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Abstract. In this note we report on recent progress on the desingularization of real Einstein 4-
manifolds. A new type of obstruction is introduced, with applications to the compactification of the
moduli space of Einstein metrics, and to the correspondence between conformal metrics in dimension
d and asymptotically hyperbolic Einstein metrics in dimension d+ 1.
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1. The Einstein equation

The Einstein equation reads
Ric(g) = Λg,

where g is a metric on a manifold Mn (in local coordinates g =
∑

gijdxidxj), Λ is a real
number called the cosmological constant, and Ric(g) =

∑
Rijdxidxj is the Ricci tensor of

the metric g.
Of course the equation comes from general relativity, in which case the manifold is 4-

dimensional and the metric g is Lorentzian, that is of signature (1,3). Here, we consider
the case a Riemannian Einstein metric (positive signature), which has deep connections with
geometry and topology, as is illustrated by the situation in low dimension that we now review
briefly.

In dimension 2, a metric is Einstein if it has constant curvature equal to λ; there always
exists an Einstein metric on a compact Riemann surface (this is equivalent to the uniformiza-
tion theorem), and one has the dichotomy

• Λ > 0: M is a sphere;

• Λ = 0: M is a torus;

• Λ < 0: M is a surface of genus g ≥ 2.

In dimension 3, again a metric is Einstein if it has constant curvature equal to 2Λ, so
we have a similar dichotomy between spherical, flat or hyperbolic geometry according to
the sign of Λ. The question of understanding which compact 3-manifolds carry an Einstein
metric is completely understood, and deeply connected with the topology: the case Λ > 0 is
that of a 3-sphere (and its finite quotients), and it is related to the Poincaré conjecture (proved
by Perelman) saying that a compact simply connected 3-manifold is a 3-sphere—this can be
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phrased by saying that it carries a constant curvature metric, and the Einstein equation plays
an important role in the proof through its heat flow, the Ricci flow

dg

dt
= −2Ric(g).

The Ricci flow has been more generally used by Perelman to prove Thurston’s geometriza-
tion conjecture, according to which any compact 3-manifold is decomposed into pieces,
each of which carries one of eight homogeneous geometries (including the three constant
curvature ones).

In higher dimension, it is no more true that an Einstein metric has constant curvature: the
Ricci tensor is just a part of the Riemannian curvature, which contains another component
(the Weyl curvature). The questions of existence and uniqueness are far from being solved.
In dimension at least 5, there is no known obstruction to the existence of Einstein metrics.
In dimension 4, the situation is more interesting: there is a strong relation between Einstein
metrics and topology: this can be illustrated by the Hitchin-Thorpe inequality between the
Euler characteristic χ and the signature τ of a compact Einstein 4-manifold:

2χ(M) ≥ 3|τ(M)|. (1.1)

This gives a topological restriction on the manifold M . More subtle obstructions are based
on Gromov’s idea of minimal volume (Besson-Courtois-Gallot) or on Seiberg-Witten theory
(LeBrun), see the nice survey of LeBrun [16] and the references there.

The Riemannian Einstein equation is a nonlinear elliptic equation (transversely to the
action of the group of diffeomorphisms), and the linearization L is a selfadjoint operator, see
for example [5]. This means that one cannot extract much information on the deformations
of a solution:

• either kerL = 0, then the solution is rigid;
• either kerL ̸= 0, then there are infinitesimal deformations, but there is a space
cokerL = kerL of the same dimension of obstructions, so one cannot say anything in
general on the local structure of the deformation space. For example there is no known
bound on the dimension of the moduli space of Einstein metrics on a given manifold.

Except in the case of special structures (Kähler or other special holonomies like quaterni-
on-Kähler, hyper-Kähler, etc.) there is no general method to produce Einstein metrics (run-
ning the Ricci flow is of course a method, but it remains very difficult to analyze in higher
dimension). Things are better for Einstein metrics on manifolds with boundary: it turns out
that there exists a natural boundary problem for Einstein metrics, on which some general
features of Einstein metrics can be tested, and which has its own geometric interest, in rela-
tion with conformal geometry. We now explain these ideas which originated in the work of
Fefferman and Graham [11].

