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1. Introduction

A few years ago, Hrushovski noticed that the model theory iéince Pelds could give a
new proof of a result of M. Baker on algebraic dynamics. BakerOs result deals with endo-
morphisms ofP! debned over a function bekl, and shows that under certain conditions,
the endomorphism d#* is isomorphic (over some algebraic extensiofkgfto one debned
over the constant beldof K . He answered thus a question of Szpiro and Tucker. Nothing
was known for varieties of higher dimension. We started working on this together, were
able to answer a question of Baker (1.7 in [1]) in case of function Pelds of characteristic
0, and got a descent result in some special cases: there is a bijective rational map from our
original algebraic dynamicgV, ¢) to one debned over the smaller beld. Because our tools
are diference belds, the maps we obtain are in general only birational isomorphisms and not
isomorphisms when the dimension of the underlying variety i These results appeared
in [4] and [5].

It turns out that another model-theoretic tool, the Canonical Base Property, a property
enjoyed by existentially closedftirence belds, allows one to obtain a fairly strong result
in a more general context. Explaining what is now known is the object of section 4 of this
paper.

Section 2 recalls some of the now classical results of the model theorffexiedice belds,
as well as some more recent ones (e.g., 2.12). In section 3, we explain briel3y the connection
between our algebraic dynami€¥,¢) (where ¢ is rational dominant, not necessarily a
morphism) and dference Pelds. In section 4, we introduce the Canonical Base Property,
some of its history, give some of its consequences, and explain brieRy the strategy to show
that existentially closed belds of arbitrary characteristic enjoy it. Section 5 puts everything
together.

* Proceedings of the International Congress of Mathematicians, Seoul, 2014



2 ZoZ Chatzidakis

2. Difference fields and their model theory

2.1. Basic definitions. A difference ring is a rindgR with a distinguished endomorphism

1. A di! erencebeld is a diference ring which is a Peld (note that the endomorphism wiill
necessarily be injective). A filerence ring becomes naturally a structure of the language
L ={+,-,4!,0,1}, where+, —, aare interpreted as the usual binary operationand

1 are the usual constants, ahds interpreted by the endomorphism. Théelience ring

is inversiveif the endomorphism is onto. Everyftirence ringR has a unique up t&-
isorphisminversive closurgor inversive hull i.e., an inversive dierence ring containing it,
and whichR-embeds into every inversiveftirence peld containirig.

The di! erence polynomial ring in the variableé = (Y1,...,Y,) over R, denoted
R[Y i, is the polynomial ringR[! 1 (Y;) | 1 < i < n,j > 0], endowed with the natural
extension of dePned by sending (Y;) to! 1** (Y;) for eachi andj.

If K is a beld, then zero-sets of elementddf i, ..., Yn]: generate the closed sets of
a topology orK", and this topology is Noetherian. It is very similar to the Zariski topology.
I will call the closed sets of this topolody-closed

All these results and more can be found in Richard CohnOs book [7].

2.2. The model theory of existentially closed difference fields. A difference pel& is ex-
istentially closedf every bnite system of éierence equations with cfigcients inK which
has a solution in a flierence beld containink, has a solution ifK. Note that an exis-
tentially closed dierence Pbeld is necessarily inversive and algebraically closed. Every dif-
ference beld embeds into an existentially closed one, and the existentially cliseeindie
pelds form an elementary class, with theory usually called ACFA. These belds were brst
investigated in the 900s by Macintyre, Van den Dries and Wood, see [12]. An indepth study,
concentrating on geometric stability properties of these pelds was then started by Hrushovski
and myself, later joined by Peterzil [3, 6]. | will now recall some of the classical results.

The theory ACFA expresses the following properties oflthstructureK:

DK is algebraically closed, € Aut(K);

P Ifu,V areirreducible (algebraic) varieties, withc V xV' , and such that projects
dominantly ontov andV', then there is such thata,! (a)) € U. [HereV' denotes the
variety obtained by applying to the debning equations 9f.]

2.3. Notation. N denotes the set of non-negative integers. We will work in a largié su
ciently saturated existentially closedidrence beld). If E is a beld, thefE®9 denotes the
(Peld-theoretic) algebraic closurelef If E is a diference subbeld &f, anda a tuple inU,
thenE (a),; denotes the dierence beld generated dpverE, i.e.E(a) =E(! '(a) | i € N),
andE(a), -1 its inversive hullE (a), -1 = E(! ' (a) | i € Z).

