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Action Minimizing Solutions of the 
Newtonian n-body Problem: Prom 

Homology to Symmetry 

A. Chenciner* 

(A la mémoire de Nicole Desolneux) 

A b s t r a c t 

An action minimizing path between two given configurations, spatial or 
planar, of the n-body problem is always a true - collision-free - solution. Based 
on a remarkable idea of Christian Marchai, this theorem implies the existence 
of new "simple" symmetric periodic solutions, among which the Eight for 3 
bodies, the Hip-Hop for 4 bodies and their generalizations. 
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0. Introduction 
Finding periodic geodesies on a riemannian manifold as length minimizers in 

a fixed non-trivial homology or homotopy class is commonplace lore. Advocated 
by Poincaré [P] as early as 1896, the search for periodic solutions of a given period 
T of the n-body problem as action minimizers in a fixed non-trivial homology or 
homotopy class is rendered difficult by the possible existence of collisions due to the 
relative weakness of the newtonian potential: the action of a solution stays finite 
even when some of the bodies are colliding. Very few results are available: among 
them Gordon's characterization of Kepler solutions [G] for 2 bodies in JR2, Ven-
t u r e r ' s characterization of Lagrange equilateral solutions [VI] for 3 bodies in IR3, 
Arioli, Gazzola and Terracini's characterization of retrograde Hill's orbits [AGT] 
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for the restricted 3-body problem in M2. In particular, no truly new solution of the 
n-body problem was found in this way; indeed, these results confirm the view that 
the action-minimizing periodic solutions are the "simplest" ones in their class. 

The action minimization method has recently been given a new impetus by 
the replacement of the topological constraints by symmetry ones. This idea was 
first introduced by the italian school [C-Z][DGM][SeT] as another mean of forcing 
coercivity of the problem, i.e. forbidding a minimizer to be "at infinity". The 
bodies were forced to occupy, after half a period, a position symmetrical of the 
original one with respect to the center of mass of the system. It is proved in [CD] 
that in a space of even dimension, say M2, the minimizers in this symmetry class 
include relative equilibrium solutions (i.e. solutions which are "rigid body like"); 
moreover all minimizers are of this form provided a certain "finiteness" hypothesis 
is verified (see [C3]). Such relative equilibria can occur only for the so called central 
configurations [AC], the most famous of which is Lagrange equilateral triangle. 

Recently, a new type of symmetry was considered, which originates in the 
invariance of the Lagrangian under permutations of equal masses. This has led to 
the discovery of a whole world of new solutions in the case when all the bodies 
have the same mass. The most surprising ones are the "choreographies" whose 
name, given by Carles Simo, fits the beautiful figures they display on the screen in 
animated computer experiments ([CGMS],[S2]). Referring to my survey article [C3] 
for a bibliography and a description of the few cases in which existence proofs are 
available (the Hip-Hop [CV] for 4 bodies in M3, the Eight [CM] for 3 bodies in M2, 
Chen's solutions [Ch] for 4 bodies in M2), I mainly address here a powerful theorem 
which solves completely the collision problem for the fixed ends problem in the case 
of arbitrary masses. This is pertinent because, as we shall see, it allows one to prove 
the existence of collision-free minimizers under well chosen symmetry constraints. 
This theorem is the result of the efforts of Richard Montgomery, Susanna Terracini, 
Andrea Venturelli [V2], and, for the last - fundamental - stone, Christian Marchai 
[M2] [M3]. I present here a complete proof and, in particular, a simplified version 
of Marchal's remarkable idea, which avoids numerical computations. I discuss also 
new applications to minimization under symmetry constraints and open problems. 
Nota t ions . By a configuration of n bodies in an euclidean space (E, ()) we under-
stand an n-tuple x = (fi,f2,.. .fn) £ En. The configuration space of the n-body 
problem is the quotient of the set of configurations by the action of translations 
(see [AC]). It may be identified as in [C3] with the set X of configurations whose 
center of mass ?Q = (X^=i m 0 _ 1 Y^l=i mì?i is at the origin. It is endowed with the 
"mass scalar product" ( f i , . . . , fn) • («i, • • •, sn) = X^iLi mi ((^i — ra), (s» — SG))-
The non-collision configurations - the ones such that no two bodies rt coincide -
form an open dense subset X of X. The functions I = x • x, J = x • y, K = y • y, 
defined on the phase space X x X (whose elements are noted (x,yj) are the basic 
isometry-invariants of the n-body problem They are respectively the moment of 
inertia of the configuration with respect to its center of mass, its time derivative 
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and twice the kinetic energy in a galilean frame which fixes the center of mass. 
The potential function (opposite of the potential energy), the Hamiltonian (=total 
energy) and the Lagrangian are respectively defined by 