So let now (M, g) be a manifold with boundary ∂M = X , and choose on M a defining
function x of X , so that x > 0 in the interior of M , and vanishes at first order over X . Given
a metric γ on X , we consider metrics g in the interior of M such that, when x → 0,

g ∼ dx2 + γ

x2
. (1.2)

This behaviour depends only on the conformal class [γ] of g: indeed, if γ is transformed into
ϕ2γ, then for x̃ = ϕx one has dx2+γ

x2 = dx̃2+ϕ2γ
x̃2 + l.o.t. The conformal metric [γ] is called

the conformal infinity of g.
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For example, if g is the hyperbolic metric on the ball, then the conformal infinity is
the standard conformal metric on the boundary sphere. More generally, the behaviour (1.2)
implies that the sectional curvature of g goes to −1 when x → 0, hence the name of these
metrics, which are called asymptotically hyperbolic (AH).
Dirichlet problem at infinity. Given a conformal class [γ] on X , find an AH Einstein metric
g in M such that the conformal infinity of g is [γ].

The motivation of the original work of Fefferman and Graham is the study of conformal
geometry through the corresponding Einstein metrics. The idea is that the formal develop-
ment of g near the boundary captures invariant conformal properties of γ. This perspective
was very fruitful, see [6, 12]. The correspondance received a lot of attention because it
underlies a physical correspondance, the AdS/CFT correspondance [17, 24].

The global problem is well-behaved: when the metric g is non degenerate (meaning
that the linearization of the problem has trivial L2 kernel, which often happens), then one
can fill a small deformation of [γ] by a small deformation of g. This was first observed by
Graham and Lee [13]. Important ideas to solve the problem were introduced by Anderson
(see later in the text), but the main difficulty remains to analyze the compactness problem:
is the map which associates to the Einstein metric g its conformal infinity [γ] proper ? it is
clear that such a property, together with the nice local deformation property, enables to solve
the Dirichlet problem by a continuity method.

2. Compactness

So we now pass to compactness problems. We specialize to dimension 4. There is a very
good compactness result on Einstein metrics, which was obtained by Anderson [1] and by
Bando, Kasue and Nakajima [3].

Theorem 2.1. Suppose (Mi, gi) is a sequence of compact Einstein 4-manifolds, with cos-
mological constant ±1 or 0, satisfying the following hypothesis:

(1) the diameter of (Mi, gi) is bounded above;
(2) the volume of (Mi, gi) is bounded from below;
(3) the L2 norm of the curvature,

∫
Mi

|R(gi)|2dvol(gi), is bounded above.

Then a subsequence (Mi, gi) converges for the Gromov-Hausdorff distance to a 4-orbifold
(M0, g0) with isolated orbifold singularities. The convergence is C∞ outside the singulari-
ties.

Moreover, for each singularity, there is a rescaling gi
ti

with ti → 0 such that (Mi,
gi
ti
)

converges to a noncompact Ricci flat 4-manifold which is Asymptotically Locally Euclidean
(ALE), that is it has one end and this end is asymptotic to the flat metric on R4/Γ for some
finite subgroup Γ ⊂ SO4.

There has been a lot of progress recently to understand the limits of Einstein manifolds
in higher dimension, see the article by Naber in the same volume [18].

The first hypothesis of the theorem guarantees that there is no cusp formation; the sec-
ond hypothesis that there is no collapsing on a lower dimensional space; the third hypoth-
esis is topological, because for an Einstein metric g on a compact 4-manifold M , one has
1

8π2

∫
M |R(g)|2d vol(g) = χ(M).
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The ALE spaces which appear at the limit are the “bubbles” of the problem. This no-
tion of bubble appears similarly in a lot of geometric problems (pseudo-holomorphic disks,
instantons, harmonic maps, etc.). Similarly to these problems, another bubble can appear
where a singularity forms, and one gets a tree of bubbles: the smooth ALE space mentioned
in the statement is the deepest bubble.