2.4. Some properties of ACFA and of its models. Most of the results here appear in [13]

or in [3]. ACFA does not eliminate quantibers, the problem coming from the fact that an
automorphism of a belE needs not extend uniquely to the algebraic closf of E.
However, this is the only obstacle, and one obtains tHatig an algebraically closed ftiér-

ence beld, then ACFA qfDiag(E) is complete (HergfDiag(E ) denotes the quantiber-free
diagramme ofE in the languagé (E) obtained by adjoining constant symbols for the ele-
ments ofE). This last result has several important consequences:

(1) Completions of ACFA are obtained by describing the action of the automorphism on
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the algebraic closure of the prime Peld. This implies that ACFA is decidable.

(2) If E is a di erence subbeld of a model of ACFA, anda, b are tuples inJ, then
tp(a/E ) = tp(b/E) if and only if there is arE -isomorphismE (a)#9 | E(b){!9
which sendsato b.

(3) IfA " U, then the model-theoretic algebraic closaciA) of A is the smallest inver-
sive algebraically dierence beld containindy. The debnable closure &f, dcl(A), is
usually much larger than the inversive drence beld generated By it is the subbeld
of acl(A) bxed by the elements @fut(acl( A)/A ) which commute witH .

(4) LetS " U" be debnable. Then there is a $ét" U"*™ debned by dierence
equations such that the projectibron the brsh coordinates debnes a Pnite-to-one
map fromW ontoS.

One can also show that any completion of the theory ACFA is supersimple (of SUtyank
and that it eliminates imaginaries. An important debnable subdétisfthebxed Peld

Fix(1):= {a# U |! (a) = a}.

It is a pseudo-bnite Peld, and its induced structure is that of a pure peld. It is also stably
embedded, and therefore 3f" Fix(! )" is dePnable itJ with parameters front, then it

is of the formS’ $ Fix(! )", whereS' is debnable in the langauge of rings with parameters
from Fix(!).

In positive characteristip, there are other debnable automorphisms, which are built up
using the debnable Frobenius automorphiBob : x % xP and its powerdroby. More
precisely, if$ = ! "Frob™, wheren & 1, m # Z, thenFix($) is a pseudo-bnite beld,
stably embedded; the induced structure is that of a pure beld=f1, but involves the
automorphism if n > 1. We will also callFix($) a bxed peld. One has the following
result:

(1.12in[3])Let$ be as abovgK, ! ) a model of ACFA, and consider its reduct theetience
Peld(K, $). Then(K, $) | ACFA .

2.5. Independence and SU-rank.As the theory is supersimple, every type is ranked by
the rank SU, a rank based on forking (or non-independence). In what follow, C are
subsets obJ, ais a tuple of elements df, andE is a di erence subbeld &f.

Independencef A andB over C, denotedAdk B, is characterized by the linear dis-
jointness of the beldacl(CA) andacl(CB) overacl(C). A setD debnable oveE has
Pnite SU-rank!i every tuplea# D has Pnite SU-rank ovét, and then

SU(D) =sup{SU(a/E) | a# D}.
One shows easily the following:

¥ SU(a/E ) =0 ifand only ifa # acl(E).

¥ SU(a/E )" 1ifandonlyifforeveryB ( E, eitheraandB are independent ovét,
ora# acl(B).

¥ If tr.deg(E(a) /E) < ! , andF is a di erence beld containing, thenadgg F if
and only iftr.deg(E(a), /E ) = tr .deg(F (a): /F ).

¥ If tr.degE(a), /E) <! ,thenSUYa/E )" tr.degE(a), /E).
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¥ SU(a/E) < wifandonly iftr.deg(E(a),/E) < co.

If SU(a/FE) < w, thentp(a/FE) can beanalysed in terms of types of SU-rank, and so
types of SU-rank determine the properties ¢§(a/F). This will be explained below in the
paragraph on semi-minimal analyses. First, a few depbnitions:

Definition 2.6. LetI" be a supersimple theory which eliminates imaginafikea,suficiently
saturated model df', andS c U", P C U™ subsets which are invariant undént(U/A)

for some small subset of U. E.g. S is A-dePnable, or is a union of realisations of types
overA.

(1) Sisone-basedifwhenevery,...,ap € SandBD A,C = acl(Aa; ..., as)Nacl(AB),
then(a,...,a,) andB are independent ovér.

(2) A partial type isone-based if the set of its realisations is one-based.

