This condition was first studied for smooth unimodal
maps [3, 60]. In the setting of piecewise expanding unimodal maps, Smania and I proved
the following result:

Theorem 4.2 (Horizontality and tangency to the topological class [9, 10]). A path ft is called
tangent to the topological class of f0 (at t = 0) if there exist a path f̃t so that ft−f̃t = O(t2)
and homeomorphisms ht so that f̃t ◦ ht = ht ◦ f0. Then:

• The path ft is horizontal (at t = 0) if and only if there is a continuous solution α to
the twisted cohomological equation

v(x) = X ◦ f(x) = α ◦ f(x)− f ′(x)α(x) , x ̸= c . (4.4)

• The path ft is horizontal (at t = 0) if and only if it is tangent to the topological class
of f0 (at t = 0).

Note that the family of tent maps given in (4.2) is not horizontal.
We already mentioned that ρt ∈ BV . Any function g of bounded variation can be

decomposed as two functions of bounded variation g = gsing + greg , where the regular
component greg is a continuous function of bounded variation, while the singular component
gsing is an at most countable sum of jumps (i.e., Heaviside functions). In the particular case
of the invariant density ρt of a piecewise expanding unimodal map, we proved [5] that (ρregt )′

is of bounded variation, while the jumps of ρsingt are located along the postcritical orbit ck,
with exponentially decaying weights, so that (ρsingt )′ is an exponentially decaying sum of
Dirac masses along the postcritical orbit. The fact that the derivative of ρ0 does not belong
to a space on which the transfer operator has a spectral gap is the glitch which disrupts the
spectral perturbation mechanism described in Section 2 (in Section 3.1 the derivative of the
distribution corresponding to the SRB measure did belong to a good space of anisotropic
distributions). Note also that ρsing0 is intimately related to the postcritical orbit of f0, which
is itself connected to the bifurcation structure of ft at f0. (We refer also to [6].)

Our main result with Smania on piecewise expanding maps reads as follows:

Theorem 4.3 (Horizontality and linear response [9]).

• If the path ft is horizontal (at t = 0) then the map t (→ µt ∈ C(I)∗ is differentiable
at t = 0 (as a Radon measure), and we have the linear response formula:

∂tµt|t=0 = −α(ρsing)′ − (1− L0)
−1(X ′ρsing + (Xρreg)′) dx . (4.5)
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• If the path ft is not horizontal (at t = 0), then, if in addition |f ′(c−)| = |f ′(c+)| or
infj d(f j(c), c) > 0, we have:

If the postcritical orbit {ck} is not 10 dense in [c2, c1], then there exist ϕ ∈ C∞ and
K > 0 so that for any sequence tn → 0 so that the postcritical orbit of each ftn is
infinite, ∣∣∣∣

∫
ϕ dµtn −

∫
ϕ dµ0

∣∣∣∣ ≥ K|tn|| log |tn|| , ∀n . (4.6)

If the postcritical orbit is dense in [c2, c1], then there exist ϕ ∈ C∞ and sequences
tn → 0 so that

lim
n→∞

∣∣∫ ϕ dµtn −
∫
ϕ dµ0

∣∣
|tn|

=∞ . (4.7)

We end this section with some of our results on the susceptibility function (recall (1.3))

Ψϕ(z) =
∞∑

j=0

∫
zj(∂x(ϕ ◦ f j

0 )(x))X0(x) dµ0(x)

of piecewise expanding unimodal maps (for λ > 1), the most recent of which were obtained
with Marmi and Sauzin (using work of Breuer and Simon [16]):

Theorem 4.4 ([5, 8]). There exists a nonzero function U(z), holomorphic in |z| > λ−1, and,
for every non constant ϕ ∈ C0 so that

∫
ϕ dµ0 = 0, there exists a nonzero function Vϕ(z),

holomorphic in |z| > λ−1, so that the following holds: Put

σϕ(z) =
∞∑

j=0

ϕ(cj+1)z
j

(this function is holomorphic in the open unit disc), and set

Ψhol(z) = −
∫

ϕ(x)(1− zL0)
−1(X ′ρsing + (Xρreg)′)(x) dx .