A basic problem in understanding the possible limits of Einstein 4-manifolds is to clas-
sify the possible bubbles, that is the Ricci flat ALE 4-manifolds. There is a well-known fam-
ily of hyper-Kähler (hence Ricci flat) ALE 4-manifolds (also called gravitational instantons),
constructed by Kronheimer [14], who also classified all hyper-Kähler ALE 4-manifolds [15].
The finite subgroups of SO4 which appear are the finite subgroups of SU2. Also some cyclic
subgroups of SO4 which are not contained into a SU2 appear as finite quotients of Kron-
heimer’s ALE spaces. It is an old open important question whether all simply connected
Ricci flat ALE 4-manifolds are hyper-Kähler (and therefore one of Kronheimer’s spaces).
Nakajima [19] proved that if one adds the condition that the manifold is spin for a spin
structure which is also ALE in some sense, then the answer is yes.

The simplest example of a Ricci flat ALE space is the Eguchi-Hanson space [10]: topo-
logically it is T ∗S2. The Eguchi-Hanson metric gEH is asymptotic to the flat metric on
R4/Z2. Actually T ∗S2 with the zero section removed is diffeomorphic to (R4 \ {0})/Z2;
from the complex geometry point of view it is a desingularization of the A1 singularity
C2/Z2; all Kronheimer’s spaces are deformations of desingularizations of the Kleinian sin-
gularities, that is of C2/Γ for Γ a finite subgroup of SU2. In this way one gets a short list of
singularities (Ak, Dk, E6, E7 and E8).

The kind of degeneration described in theorem 2.1 does occur. Actually Kähler geometry
provides lots of examples. The first one [20, 23] was the singular Kummer surface (M0, g0),
with

M0 = T4/Z2,

a quotient of the 4-torus by an involution with 16 singular points of type C2/Z2, and g0
is the flat metric. Then there is a family (Mt, gt) of smooth K3 surfaces with their Ricci
flat metrics gt (coming from Yau’s solution of the Calabi conjecture), which degenerate to
(M0, g0) exactly in the way described by the theorem. Moreover, one can describe quite
concretely the behaviour of gt when t → 0. Consider the two following regions in M0 and
in the Eguchi-Hanson space:

1. near a singular point p0 ∈ M0, note r the radius from p0, the region

At = {t 1
4 ≤ r ≤ 2t

1
4 };

2. at the end of the metric gEH, which is asymptotic to the cone C2/Z2, the region (where
R is the radius near infinity)

Bt = {t− 1
4 ≤ R ≤ 2t−

1
4 }.

(Actually gEH is close to the flat cone metric by a factor O(R−4)).

The homothety ht of factor
√
t identifies Bt with At, and sends the metric tgEH to a metric

which is very close to g0 when t → 0. So we can construct a new manifold M with a new
metric g0♯tgEH by gluing at each singular point the region ({r ≥ t

1
4 }, g0) in M0 with the

region ({R ≤ 2t−
1
4 }, tgEH) in the Eguchi-Hanson space, identifying At and Bt by ht and
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interpolating between the (very close) metrics g0 and tgEH on At. The process is illustrated
by the figure below.

t

Bt

♯

At

=

At

The metric g0♯tgEH does not satisfy any more the Einstein equation in the damage area,
but one can prove that it is indeed a very good approximation of gt. In particular it illustrates
well the behaviour of gt when t → 0: on one hand, g0♯tgEH → g0, on the other hand
1
t (g0♯tgEH) → gEH.

The compactness theorem 2.1 says basically that all the limits arise in this way, but,
as mentioned before, there is no classification of the possible Ricci flat ALE spaces at the
limit. In the sequel, we will see that it is not true that any 4-orbifold with a singular Einstein
metric can be approximated by smooth Einstein metrics in a similar way. This leads to new
restrictions on the compactification of the moduli space of Einstein metrics.