(3) S is internal to P, resp. almost-internal to P, if for some Pnite se3, we have
S C dcl(ABP), resp.S C acl(ABP).

(4) (difference beld contex§ is gf-internal to P if for some Pnite seB, if a € S, then
there is some tuplé of elements ofP such thats is in the inversive dierence beld
generated byl Bb.

(5) If p, q are types, we say thatis internal, almost-internal, gf-internal, {oif the set of
realisations op is internal, almost-internal, gf-internal, to the set of realisationg of

The following is one of the major results in the model theory dfedtence belds, and is
often called thelichotomy theorem:

Theorem 2.7 ([3, 6]). Let q be a type of SU-rank 1 in a model U of ACFA. Then either
q is one-based, or it is almost internal to the generic type of Fix(7), where 7 = o if the
characteristic is 0, and in positive characteristic, T is of the form o Frob™ for some n > 1,
m € Z relatively prime to n. Moreover; if the characteristic is 0 and q is one-based, then q
is stable stably embedded.

So, Theorem 2.7 tells us that if a type of SU-ranlks not one-based, then it is almost
internal toFix(7) for some debnable. The property of being one-based is very strong,
since it gives a criterion for independence. It also forbids the existence of two distinct group
laws, such as in belds. Hrushovski and Pillay ([11]) showed that stable one-based groups
of bnite rank are particularly nice, and their result generalises partially to our context, as
follows:

Theorem 2.8. Let G be an algebraic group definable in a model U of ACFA, et let B be
a quantifier-free definable subgroup of G(U) which is one-based, and defined over some
E = acl(E). Let X be a quantifier-free definable subset of B™. Then X is a Boolean
combination of cosets of E-definable subgroups of B".

In particular, if Y is a subvariety of G", then' Y N B™ is a finite union of translates of
quantifier-free definable subgroups of B™.

IfU has characteristic 0, the result extends to arbitrary definable group G and definable
subsets X of B™: they are Boolean combination of translates of definable subgroups of B",
and these subgroups are defined over E.

IThe original formulation is: non-orthogonal to
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The following gives a useful characterization of types of SU-rank 1 which are almost-
internal to Fix(o):

Theorem 2.9. Let U be a model of ACFA, E = acl(E) a di! erence subfield of U and b
a tuple in U, with SUDIE ) = 1. Then tp(b/E ) is almost-internal to the generic type of
Fix (o) if and only if

tr.deg(E (b)) /E ) = 1 and {[E (b,o (b)) : E(b)] | £! Z} is bounded.

2.10. Some consequences of the dichotomy. The fact that definable sets which are orthog-
onal to the fixed fields are one-based, is at the core of several applications to number theory,
by Hrushovski ([9]) and by Scanlon ([17-19]). I will explain how its use gives a new proof
of the conjecture of Manin-Mumford. Recall first the

Conjecture of Manin-Mumford. Let A be an abelian variety defined over a number field
k, and let X " A be a subvariety. Then the Zariski closure of X (k¥9) # Tor(A)(k?9) is a
finite union of translates of abelian subvarieties of A by torsion points.

This conjecture, as well as several strengthenings (A a commutative algebraic group, k an
arbitrary field, with similar conclusions) have been proved using different methods. The one
by Hrushovski deals with an arbitrary commutative algebraic group G defined over a number
field. One important point is that the torsion subgroup lives in the semi-abelian quotient of
the group, and he shows that the number of components of the Zariski closure of Tor(G)# X
is bounded by the number of components of the Zariski closure of Tor(H ) # 7(X ), where
H is the quotient of G by its maximal vector subgroup, and 7 : G $ H is the natural map.
Results of Mumford, together with a characterization by Hrushovski of one-based subgroups
of abelian varieties or of G, allow him to show that there is some o ! Aut(Q) such that
the torsion subgroup of G is contained in a quantifier-free definable subgroup B of G, which
defines a one-based group in any existentially closed difference field containing (Q, o). This,
together with 2.8 and a simple argument, give the result. Bounds on the complexity of
the difference equations defining B give bounds on the number of cosets involved in the
description.

The applications by Scanlon have a similar flavour.

2.11. The classical semi-minimal analysis. A standard result on supersimple theories states
that if tp(a/E ) has finite SU-rank, then there are SU-rank 1 types pi, ..., Pn, and tuples

ai,...,an such that acl(Ea) = acl(Ea; ...,an), and for each i, tp(aj/Ea i 1) is almost-

internal to p;. Such a sequence ay, . . ., a, is called a semi-minimal analysis of tp(a/E ).