Then:

• There exists τ ∈ (0, 1) so that Ψhol(z) is holomorphic in the disc |z| < τ−1.

• The susceptibility function satisfies

Ψϕ(z) = σϕ(z)U(z) + Vϕ(z) +Ψhol(z) ,

where the function U(z) vanishes at z = 1 if and only if J (f, v) = 0, and in that case,
we have

∂t

∫
ϕ dµt|t=0 = Vϕ(1) +Ψhol(1) .

10Generically the postcritical orbit is dense, see the references to Bruin in [56].



Linear response, or else 537

• If {ck} is dense in [c2, c1] and ϕ ̸= 0, then the unit circle is a (strong) natural boundary
for σϕ(z) (and thus for Ψϕ(z)). If 11 limn→∞

1
n

∑n
k=1 ϕ̃(ck) =

∫
ϕ̃ dµ0 for every

ϕ̃ ∈ C0, then for every ω ∈ R

lim
z
NT→ eiω

(z − eiω)σϕ(z) = 0 ,

where z
NT→ eiω means that |z| < 1 tends to eiω nontangentially (e.g., radially).

In particular, if the path ft is horizontal (at t = 0) and the postcritical orbit is generic,
then

∂t

∫
ϕ dµt|t=0 = lim

z
NT→ 1

Ψϕ(z) .

The law of the iterated logarithm (LIL), a property stronger than Birkhoff genericity,
also holds generically for the postcritical orbit of piecewise expanding maps [57]. If the
postcritical orbit satisfies (an eiω twisted upper bound version of) the LIL, then more can be
said about σϕ and Ψϕ, see [8, Thm. 5].

Inspired by Breuer–Simon, we introduced in [8] renacent right-limits, a simple construc-
tion for candidates for a generalised (Borel monogenic [15], e.g.) continuation outside of the
unit disc of power series having the unit circle as a natural boundary. In the case of Poincaré
simple pole series, Sauzin and Tiozzo [55] showed that this construction gives the (unique)
generalised continuation. However, for the susceptibility function of piecewise expanding
maps, there are [8] uncountably many such candidates (even in the horizontal case). This
may indicate that there is no reasonable way to extend Φϕ(z) outside of the unit circle. The
analogous problem is more delicate for smooth unimodal maps discussed in § 4.2 below,
mainly because the natural boundary for the susceptibility function is expected to lie strictly
inside the open unit disc — we refer to [8] for open questions and conjectures.

4.2. Smooth unimodal maps. We now consider the more difficult case of differentiable
maps f : I → I , where I = [0, 1] is again a compact interval, and c = 1/2 is now a
critical point in the usual sense: f ′(c) = 0. The map f is still assumed unimodal, with
f(−1) = f(1) = −1, and f ′(x) > 0 for −1 ≤ x < c, while f ′(x) < 0 for c < x ≤ 1. We
denote ck = fk(c) for k ≥ 1 as before. For convenience, we assume that f is topologically
mixing and C3, with negative Schwarzian derivative (see [18]). Finally, we suppose that
f ′′(c) < 0. Of course, f is not uniformly expanding since f ′(c) = 0. One way to guarantee
enough (nonuniform) expansion is via the Collet–Eckmann condition: The map f is Collet–
Eckmann (CE) if there exists λc > 1 and H0 ≥ 1 so that

|(fk)′(c1)| ≥ λk
c , ∀k ≥ H0 .

If f is CE, then it admits a (unique) absolutely continuous (SRB) invariant probability mea-
sure µ = ρ dx (which is ergodic). We refer to [18] for more about the CE condition, noting
here only that the invariant density ρ is not bounded in the current setting — in fact, ρ con-
tains a finite, or infinite exponentially decaying, sum of “spikes”

√
|x− fk(c)|

−1

11This assumption of Birkhoff genericity of the postcritical orbit is generic [56].
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along the postcritical orbit. Thus, ρ ∈ Lp for all 1 ≤ p < 2, but ρ /∈ L2. If f is CE and
topologically mixing on [c2, c1], then Keller and Nowicki [37] and, independently, Young
[63], proved that a spectral gap holds for a suitably defined transfer operator (acting on a
“tower”), giving exponential decay of correlations.