3. Desingularization

It is a fundamental algebraic fact that the 2-forms in dimension 4 decompose into selfdual
and antiselfdual 2-forms:

Ω2 = Ω+ ⊕ Ω−. (3.1)

The Riemannian curvature tensor can be seen as a symmetric endomorphism of Ω2. There-
fore it decomposes on (3.1), and the various components are

R =

(
R+ Ric0
Ric0 R−

)
. (3.2)

Moreover, R± decompose into a scalar part and a trace free part, which can be identified
with the Weyl tensor W :

R± =
Scal

12
±W±. (3.3)

We now start from an Einstein 4-orbifold (M0, g0), which can be compact or AH. We
consider only the case of the simplest singularity R4/Z2. Let p0 be a singular point (so of
type R4/Z2). To simplify the statements, we assume that there is only one point, but the
results are unchanged if there are several ones.

The following says that there is an obstruction to the existence of a sequence of metrics
which desingularize g0:

Theorem 3.1 ([8]). Suppose that a sequence of Einstein manifolds (Mi, gi) converges to a
non degenerate (M0, g0), in such a way that gi is close to g0♯tigEH for a sequence of real
numbers ti → 0. Then

detRg0
+ (p0) = 0. (3.4)

Here ‘close’ in the theorem refers to some weighted C1,α Hölder norm.
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In particular, the spaces of constant curvature R± = Scal
12 , so if the curvature is nonzero

then (3.4) cannot be satisfied. It follows that spherical or hyperbolic orbifolds cannot be
limits of Einstein manifolds as in the theorem:

Corollary 3.2 ([8]). Suppose (M4
0 , g0) satisfies the same hypothesis and has constant cur-

vature ±1. Then (M0, g0) is not the limit of a sequence of Einstein manifolds (Mi, gi) as in
theorem 3.1.

For example, the corollary applies to the round metric on S4/Z2, where the action of Z2

has two fixed points (the two poles), or to B4/Z2, the quotient of the hyperbolic 4-ball by Z2;
it was already known that there is no U2-invariant desingularization (U2-invariant Einstein
metrics in dimension 4 are explicitly understood).

Of course the corollary is still a partial result: a stronger result would be: if (Mi, gi) →
(M0, g0) in the Gromov-Hausdorff sense, and at each singularity a rescaling (Mi,

gi
ti
) con-

verges Gromov-Hausdorff to the Eguchi-Hanson space, then the obstruction (3.4) is satis-
fied, and in particular the limit cannot be spherical or hyperbolic. This statement requires to
strenghten the convergence of the metric to get the hypothesis of the theorem. Nevertheless
we believe that theorem 3.1 already exhibits a new type of restriction on the Einstein metrics
which can appear in the compactification of the moduli space of Einstein metrics.

One may also ask the question for the other singularities: for the other Kleinian singu-
larities and their finite quotients, the answer is that the obstruction (3.4) still holds, together
with other obstructions: actually the number of scalar obstructions equals the b2 of the cor-
responding ALE space (work in preparation). So the corollary should remain true for these
singularities. The case of other singularities depend on the question mentioned above of the
classification of all Ricci flat ALE spaces.

Now pass to some more precise remarks about theorem 3.1. First, note that if the Eguchi-
Hanson space is glued with the opposite orientation (which results in a different topological
space) then the condition (3.4) becomes detRg0

− (p0) = 0 (this is clear since the Einstein
equation does not depend on the orientation).

Also note that in the Kähler case, choosing a basis (ω1,ω2,ω3) of Ω+ such that ω1 is the
Kähler form, one has

R+ =

⎛

⎝
Scal
4

0
0

⎞

⎠ , (3.5)

so the condition (3.4) is automatically satisfied. Indeed it is well known that there is no such
obstruction in the Kähler case.

When one considers the gluing g0♯tgEH, there is an ambiguity which gives a gauge
parameter: indeed one can apply an element u ∈ SO4/Z2 when identifying the parts At and
Bt of the cone R4/Z2 (applying an orientation reversing element of O4 amounts to changing
the orientation of the Eguchi-Hanson space and was considered just above). It turns out that
the isometry group of gEH is Isom(gEH) = (U2/±1)!Z2 (where U2 ⊂ SO4 is the standard
unitary subgroup, and the Z2 is generated by (z1, z2) $→ (−z̄2, z̄1), inducing the antipodal
map on S2). Taking u in Isom(gEH) does not change g0♯tgEH, so the remaining parameter
is in SO4/(U2 ! Z2) = PΩ+(R4).