It may happen that one can choose the &;’s such that each tp(&/E ) is almost-internal
to pi; in that case, notice that tp(a/E ) is almost internal to the set S of realisations of the
pi’s. This is a strong condition on tp(a/E ), and we will say in this case that tp(a/E ) is
almost-internal [to types of rank 1].

One can refine the semi-minimal analysis a little and impose that the & ’s are in dcl(Ea),
and that the types tp(a/ acl(Eaj, 1)) are internal to p;, for all i. But, as mentioned above, in
the case of difference fields, the definable closure is too large to hope obtain precise results
on definable sets. After some work, and precise analysis of what internality to a fixed field
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means, one obtains the following result:

Proposition 2.12([5, 2.13]). Let E be an inversive difference field, a a tuple in U such that
o(a) € E(a)™9.

(1) Then there are ay, ... ,a, = a € E(a)i, such that, setting A; = E(a; 1)1 for eachi
(with ag = 0), tp(a;/A;) satisfies one of the following:

() tp(a;/A;) is algebraic;
(i) tp(a;/A;) is one-based;
(i) tp(a;/A;) is qf-internal to Fix(1) for some T = Frob™ ™.

(2) Furthermore, let { > 1 be an integer, (U , ") amodel of ACFA, and f : (E(a), ,0") —
(U",0") an embedding of difference fields. Then, if a1, ..., a, are as in (1), we have
similar results holding in U": tpY’ (f(a;)/ f(As)) is algebraic in case (i), one-based
in case (i), and gf-internal to Fix(7") in case (iii).

The content of this proposition is very strong. Note that in particular it implies that
whether the tuple is Oone-based ov&lO depends only on its quantiber-free type dver
not on the particular embedding &f(a),; into a model of ACFA. This result decomposes
the extensiorE (a), /F into a tower of Peld extensions, each one of a certain kind.

3. Difference belds and algebraic dynamics

Debnition 3.1. An algebraic dynamics dePned over a bel& is given by a pair(V, ¢)
consisting of a (quasi-projective) variety debPned diertogether with a rational dominant
mapg : V — V.

Remarks 3.2. In the literature¢ is often assumed in addition to be a morphism. Moreover,
one also often imposes that the morphisnpbéurized, i.e., that there is an ample vector
bundleg€ on V" and an integey > 1 such thatp? £ ~ £% 7. These hypotheses have strong
consequences which we will discuss later.

If L is a beld extension df, an algebraic dynamidd/, ¢) gives naturally rise to one debned
over L, by viewing V' as debned ovek. We will constantly use this remark, and always
consider them as algebraic dynamics over a large ambient algebraically closéd(rlite
they may be debned over smaller subbelds).

If V' is not absolutely irreducible, it may become reducible when viewed byand for this
reasorwe will always assume that our varieties are absolutely irreducible

Debnition 3.3. If (V, ¢) and(W, ) are algebraic dynamicsmorphism (V, $) — (W, 1)
is a rational mapf : V. — W such thatf o ¢ = ¢ o f. Itis dominantif f : V — W'is
dominant.

(3.4) Let(V, ¢) be as above, and consider the function B€ld”) of V. The map¢ then
yields an endomorphism® of K (V'), which leavesk” bxed, and is dePned by~ f o ¢,
for ¢ € K(V) (We view the elements ok (V') as partial functions oV (K') taking their
values inK).

Thedegree of the morphismp is deg(¢) = [K (V) : ¢* K(V)]
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Another equivalent way of translating algebraic dynamics into thermince Peld context,
is the following: leta be a generic o over K, and debPne an endomorphisnof K (a) by
lettingo be the identity orf<, and settingr(a) = ¢(a). If f : (V,¢)! (W, ) isadominant
morphism, therb = f(a) will be a generic ofW, and we will haves(b) = (b). Thus
dominant morphisms of algebraic dynamics correspond to inclusions efefice belds.

3.5. Applying the semi-minimal analysis. Applying 2.12, there are tuples,...,a, =
a" K(a), such that for each o(a;) " K(a;) # K(a;iy1), andtp(a;/K(a;—1)) is either
algebraic, or gf-internal t&'ix(7), or one-based.

These tupleg; give rise to a bbration dfV, ¢), namely, ifV; is the algebraic locus af;
over K, ¢; the rational endomorphism &f, such thato(a;) = ¢;(a;) andg; : V; ! V4
the rational map induced by the inclusiéf(a,_1) # K (a;), we obtain

(V,o) ' (Vor,0n1) S8BT - & (Vi,00).