We consider again a C2 path t #→ ft, t ∈ (−ϵ, ϵ), say, of C4 unimodal maps as above,
through f = ft0 (with t0 not necessarily equal to 0) which will be assumed to be (at least)
CE. We let v = vt0 = ∂tft|t=t0 and assume that v = X ◦ f . Noting that J (f, v) from (4.3)
is well defined because of the CE condition, we say that the path ft is horizontal at t = t0 if
J (f, v) = 0.

The fully horizontal case (i.e., J (ft, vt) = 0 for all t in a neighbourhood of t0) happens
when ft is topologically conjugated to ft0 for all t, so that ft stays in the topological class
of ft0 . Then, if ft0 is Collet-Eckmann, all the ft are Collet-Eckmann (although it is not
obvious from the definition, the CE property is a topological invariant [43]) and admit an
SRB measure. In this fully horizontal case, viewing ρt as a distribution of sufficiently high
order, first Ruelle [51] and then Smania and myself [11, 12] obtained linear response, with
a linear response formula. (In [11], we even obtain analyticity of the SRB measure.) More
precisely, Ruelle [51] considered the analytic case under the Misiurewicz 12 assumption that
infk |fk

t0(c) − c| > 0; Smania and myself considered on the one hand [11] a fully holo-
morphic setting (where the powerful machinery of Mañé-Sad-Sullivan [41] applies), and on
the other hand [12] a finitely differentiable setting under a (generic) Benedicks-Carleson-
type assumption of topological slow recurrence. The strategy in [12] involves proving the
existence of a continuous solution α to the twisted cohomological equation (4.4) if f is
Benedicks-Carleson and X corresponds to a horizontal path ft.

Although the horizontal case is far from trivial (in the present nonuniformly expanding
setting, one of the hurdles is to obtain uniform bounds on the constant λc(t) for CE parame-
ters t close to t0), it is much more interesting to explore transversal paths t #→ ft (undergoing
topological bifurcations). The archetypal such situation is given by the so-called logistic (or
quadratic) family

ft(x) = tx (1− x) .

A famous theorem of Jacobson says that the set of CE parameters in the logistic family has
strictly positive Lebesgue measure (see [18], e.g.). Since the set Λ of CE parameters does
not contain any interval, regularity of the map t #→ µt for t in Λ can be considered only
in the sense of Whitney. Continuity of the map t #→ µt, for t ranging in some appropriate
subset of Λ (and for the weak ∗ topology in the image) was obtained by Tsujii [61] (see also
Rychlik-Sorets [54]) in the 90’s.

A map f is called Misiurewicz-Thurston if there exist j ≥ 2 and p ≥ 1 so that fp(cj) =
cj and |(fp)′(cj)| > 1 (in other words, the critical point is preperiodic, towards a repelling
periodic orbit, this implies that the map has a finite Markov partition). Clearly, Misiurewicz-
Thurston implies Misiurewicz and thus Collet-Eckmann. There are only countably many
Misiurewicz-Thurston parameters.

For the quadratic family, e.g., Thunberg proved [59, Thm C] that there are superstable pa-
rameters sn of periods pn, with sn → t, for a Collet-Eckmann parameter t, so that νsn → ν,
where νsn = 1

pn

∑pn−1
k=0 δfk

sn
(c), and ν is the sum of atoms on a repelling periodic orbit of

ft. Other sequences tn → t of superstable parameters have the property that νtn → µt,
the absolutely continuous invariant measure of ft. Starting from Thunberg’s result, Dobbs

12Misiurewicz is nongeneric. It implies Collet-Eckmann.
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and Todd [19] have constructed sequences of both renormalisable and non-renormalisable
Collet-Eckmann maps ft′n , converging to a Collet-Eckmann map ft, but such that the SRB
measures do not converge. Such counter-examples can be constructed while requiring that
ft and all maps ft′n are Misiurewicz-Thurston. These examples show that continuity of the
SRB measure cannot hold on the set of all Collet–Eckmann (or even Misiurewicz-Thurston)
parameters: Some uniformity in the constants is needed (already when defining the “appro-
priate subsets” of [61]).