This means that the ambiguity u can be interpreted as a real line in Ω+(R4). This is
related to the obstruction (3.4): note ui the gauge parameter used for g0♯tigEH, then one can
add to the statement of the theorem the fact that the directions in Ω+(R4) corresponding to
the limits of the gauge parameters ui must be in the kernel of Rg0

+ (p0). (This also fits with
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the Kähler picture, since when Scal ̸= 0, this condition implies that the complex structure
of the orbifold must be glued with a complex structure of the Eguchi-Hanson space which
is orthogonal to that of T ∗CP 1, and in particular does not admit a holomorphic sphere; but
indeed a Kähler-Einstein metric with Scal ̸= 0 can not admit a holomorphic sphere of self
intersection −2).

In particular, if rkRg0
+ (p0) = 1, then the kernel of Rg0

+ (p0) gives a direction in Ω+(R4),
so a gauge parameter u = limui. This is of importance in the reverse construction, that we
now describe.

To see if the condition (3.4) is the only local obstruction to the desingularization, it is im-
portant to produce an Einstein desingularization (M, gt) from the singular (M, g0). It turns
out that this is not possible in general on a compact manifold, because, as mentioned earlier,
there are always global obstructions to deformation which make the problem untractable.
Fortunately, the problem becomes much better in the AH setting:

Theorem 3.3 ([8]). Suppose that (M0, g0) is a non degenerate AH Einstein orbifold, with a
singularity of type R4/Z2 at the point p0. If g0 satisfies the condition (3.4), then there exists
a family of AH Einstein metrics gt on a topological desingularization M such that (M0, g0)
is the limit of (M, gt) when t → 0.

Again the theorem is still valid if there are several singular points: the topological desin-
gularization M is obtained by replacing each singular point by a sphere of self intersection
−2.

An important fact to note in the theorem is that the conformal infinity γt induced by gt
on ∂M depends on t, and converges to the conformal infinity γ0 of g0 on ∂M0 = ∂M : it is
this flexibility which enables to solve the problem in the AH case.

There is an explicit family [4, 21], called the AdS-Taub-Bolt family, of U2 invariant met-
rics on T ∗S2, which converge to an orbifold metric on B4/Z2. The limit is not the hyperbolic
metric (this is impossible by corollary 3.2), but a Z2 quotient of a selfdual Einstein metric
on B4, which is a member of a 1-parameter family found by Pedersen [22]; more precisely,
it is the unique member of this family which satisfies the obstruction (3.4).

4. Degree theory and wall crossing

We now consider the AH setting, and study the consequences of theorem 3.3 on the Dirichlet
problem at infinity stated in section 1.

Let (M0, g0) be an AH Einstein 4-orbifold, with conformal infinity [γ0] on the boundary
∂M0 = X . Again for simplicity, suppose that we have only one singular point. We still
restrict to the simplest singularity A1, and we ask g0 to be non degenerate (remind this
means that the L2 kernel of the linearization vanishes). This implies that, given a small
deformation γ of γ0, there exists a deformation gγ0 of g0, which is an AH Einstein orbifold
with conformal infinity γ.

We also suppose that condition (3.4) holds for g0. Then, inside the space C of all con-
formal metrics on X , we can consider, at least near γ0, the space of conformal metrics on X
such that the corresponding orbifold Einstein metric also satisfies (3.4):

C0 = {γ ∈ C , detR
gγ
0

+ (p0) = 0}. (4.1)
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Therefore, all the metrics gγ0 with γ ∈ C0 can be desingularized by theorem 3.3, leading to
AH Einstein metrics gγt (t > 0) on the topological desingularization M of M0.

Theorem 4.1 ([8, 9]). Suppose that rkRg0
+ (p0) = 2 (this is a way to say that the vanishing

of detRg0
+ (p0) is non degenerate). Then

(1) The set C0 is a smooth hypersurface of C near γ0.