Note that the bbers of these maps are not themselves algebraic dynamics: indeed,¢he map
transports the Pbefi; ! (a,_1) 10 f; 1 (0(an—_1)) = f;7H(Pn_1(an_1)).

3.6. Internality to the fixed field Fix(o). Assume thatp(a;/K(a;—1)) is internal to
Fix(o), and thatK (a;) intersects the separable closuféa;_,)® of K(a;—1) in K(a;—1).
Then, over somd. containingK (a;—1) and linearly disjoint fromkK (a;) over K(a;—1),
there is a tuplé such thatl(a;) = L(b) ando(b) = b. This implies that.(a;) = L(o(a;)).
If i = 1, then we get that, is a birational map, i.e., has degreée If i % 2, we ob-
tain thate; induces a birational map betweep’ (a;_;) andg; ' (o(a;_1)), and we have
deg(¢i) = deg(¢i-1).

3.7. Algebraic extensions. Note that ifa; is algebraic ovek (a;_1 ), then alsaleg(¢;) =
deg(j-1).

4. The Canonical base property

This property was originally a property of compact complex manifolds, which was isolated
(independently) by Campana and Fujiki. Work of Moosa and Pillay provided a translation
of this property in model-theoretic terms ([13] and [15]); Pillay and Ziegler ([16]) showed
that various enriched belds enjoy it. This property will be later called the Canonical Base
Property, CBP for short, by Moosa and Pillay who investigate it further in [14], and ask
several questions.

Definition 4.1. LetT" be a theory which eliminates imaginariésa saturated model @f,
A# Uanda atuple inU, p(x) = tp(a/A).

(1) If T is stable ang is stationary, them is debnable, that it, for every formulgx, y),
there is a formulal, (y) (with parameters iml) such that for every tuplein A (of the
correct arity),U = d,(b) if and only if p(x,b) " p. Furthermore, these depbnitions
debne a (consistent and complete) type @eFhecanonical base of p is the smallest
debnably closed subset@fover which one can bnd parameters for all the formulas
d,(y) (in other words, contains the code of all sets dePned by tkg)). It is denoted
by Cb(p) or Cb(a/A), and is contained int.
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(2) If T is unstable, but simple, then the debnition of canonical base is more involved,
see e.g. WagnerOs book [20], as it is debned in terms of extension base. It is easier
to debne the algebraic closure of the canonical base, deGdtga) or Cb(a/A ): it
is the smallest algebraically closed subBedf A such thata andA are independent
overB. If T is supersimple, the@b(p) will be contained in the algebraic closure of
Pnitely many realisations gf, and so will have bnite SU-rankjifhas. Note that this
debnition also makes sense for inPnite tuples, and we will often use it for the inPnite
tuple enumerating the algebraic closure of a bnite tuple.

Example 4.2. Consider the theory ACF of algebraically closed belds, say of characteristic
0 for simplicity, and letU be a large algebraically closed befl,C U a subbeld, and a

tuple inU. Assume tha#\(a) is a regular extension &%, and consider the algebraic locus

V of aoverA. ThenCb(a/A) is simply the beld of debnition &f .

Example 4.3. Leta be atuple iri{/, E a dil erence subbeld éf. If X is a tuple of inde-
terminates of the same size asthen one can consider the idéabf E[X ], of di! erence
polynomials which vanish a. As in classical geometry, this ideal has a smalledtddi
ence) beld of debnition, i.e., there is a unique smalléstrénce subbeld of E such that
| is generated by its intersection wiihy[X ] . ThenCb(a/E ) = acl( Ey).

Definition 4.4. Let T be a supersimple theory which eliminates imaginaries. We sayl'that
has theCanonical Base Property, or CBP, if wheneverA andB are algebraically closed sets
such thaSU(A/A NB) < wandB = Cb(A/B ), thentp(B/A ) is almost-internal (to types
of SU-rank1).

4.5. Comments.

(1) LetC = AN B, anda, b bnite tuples such tha = acl(Ca), B = acl(Ch). Then
SU(A/C ) = SU(a/C). The notion of almost-internality is by dePnition preserved
under passage to the algebraic closure, so there arela seacl( D) containingA
and independent frofB overA, and tuplesy, ...,k with SU(b/D ) =1, such that
acl(DB) = acl( Dby ... k).