^ = E m»mj||fj — fj\\ 1, H = —K — U,L= -K + U. 
i<3 

In terms of the gradient V for the mass metric, the equations of the n-body problem, 

•• / N V^ Vj (t) — fi (t) miri(t)=^mimj-^— ^j-r=, %=!,...,n, 
, \ri(t) - ri(t)\a 

J^zi J 

can be written x = VU(x). They are the Euler-Lagrange equations of the action, 
which to a path x(t) associates the real number 

AT(x(t)) = / L(x(t),x(t))dt. 
Jo 

Remark. In the perturbations, we shall not bother about fixing the center of mass 
because replacing K = Y^=i mì\Wì ^ «G | | 2 by ^ roj||wj||2 only increases the action. 

1. The fixed-ends problem 
Question. Given two configurations, - possibly with collisions - of n point masses 
in M3 (resp. M2) and a positive real number T, does there exist a solution of the 
Newtonian n-body problem which connects them in the time T ? 

A natural way of looking for a solution is to seek for a minimizer of the action 
AT(X) over the space A^(#»,£/) of paths x(t) in the configuration space X which 
start at time 0 in the configuration x» and end at time T in the configuration Xf. For 
the integral to be defined, it is natural to work in the Sobolev space of paths which 
are square integrable together with their first derivative in the sense of distributions. 

The main problem, already mentioned by Poincaré in 1896 (see [P] where he 
introduces the method in a slightly different context), is that a minimum could 
well be such that, for a non-empty set of instants (necessarily of measure zero), the 
system undergoes a collision of two or more bodies, which prevents it form being a 
true solution (see [C3]). At an isolated collision time, the renormalized configuration 
is known to be approaching the set of central configurations (the ones which admit 
homothetic motion [C2]) but very little is understood of these configurations for 
more than 3 bodies. Continuous families of such configurations could exist (the 
"finiteness problem") and even if they didn't, there would be no garantee that at 
collision the renormalized configuration has a limit : it might have one only modulo 
rotations ( the "infinite spin problem"). Nevertheless, we prove the 
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Theorem. A minimizer of the action in AQ (X», Xf) is collision-free on the whole 
open interval ]0,T[. Hence, the answer to the Question is yes, both in M3 and M2. 

In the next paragraph, Marchal's idea to prove that isolated collisions do 
not occur in a minimizer is explained on the Kepler problem. If the finiteness 
problem is supposed to be solved, it works in the same way for the general n-body 
problem (surprisingly, the infinite spin problem is irrelevant). We then address 
the finiteness problem with Terracini's technique of blow up, which reduces the 
problem of isolated collisions to the case of parabolic homothetic solutions; finally 
we show, following Montgomery and Venturelli, that accumulation of collisions do 
not occur in a minimizer provided no subclusters collide. The theorem then follows 
by induction on the number of bodies involved in a collision. 
Remark . A similar assertion, based on numerical experiments, was made by 
Tiancheng Ouyang in Guanajuato (Hamsys, march 2001) but no proof appeared. 

2. The Kepler problem as a model for the study 
of isolated collisions 

The case of two bodies contains already many ingredients of the general situ-
ation. As is well-known, the 2-body problem is equivalent to the problem of a 
particle attracted to a fixed center 0, the so-called Kepler problem (or 1-fixed center 
problem). We call collision-ejection a solution in which the particle follows a straight 
line segment from its initial position Pt to the attracting center and (possibly) 
another straight line segment from the attracting center to its final position Pf. 

A tes t assert ion. A collision-ejection solution of the Kepler problem does not 
minimize the action in the Sobolev space Aj(fi ,f /) of paths joining rt to Pf. 