(2) For γ near C0, all the desingularized Einstein metrics have their conformal infinity on
the side of C0 determined by

detR
gγ
0

+ (p0) > 0. (4.2)

This result means that C0 is a ‘wall’ for the Dirichlet problem at infinity on M : for a
conformal infinity on the side (4.2) of the wall, there is an AH Einstein metric with this
conformal infinity (one of the metrics gγt ); when the conformal infinity goes to the wall, the
Einstein metric degenerates, and disappears on the other side.

This is better understood in the setting of the degree theory proposed by Anderson [2]
for the Dirichlet problem at infinity. The idea is the following: let M be the space of all AH
Einstein metrics on M , and consider the map

Φ : M −→ C (4.3)

defined by: Φ(g) is the conformal infinity of g. Anderson proved that, in a suitable Banach
topology, if π1(M,X) = 0, the map Φ is Fredholm of index 0. If there exists some open
set U ⊂ C over which the map Φ is proper, then Sard-Smale theory gives a well-defined
notion of degree of Φ which counts the number of preimages of an element of U . A priori,
the degree is only defined in Z2, but there is a way to count the solutions with sign (the sign
is the number of negative eigenvalues of the linearization) and to define a degree with values
in Z. In some cases, one may hope to calculate the degree at some special points of U , and
if it does not vanish, this implies that the map Φ is surjective over U .

It turns out that the properness of the map (4.3) is a difficult problem, which is far from
being solved in general. The paper [2] is written under the following assumptions:

1. dimM = 4: this is to be able to use the strong compactness results for Einstein
metrics in dimension 4;

2. U = {γ on X, Scalγ > 0}: this is used to avoid cusp formation in the limits, and
is also natural from the point of view of the physicists; it replaces the hypothesis on
the volume in theorem 2.1; there are also counterexamples to to properness with flat
conformal infinities;

3. the map H2(X, k) → H2(M, k) is surjective for any field k: this is to avoid the
degeneration to an Einstein orbifold, because in that case some 2-homology must exist
in the interior of M (for example, the 2-sphere in the case of the degeneration to a
R4/Z2 singularity).

The general case to consider in dimension 4 is when one relaxes the third hypothesis.
Here, theorem 4.1 gives insight on what to expect. We are far from being able to prove
something here, but the following speculations may help to understand the meaning of the
theorem.

It is clear that in this general case, the map Φ is not proper: indeed we have explicit
examples of orbifold degenerations of AH Einstein metrics. But we at least understand what
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is happening when there is a degeneration of M to an orbifold M0 with an A1 singularity,
obtained by contracting a 2-sphere of self intersection −2: the number of preimages of
Φ changes when one goes through the wall C0 defined by (4.1), in the precise way given
by theorem 4.1. In this way, theorem 4.1 can be interpreted as a wall crossing formula
calculating the jump of the degree on M when one goes across C0.

Of course in general there are several (−2) spheres which can be contracted, so they give
rise to several walls in C : one can hope to have Φ proper in the regions delimited by these
walls, and jumping across the walls like in theorem 4.1.

Now, all this is for A1 singularities, so what is happening for the other singularities? the
other Kleinian singularities are obtained by contracting a number of (−2) spheres, say k, and
indeed one expects to obtain k obstructions to desingularization: so it seems that the generic
case is that of A1 singularities, the other Kleinian singularities being obtained when k walls
intersect in a certain way; so the wall crossing formula for the A1 case might be sufficient.
The case of finite quotients of Kleinian singularities is also similar.

To transform these speculations into a proof, one would need to prove the properness
of the map Φ outside the walls obtained from the various possible orbifolds obtained from
M : in particular, this requires the classification of the Ricci flat ALE spaces, mentioned in
section 2.1, and a better understanding of the behaviour of a degenerating Einstein metric.