(2) The depnition in the stable case deals with bnite tugpbaedb, assumes th&b(a/b)
= b, and deduces thv(b/a) is internal to types of rank.

(3) If tp(A/C ) is one-based, then ... by dePnition of one-basedness, we knodv ¢t
B are independent over their intersection, and therefore C. To say it in another
fashion: iftp(a/E ) is one-based, ard containsE, thenCb(a/B ) C acl(Ea).

(4) Hrushovski, Palacin and Pillay give in [10] an example ofuastable theory of Pnite
rank which does not have the CBP. This example is built up from the theory ACF of
algebraically closed belds.

Theorem 4.6 (Pillay-Ziegler [16]).

(1) The theory of di! erentially closed fields of characteristic O has the CBP (version for
stable theories).

(2) The elementary theory of an existentially closed di! erence field of characteristic O has
the CBP.
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Pillay and Ziegler have some additional partial results concerning types oflramk
separably closed belds, but not the full and hoped for result. Their proof uses jet spaces,
and generalises only partially to positive characteristic, because of possible inseparability
problems. In order to show that the result holds for existentially closed belds of arbitrary
characteristic, one needs to show a decomposition result:

Theorem 4.7 (1.16 in [2]). Let T be a supersimple theory, U a large model of T, A, B and
C = AN B algebraically closed subsets of U such that SU(A/C) < w and B = Cb(A/B).
Then there are ay, . . .,an € A, typespa, ..., pn of SU-rank 1 (maybe over some larger base
set D which is independent from AB over C), such that acl(Cay . .., an) = acl( CA); and
each tp(ai /C) has a semi-minimal analysis in which all components are almost-internal to
the set of realisations of the Aut( U/C)-conjugates of p;.

Furthermore, each of the types p; is non-one-based.

From this, one shows easily that it"saes to show the CBP for types whose semi-
minimal analysis only involves one bPxed non-one-based type of tarlk the particular
case of existentially closed!dérence belds of positive characterigtiowe must therefore
look at types analysable in terms leix( 7), for the various possible. Whenr = o, one
shows the following:

Lemma 4.8. Let a be a finite tuple in U, of finite SU-rank over E = acl( E), and assume
that the semi-minimal analysis of tp(a/ E) only involves FiX( o)-almost-internal types. Then
there is a tuple b € E(a), +1 such that E(a), +1 is separably algebraic over E(b).

Inspection of the proof of Pillay-Ziegler then shows that there is no problem when:
their proof goes through verbatim. Working in the red(ldt 7) then allows to obtain the
results for all types analysable Fix( 7). Using the dichotomy Theorem 2.7, this Pnishes
the proof of

Theorem 4.9 (3.5 in [2]). Existentially closed difference fields of any characteristic have
the CBP.

The CBP has several interesting consquences, which | will now list. Relative versions of
these results exist.

Theorem 4.10 (References are to [2])Let T' be a supersimple theory with the CBP, U a
saturated model, and A, B,C = AN B algebraically closed subsets of U, with SU(A/C)
finite.

(1) (2.1)If B = Cb(A/B), then tp(B/C) is almost-internal.

(2) (2.2)More generally, if tp(B/A) is almost-internal, then so is tp(B/C).

(3) (2.4)There is some D = acl( D) with C C D C A such that whenever E = acl( F) is
such that tp(A/ E) is almost-internal, then E C D.

(4) (2.5)If B = Cb(A/B) and D is such that tp(A/D) is almost-internal, then so is
tp(AB/D).

(5) (2.10)Let a1, ay, by, by be tuples of finite SU-rank, S a set of types of SU-rank 1 and

assume that
—tp(b2) is almost-internal to types in S,
—acl(by) Nacl(by) = acl( 0),
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Pa; Ly, b, andag Ly, by,

Pay € acl(a;bhy).

Then there i C dcl(azby) such thattp(ag/e) is almost-internal to types i§ and
elb,. In particular, if tp(aqz/by) is hereditarily orthogonal to all types i, then
a € acl(ehy).

4.11. Comments. Here is an easy consequence of item (1): assumeplatC ) is not
almost-internal, has bnite SU-rank, and thah B = C. ThenA andB are independent
overC.

Item (4) answers a question of Moosa and Pillay ([14]).