The main result of our joint work [7] with Benedicks and Schnellmann (which also con-
tains parallel statements on more general transversal familes of smooth unimodal maps)
follows:

Theorem 4.5 (Hölder continuity of the SRB measure in the logistic family [7]). Consider
the quadratic family ft(x) = tx(1 − x) on I = [0, 1], and let Λ ⊂ (2, 4] be the set of
Collet-Eckmann parameters t.

• There exists ∆ ⊂ Λ, of full Lebesgue measure in Λ, so that for every t0 ∈ ∆, and for
every Γ > 4, there exists ∆t0 ⊂ ∆, with t0 a Lebesgue density point of ∆t0 , and there
exists a constant C so that, for any ϕ ∈ C1/2(I), for any sequence tn → t0, so that
tn ∈ ∆t0 for all n, we have

∣∣∣∣
∫

ϕ(x)dµtn −
∫

ϕ(x)dµt0

∣∣∣∣ ≤ C |ϕ|C1/2 |t0 − tn|1/2| log |t0 − tn||Γ , (4.8)

where ∥ϕ∥C1/2 denotes the 1/2-Hölder norm of ϕ.

• If ft0 is Misiurewicz-Thurston, then there exists ϕ ∈ C∞, a constant C > 1, and a
sequence tn → t0, with tn ∈ Λ for all n, so that

1

C
|tn − t0|1/2 ≤

∣∣∣∣
∫

ϕ(x)dµtn −
∫

ϕ(x)dµt0

∣∣∣∣ ≤ C|tn − t0|1/2 . (4.9)

The exponent 1/2 appearing in the theorem is directly related to the nondegeneracy as-
sumption f ′′(c) ̸= 0, which of course holds true for the quadratic family. Note also that
using a C∞ (instead of C1/2) observable does not seem to allow better upper bounds in
(4.8). It is unclear if the logarithmic factor in (4.8) is an artefact of the proof or can be
discarded.

The proof of the claim (4.9) of the theorem gives a sequence tn of Misiurewicz-Thurston
parameters, but the continuity result of Tsujii [61] easily yields sequences of non Misiurewicz-
Thurston (but CE) parameters tn. We do not know whether t0 is a Lebesgue density point of
the set of sequences giving (4.9). Note that in the toy model from § 4.1, the first analogous
construction of counter-examples (Theorem 4.1) was limited to a handful of preperiodic pa-
rameters (sequences of maps having preperiodic critical points converging to a map ft0 with
a preperiodic critical point), while the currently known set of examples (see (4.6) and (4.7))
are much more general, although not fully satisfactory yet. One important open problem is
to describe precisely the set of sequences tn → t0 giving rise to violation of linear response
for the generic piecewise expanding unimodal maps with dense postcritical orbits in (4.7).
This may give useful insight for smooth unimodal maps, both about the largest possible set
of sequences giving (4.9), and about relaxing the Misiurewicz-Thurston assumption on ft0 .
(Note however that there is a quantitative difference with respect to the piecewise expanding
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case [9], where the modulus of continuity in the transversal case was | log |t− t0|||t− t0|, so
that violation of linear response arose from the logarithmic factor alone.)

We suggested in [7] the following weakening of the linear response problem: Consider
a one-parameter family ft of (say, smooth unimodal maps) through ft0 and, for each ϵ > 0,
a random perturbation of ft with unique invariant measure µϵ

t like in [58], e.g. Then for
each positive ϵ, it should not be very difficult to see that the map t → µϵ

t is differentiable
at t0 (for essentially any topology in the image). Taking a weak topology in the image, like
Radon measures, or distributions of positive order, does the limit as ϵ→ 0 of this derivative
exist? How is it related with the perturbation? with the susceptibility function or some of its
generalised continuations (e.g. in the sense of [8])?