5. Some ideas of the proofs

The beginning of the proof builds on usual ideas in ‘gluing problems’ appearing in geometric
analysis. For small t we have a metric g0♯tgEH which is an approximate solution of the
Einstein equation, which is better and better when t → 0, and one wants to deform it into
a true solution if t is small enough. In general, this is possible if the two pieces (here g0
and gEH) are not obstructed for the deformation theory of the Einstein problem. The point
is that this is never true for gEH (or more generally for any ALE space), because gEH comes
in a 1-parameter family given by scaling. More precisely, the linearization of the Einstein
equation on the Eguchi-Hanson space (or more generally any hyper-Kähler space) is

L = d∗−d− : Ω−Ω+ −→ Ω−Ω+, (5.1)

where one uses the identification Ω−(R4)Ω+(R4) = Sym2
0(R4) given by u ⊗ v $→ u ◦ v.

(The operator on the trace part is just the usual Laplacian). On a hyper-Kähler manifold,
the bundle Ω+ is a flat trivial bundle: Ω+ = R3. So the operator L is identified with the
Laplacian d∗−d− acting on Ω− ⊗ R3, and its L2-kernel is therefore the L2 cohomology of
the Eguchi-Hanson space:

kerL2 L = L2H2 ⊗ R3 ≃ R3. (5.2)

Indeed the L2 cohomology of Eguchi-Hanson is generated by the Poincaré dual of the 2-
sphere. Let choose a basis (o1, o2, o3) of this obstruction space. Then usual techniques
enable to deform g0♯tgEH into a (basically unique) solution of the Einstein equation modulo
these obstructions:

Ric(gt)− Λgt =
3∑

1

λi(t)oi. (5.3)
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(This is not the exact equation to be solved because one must respect the Bianchi identity,
but it gives the idea). The problem becomes to analyse the functions λi(t) and their possible
vanishing.

The way to do this is to refine the approximate metric g0♯tgEH: if one has an approxima-
tion to a better order of a solution of (5.3), then gt will be closer to this new approximation
and this can give the first terms of the development of λi(t).

The idea here is to refine the ALE metric gEH into a metric ht before gluing it to g0: the
metric ht is a perturbation of gEH which should satisfy the equation

Ric(ht) = tΛht (5.4)

instead of Ric(gEH) = 0 (so that Ric(tht) = Λ(tht)); and it should match better g0
t near

infinity: denote euc the standard Euclidean metric, then near p0, in normal coordinates, one
has

g0 = euc+g2 +O(r4), (5.5)

where g2 is an order 2 term:

g2 =
∑

aijklx
ixjdxkdxl. (5.6)

We can ask ht to match these order 2 terms in the following way: when we perform the
homothety ht, we transfer the coordinates xi near 0 into the coordinates Xi = t−

1
2xi near

infinity on Eguchi-Hanson, so

g2
t

= t
∑

aijklX
iXjdXkdX l. (5.7)

So it is natural to look for a first order deformation ht = gEH + th which satisfies at infinity

h ∼
∑

aijklX
iXjdXkdX l (5.8)

while (5.4) becomes
Lh = ΛgEH. (5.9)

The first order deformation gEH + th is not a metric on the whole Eguchi-Hanson space,
since the perturbation h blows up at infinity. Nevertheless it will define a metric on the
region which is considered in the gluing, that is R ≤ 2t−

1
4 .

Now it turns out that the system (5.8) (5.9) is obstructed and has no solution in general,
because of the cokernel of L (which equals its kernel). Actually, instead of (5.9), one can
only solve

Lh = ΛgEH +
3∑

1

λioi, (5.10)

where the real numbers λi are also unknown.
At the end, the system (5.8) (5.10) has a solution (h,λi), and the λi depends only on

the second order terms g2 of g0 at p0, that is on the curvature of g0 at p0. There are some
arguments using in particular the invariance of the system to calculate precisely the λi and
one finds (up to a constant)

λi = ⟨Rg0
+ (p0)ω1,ωi⟩, (5.11)
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where (ωi) is an orthonormal basis of Ω+. Then, using the approximate metric g0♯t(gEH +
th), one can show that the coefficient λi(t) appearing in (5.3) has the expansion

λi(t) = tλi +O(t2). (5.12)

In particular, the vanishing of λi(t) forces λi = 0, which by (5.11) means

Rg0
+ (p0)ω1 = 0. (5.13)

Therefore Rg0
+ (p0) has a kernel; using the gauge freedom, one can reduce this condition to

detRg0
+ (p0) = 0, which proves theorem 3.1.