Item (5) is adescent resultand is (together with 2.12) the main ingredient of the applications
to algebraic dynamics by Hrushovski and myself. After some work, and use of Proposition
2.12, one rebnes the descent result 4.10(5) to obtain the following:

Theorem 4.12 (4.11 in [2]). LetK 1, K> be Pbelds intersecting ik, fori = 1,2, and with
algebraic closures intersecting kP9, let Vi be an absolutely irreducible variety ang :
Vi — V; a dominant rational map debPned ouer. Assume thakK , is a regular extension
of k, and that there is an integer > 1 and a dominant rational map : V; — Vs, such that
fop = ¢g) o f. Then there is a variety, and a dominant rational map, : Vo — Vo,
all debned ovek, a dominant mag : Vo, — V; such thatg o g5 = ¢ o g, anddeg(¢g) =

deg(¢2).

5. Applications of the CBP to algebraic dynamics

The original result of Matthew Baker. Letk be a beldC a curve ovek, andK = k(C).
Let ¢ : P! — P! be debned ove , and of degreel > 2. One can debne a logarithmic
height function on the points ¢ (K ), called the Weil height, and which I will denote by
For details, please see [1].Hf = k(t), then the Weil height of a poi® € P(K ) is simply
the minimal degree of polynomials needed to represent the poir®dne then debnes the
canonical heighh(P) as:

A : n n

h(P) = lim_ h(¢™ (P))/d".
[Here (™ denotes the iteration times of the mag.] One veribes thdi(¢(P)) = dh(P);
moreover, there is a consta®t> 0, such that for any poir, one hagh(P) —h(P)| < C .
Clearly, anypreperiodic poinP (i.e., such that for some integars> n one hasg)(™)(P) =
¢ (P)) must haveh(P) = 0. BakerOs theorem shows that these are the only ones, unless,
over some Pnite extension kf one hagP!, ¢) ~ (P, ) for some: dePned ovek:

Theorem 5.1 ([1]). Letk € K and ¢ be as above. Assume that for no Pnite algebraic
extension oK ’, there is alM € PGLy(K ') such thatM ~1¢M is dePned ovek. Then a
pointP € P}(K ) satispe$(P) = 0 if and only if it is preperiodic.

He shows moreover that there is a positwehich bounds below the canonical height of
non-preperiodic points d?! (K ).
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5.2. The analogue for higher dimensional varieties. The setting: Let V' be a quasi-projec-
tive variety defined over K, ¢ : V' — V a dominant rational map of degree d > 2. Once
fixed an embedding of V' into projective space, the Weil heights of points of V(K) exist as
before. (But to obtain the canonical height, additional conditions are necessary.) We assume
that for some NV, the points P € V(K such that all (") (P), n > 0, have height < N, form
a Zariski dense subset of V.

The hope: (V, ¢) is isomorphic to some (W, 1) defined over k.

5.3. The observation which makes things work. The following observation, due to Szpiro,
is what allows model theory to play a role, since it gives a certain configuration which one
can exploit.

Given some integer N, the points of V' (K') which have Weil height < N, form what we
will call a limited set, i.e., there is some algebraic set U defined over k, a constructible map
7 : U — V (defined over K), such that (U (k)) contains all points of V' (K') of Weil height
< N, and 7 is injective on U (k) (see e.g. section 3 of [4]). Consider the following sets:

Vo=n(UK); Va= [] ¢ (V).
0<j<n

So, a point P will be in V}, if and only if each of P, ¢(P),..., (") (P) has Weil height
< N.

The map ¢ induces a (partially defined) constructible map ¢* on U. Namely, if Q € U (k),
and ¢7(Q) € Vp, then ¢*(Q) is defined by 71¢*(Q) = ¢m(Q). Assume that for the number
N above, the sets V|, are Zariski dense in V. We now look at Uy, the Zariski closure of
7= 1(Vh) NU(k). These sets form a decreasing chain of Zariski closed infinite subsets of U,
which must therefore stabilise at some integer n. Let U C U, be the union of all irreducible
components W of Uy, such that w(W (k)) is Zariski dense in V. Then, the constructible ¢*
induces a permutation of the irreducible components of U of maximal dimension, and for
some 7 > 1, the constructible map (¢*)(") yields a rational dominant endomap 1/ of some
irreducible component W of U of maximal dimension. Note that (W (k)) is still Zariski
dense in V/, but that 7 sends (W, 1)) to (V, ¢{")). It turns out that this is sufficient to obtain
some results, using Theorem 4.12.

Theorem 5.4 ([5, 3.2], [2, 4.12]). With assumption as in 5.2, let U be a model of ACFA
containing K, and a a generic point of V over K satisfying o(a) = ¢(a).