More open questions are listed in [6] and [7, 12]. In particular, the results in [7] give
hope that linear response or its breakdown (see [6] and [53]) can be studied for (the two-
dimensional) Hénon family, which is transversal, and where continuity of the SRB measure
in the weak-∗ topology was proved by Alves et al. [1, 2] in the sense of Whitney on suitable
parameter sets. In [6, (17), (19)], we also give candidates for the notion of horizontality for
piecewise expanding maps in higher dimensions and piecewise hyperbolic maps.

4.3. About the proofs. The main tool in the proof of Theorem 4.5 is a tower construction:
We wish to compare the SRB measure of ft0 to that of ft for small t − t0. Just like in
[12], we use transfer operators L̂t acting on towers, with a projection Πt from the tower to
L1(I) so that ΠtL̂t = LtΠt, where Lt is the usual transfer operator, and Πtρ̂t = ρt with
µt = ρt dx (here, ρ̂t is the fixed point of L̂t, and ρt is the invariant density of ft). In [12], we
adapted the tower construction from [13] (introduced in [13] to study random perturbations,
for which this version is better suited than the otherwise ubiquitous Young towers [64]). This
construction allows in particular to work with Banach spaces of continuous functions. An-
other idea imported from [12] is the use of operators L̂t,M acting on truncated towers, where
the truncation level M must be chosen carefully depending on t− t0. Roughly speaking, the
idea is that ft is comparable to ft0 for M iterates (corresponding to the M lowest levels of
the respective towers), this is the notion of an admissible pair (M, t). Denoting by ρ̂t,M the
maximal eigenvector of L̂t,M , the starting point for both upper and lower bounds is (like in
[12]) the decomposition

ρt − ρt0 =
[
Πt(ρ̂t − ρ̂t,M ) +Πt0(ρ̂t0,M − ρ̂t0)

]
(4.10)

+ [Πt(ρ̂t,M − ρ̂t0,M )] + [(Πt −Πt0)(ρ̂t0,M )] ,

for admissible pairs. The idea is then to get upper bounds on the first two terms by using
perturbation theory à la Keller-Liverani [36], and to control the last (dominant) term by
explicit computations on Πt − Π (which represents the “spike displacement,” i.e., the effect
of the replacement of 1/

√
|x− fk

t0(c)| by 1/
√
|x− fk

t (c)| in the invariant density).
We now move to the differences between [12] and [7]: Using a tower with exponentially

decaying levels as in [13] or [12] would provide at best an upper modulus of continuity
|t− t0|η for η < 1/2, and would not yield any lower bound. For this reason, we use instead
“fat towers” with polynomially decaying sizes in [7], working with polynomially recurrent
maps. In order to construct the corresponding parameter set, we use recent results of Gao
and Shen [22].

Applying directly the results of Keller-Liverani [36] would only bound the contributions
of the first and second terms of (4.10) by |t−t0|η for η < 1/2. In order to estimate the second
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term, we prove that L̂t,M − L̂t0,M acting on the maximal eigenvector is O(| log |t− t0||Γ|t−
t0|1/2) in the strong 13 norm; in the Misiurewicz-Thurston case we get get a better O(|t −
t0|1/2) control). It is usually not possible to obtain strong norm bounds when bifurcations
are present [14, 36], and this remarkable feature here is due to our choice of admissible
pairs (combined with the fact that the towers for ft and ft0 are identical up to level M ). To
estimate the first term, we enhance the Keller-Liverani argument, using again that it suffices
to estimate the perturbation for the operators acting on the maximal eigenvector.

The changes just described are already needed to obtain the exponent 1/2 in the upper
bound (4.8). To get lower bound in (4.9), we use that the tower associated to a Misiurewicz-
Thurston map ft0 can be required to have levels with sizes bounded from below, and that
the truncation level can be chosen to be slightly larger. Finally, working with Banach norms
based on L1 as in [12] would give that the first two terms in (4.10) are ≤ C|t − t0|1/2,
while the third is ≥ C−1|t − t0|1/2 for some large constant C > 1. However, introducing
Banach-Sobolev norms based on Lp for p > 1 instead, we are able to control the constants
and show that the last term dominates the other two.

Acknowledgements. The toy model in Section 2 was presented at a minicourse at the Dy-
namical Systems Days in Antofagasta, Chile, December 2007.
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