At least four proofs may be given of the truth of this assertion but only the 
fourth one using March al's idea is robust enough to lead to complete generalization. 
In the first one, we use the explicit knowledge of the solutions of the 2-body problem 
[Al] to identify the minimizers with the "direct" arcs of solution, not going "around" 
the attracting center (this arc is uniquely determined provided Pi, O and Pf do not 
lie on a line in this order). In the second one, we find a "simple" path without 
collision (straight line, circle, uniform motion) which has lower action. In the third 
one, supposing that a minimizer P(t) has a collision with the fixed center at time 0, 
we find a local deformation Pf_ (t) = P(t) + ep(t)s, which has lower action and no col-
lision. Such deformations were used by many people, including Susanna Terracini, 
Gianfausto Dell'Antonio, Richard Montgomery and Christian Marchai. If we chose, 
with Montgomery, p(t) = 1 if 0 < t < e2, p(t) = e _ 1 (e2 + e — t) if e2 < t < e2 + e 
and p(t) = 0 if t > e2 + e, the gain in action is Csfe (1 + 0(sfelog(l/v/ë))) provided 
the unit vector s is well chosen. We come to the fourth proof, for which we must 
distinguish two cases according to the dimension of the ambient space. 
(i) The case of M3. Let t >-¥ P(t) be a collision-ejection solution of the Kepler 
problem, P(t) = -P(t)/\P(t)\3, such that r(-V) = Pi, P(0) = 0, P(T) = Pf, T,T' > 
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0. We consider the following family of continuous deformations of P(t), parametrized 
by an element «of the unit sphered2 in I?3 : if R(t) = (1+^r)p and R(t) = (1 — Pp)p, 

pg(t) = P(t) + R(t)s if - T" < t < 0, Pg(t) = P(t) + R(t)s if 0 < t < T. 

It is a simplification of March al's original choice but the idea is the same : to show 
that the action A of P(t) is strictly bigger than the average Am = Js2 A(Pg(tj)do, 
where da denotes the normalized area form, that is the unique rotation invariant 
probability measure on S2. This will imply the existence of at least one direction 
s for which Pg(t) has lower action than P(t) (because the set of good s has positive 
measure we could choose s so that Pg is collision-free but this is irrelevant). 

The linearity of the integral and the similar behaviour of ejection and collision 
allow to replace in the proof P(t) and Pg(t) by their restrictions to the interval [0,T]. 
Moreover, it follows from the "blow-up" method (see 3.2) that it is enough to 
consider a parabolic solution P(t), that is P(t) = ^t^c, with 7 = (9/2) 3 if |c| = 1. 

By Fubini theorem applied to the positive integrand, 

J\n and 

^-m *̂ t dt 
R(t)2 

s2 
R(t)s-P(t) do- di 

Us2 

da 

I'M*) I I^WL 
The first integral reduces to \ JQ R(t)2dt = p2/2T because of the antisymmetry in 
«of the scalar product. The second is the difference in potential resulting from the 
replacement of the particle P(t) by a homogeneous hollow sphere of the same mass 
and increasing radius R(t). Because of the harmonicity of Newton potential in M3, 
the potential Uo(P,R) := J 1^^^ = / iff^?i of a homogeneous hollow sphere of 
radius R is 

Uo(P,R) 
1 
R 

if \P\<R, U0(P,R) 
1 
\f\ 

if |f| > R. 

If 0 enters this sphere at time to, |^(*o)| = R(to), i-e. p = 7^0 + 0(t§ ) , and 

I. 
2T 

to 

_R(i) \P(i)\_ 
dt = —1§ +0(t§ ) < 0 if p, hence to, is small. 

(ii) The case of IR2. The Newtonian potential is not harmonic in M2 and this 
makes things somewhat more complicated. Marchai proposes to replace the sphere 
by a disk of radius R endowed with the projection a(9, x) = I/^TTR^/R2 — x2) (in 
polar coordinates) of the uniform density on the sphere of the same radius. The 
potential fonction Uo(P, R) of such a disk (total mass 1) may be recovered from the 



284 A. Chenciner 

general computation done, via complex function theory, for a thin elliptic plate with 
a given density which is constant on homothetic ellipses (see [B] and [ Ma]): 

Uo(P,R) n 
2R 

if \-P\<R, Uo(P,R) 1 . ,R> 
~ arcsm i 7—r 
R v | r | ' 

if |f| > R. 