(1) Assume that the semi-minimal analysis of tp(a/K) does not involve Fix(c). Then
there is a bijective morphism g : (V, ¢) — (Vo, ¢o) for some (Vo, ¢o) defined over k.
In characteristic 0, this g is a birational isomorphism.

(2) In the general case, there is a dominant rational map (V, ¢) — (V, ¢o) where (V, ¢o)
is defined over k, and deg(¢) = deg(¢o).

Sketch of Proof. 1 will use (the proof of) 4.11 in [2], and follow its notation. By the above
discussion 5.3, we know that there is some algebraic dynamics (V1, ¢1) defined over k, and
which dominates (V, ¢(r)) for some r > 1. Let U be a model of ACFA containing K, let a;
be a generic of V satisfying o(az) = ¢(az). Applying 4.11 of [2] (with K3 = k, K = K
and (V2, ¢2) = (V, ¢)), there is ag € K (az) such that o(a3) € k(as). If Vp is the algebraic
locus of az over k, and ¢g € k(Vp) is such that ¢o(az) = o(az), then deg(p) = deg(¢po),
and there is a rational dominant map (V, ¢) — (Vo, ¢0). This gives (2).
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The proof of 4.11 in [2] shows thap(az/K (a3), +1) is almost-internal taFix(o).
Hence, in case (1), it must be algebraic. Thlgas) is a Pnite algebraic extension of
K (a3). Leta € K (az) be debPned bK (o) = K (a2) N K (a3)%, so thatK (a2)/K ()
is purely inseparable.

Now, recall from the proof of 4.11 that there is some genajiof V; over K, such
thata; € K(a;). Thenk(a;) andK (a;3) are linearly disjoint ovek(as), and because
K (a)/K (a3) is separable anHl (az) C K (a;), it follows thatK (o) = K (8) for some
B € k(a). Thens € k(as)®. Aso(az) € K (az), we haver(a) € K (a), hencer(8) € k().
LetV be the algebraic locus ¢f overk, and¢ € k(V) such thatr(8) = ¢(8), g the ratio-
nal mapV — V such thaig(az) = S. Theng is generically bijective, and send¥, ¢) to
(V,¢). In characteristi®), we may takex = a,, andg is then birational. This Pnishes the
proof of (1). O

5.5. Comments. The fact that we work with function belds only tells us about the generic
behaviour of the algebraic dynamics, and does not allow us to show full isomorphisms, only
birational isomorphisms.

Remark 5.6. If in addition to the hypotheses of 5.2, one assumes that thedmam po-
larised morphism with associated constgnt 1, then the conclusion of 5.4(1) holds, so
that we get the full result. This follows from an observation made without proof in [4]. The
proof | sketch below is due to Hrushovski.

Proof. First, note that the hypotheses imply, by a result of Fakhruddin [8], that we may as-
sume tha c PN for someN, and that the morphism onV is the restriction to/ of a
morphismy : PN — PN . Suppose that the conclusion of 5.4(1) does not hold, arid bet

a model of ACFA containindf .

Letg : (V,¢) — (Mo, ¢o) be given by 5.4, withleg(¢) = deg(¢p), leta = a; € U
be a generic oV satisfyingo(az) = ¢(az) and letag = g(az) (a generic olV, satisfying
o(as) = ¢o(asg)). Equality of the degrees af and ¢, implies that the restriction of
to S = g~!(a3) is an isomorphism. The variety’ = ¢(S) equalsS', and therefore
deg(S’) = deg(S). We will show the following:

If S is a subvariety of V, and deg(S) = deg(¢(S)) (as subvarieties of PN ), then the
degree of the map ¢ restricted to S is qH™(S),

Letr = dim(S), and letLy,...,L, be generic hyperplanes. Thdag(S') =S’ - L, -
----Lr,and also equalss’ "Ly N---N L[, the number of points & NL; N---NL,
counted with multiplicities. Pulling back hy, we get

deg(S) = deg(S') deg(¢|S) = |6~ (S) N (L1)N--- N~ (L)
=S-qLy---qL; = deg(S)

(here we us@*L; = qL;). Asdeg(S) = deg(S’), the restriction ofs to S has degree .

As ¢|S is birational and therefore of degréewe must have = 0. This implies thaS
is Pnite, i.e., thah; is algebraic oveK (a;), and we conclude as in 5.4(1). O
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