For the desingularization itself (theorem 3.3), the work is far from being finished, since
from the hypothesis Rg0

+ (p0)ω1 = 0 we have killed only the first term in the development
of λi(t). Here one uses the fact that (M0, g0) is an AH Einstein manifold, which gives the
flexibility to vary g0 varying its conformal infinity γ0. In particular, one considers the map
F = (F1, F2, F3) : C → R3 defined by

γ "−→ (λ1(g
γ
0 ),λ2(g

γ
0 ),λ3(g

γ
0 )), (5.14)

where gγ0 is the Einstein orbifold metric on M0 with conformal infinity γ, and the λi are
defined by (5.11). Then one proves that the map F is submersive at γ0: despite the fact
that the space C is infinite dimensional, this is not an obvious fact, and the proof relies
in particular on a unique continuation theorem proved in [7]. This means that there exist
directions γi in the space of conformal structures, such that

dγ0Fi(γj) = δij . (5.15)

Consider now the metric gt and the functions λi(t) in (5.3) as depending also of the confor-
mal infinity γ, and note this dependence as gt(γ), λi(t, γ). From equations (5.12) and (5.15)
it is now immediate that there exist functions ai(t) = O(t) such that

λi(t, γ0 +
3∑

1

aj(t)γj) = 0, (5.16)

which means that the metric gt(γ0 +
∑3

1 aj(t)γj) is the expected solution of the Einstein
equation.

Proving theorem 4.1 requires substantially new arguments. The first step is to refine the
previous arguments.

If rkRg0
+ (p0) = 2, one can show that actually λ2(t) and λ3(t) can be killed just by

varying the gauge parameter, so there is no need to deform the conformal infinity in the
directions γ2 and γ3, the direction γ1 is sufficient. So one can obtain a solution gt(γ0 +
a1(t)γ1).

Moreover one can construct a more refined deformation of gEH which matches even
better g0 at infinity before gluing, by obtaining the coincidence not only of the terms of
order 2, but also the terms of order 4; the whole construction is then refined to obtain a better
expansion of λ1(t):

λ1(t) = tλ1 + t2µ1 +O(t3), (5.17)
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where µ1 is some a priori non explicit number, obtained when finding the second order terms
of the solution modulo obstructions of the equation (5.4). Then it is clear that the function
a1(t) such that gt(γ0 + a1(t)γ1) is the expected Einstein metric satisfies

a1(t) ∼ −µ1t (5.18)

when t → 0. If µ1 has a sign, then all the solutions are exactly on the side of C0 determined
by the direction −µ1γ1 at γ0.

Calculating µ1 is difficult. Up to now, the analysis used essentially the linearization the
Einstein equation (and some global properties). But calculating µ1 involves understanding
the second order terms of the equation, in order to find the second order terms of the solution
of (5.4). We will not give any detail here, see [9], except to say that the hyper-Kähler nature
of gEH helps a lot to get insight on these second order terms and on the calculation of µ1.
From this theorem 4.1 is deduced.

Finally let us say that the proofs of both theorems do not rely on the precise form of
the Eguchi-Hanson metric, but more on the fact that the Eguchi-Hanson space has a one
dimensional L2-cohomology and has a Hamiltonian circle action which rotates the other
complex structures. There are lots of other spaces with the same geometric properties, if
one allows orbifold singularities inside. For example, the Ak singularity C2/Zk+1 has a
partial desingularization satisfying the same properties, but with an orbifold point with a
Ak−1 singularity. Using the same techniques as above, one can calculate an expansion for
detR+ at the singular point and find an obstruction to continuing the desingularization. So it
seems that an inductive process can be started, leading to k obstructions to desingularization.
Unfortunately this process can not be carried out so easily, because the non degeneracy
hypothesis seems difficult to prove for the partial desingularizations. Nevertheless the author
believes he is able to overcome this technical problem using some refined analysis.
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