It does not coïncide any more, but asymptotically, with Newton's potential 
l/|f| of the center of mass outside the disk but it is still constant in the interior 
and the proof works as well as in the spatial case: as arcsin(x) < x + (f — l)x3 for 
x > 0, the difference in actions between the mean of the modified actions when s 
belongs to the unit disk and the original becomes 

"4-m *̂ t EL 
2T 

1 
2R(t) 

< 

\f(t)\_ 
t 

dt 
T r 1 

TTT , . t . 3 1 
lOEil ) 13 

2p &l T' 7 

1 *o rto 

R(t) 
\p(t)\ 

1 

JO 

n ^ 2 / 1 * \ 2 (2 ^ M 1 ^ T 

f(t)\_ 
1 

dt 

7312 :dt 2T 
4 

^ - ( l + 0 ( t o ) ) + ( | - 3 ) ^ j ( l + 0(*o)) + ( | - l ) ^ j + 0 ( * | l o g ( ^ ) ) 
l i i 1 

(n — i)—t'o + 0(t§ log(—)) < 0 for p, hence to, small. 
7 h 

3. Proof of the theorem 
3.1 The induction. We define the following statements about a minimizer x(t): 

(Ip) lì a collision of p bodies occurs in x(t) for t £]0,T[, it is isolated. 
(Up) No collision of m < p bodies occurs in x(t) for t £]0, T[. 

In 3.2 we prove that (Ip) implies that no collision of p bodies occurs in ]0, T[, hence 
that (Up) and (Ip+i) imply (IIP+1). In 3.3 we prove that (Hp) implies (Ip+i). As 
( i i i ) is empty, it implies (I2), hence (Ü2), etc... up to (IIn) which is the conclusion. 
If fc-collisions are present in x» or x/ but not j-collisions for j < k, the induction 
proves that j < fc-collisions are absent. The next step proves that fc-collisions, 
including the ones at the ends, are isolated and everything goes through. 

Remark. The induction may succeed because a p-body collision cannot be a limit 
of g-body collisions with q > p. Still, accumulation of collisions involving bodies in 
different clusters could a priori occur, e.g. a sequence of double collisions 23, 12, 
34, 23, 13, 24, 23, ... converging to a quadruple collision 1234, or even a converging 
sequence of such sequences. Induction on the number of bodies in the clusters 
fortunately avoids having to deal with such problems. 

3.2 Elimination of isolated collisions. 
3.2.1 The blow-up technique. This technique was introduced by S. Terracini 
and developped in the thesis of A. Venturelli [V2]. It is based on the homogeneity 
of the potential (compare [C2]). It allows proving the 
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Proposition. If a minimizer x(t) of the fixed ends problem for n-bodies possesses 
an isolated collision of p < n bodies, there is a parabolic (i.e. zero energy) homoth-
etic collision-ejection solution x(t) of the p-body problem which is also a minimizer 
of the fixed ends problem. 

Proof. To keep the exposition as simple as possible, I describe the case of a 
total collision. In the general case of partial (and possibly simultaneous) collisions, 
everything goes through in the same way because the blow up sends all bodies not 
concerned by the collision to infinity (for more details, see [V2]). 

Assuming that the collision occurs at t = 0, we define xx(t) = \^3x(\t) for 
À > 0. If x(t) is a solution of the n-body problem, so is xx(t). Moreover, for any path 
x(t) in AT

2(x,,x/)), the path xx(t) belongs to AT
2(xA(Ti),xA(T2)) and its action is 

equal to A^a times the action of the restriction of x(t) to the interval [XTi,XT2]. 
Hence, if x(t) is action minimizer in A^2(x,,x/), so is xA in A^2(xx (Ti), xx (T2)). 
Now, Sundman's estimates recalled above imply that, {xA,0 < À < Ao} is bounded 
in ü 1 ( [Ti , r 2 ] ,X) , hence weakly compact, so that there exists a sequence A„ —¥ 0 
such that xA" converges weakly (and hence uniformly) in Ü1([0,T], X) to a solution 
x. One shows that x is made of a parabolic homothetic collision solution followed 
by a parabolic homothetic ejection solution (the two central configurations involved 
are a priori distinct). Moreover, it follows from the weak lower semi-continuity of 
the action that x is a minimizer in A^?(x(Ti),x(T2)) (see [V2]). 

3.2.2 The mean perturbed action. We shall deal only with the case of M3 

and refer the reader to the Kepler case for the modifications needed in the case of 
IR2. Thanks to "blow up", we may suppose that our minimizer x(t) is a parabolic 
homothetic collision-ejection solution x(t) = (Pi(t),- • • ,Pp(t)) = xo\t\3 ofthep-body 
problem. As in the Kepler case, we may restrict to the ejection part, corresponding 
to t £ [0,T]. One studies deformations of x(t) of the form 

xk kg(t) = (Pi(t),.. .,Pk(t) + R(t)s,.. .,Pp(t)), 

where, as before, R(t) = (1 — ^)p with p a small positive real number and «'belongs 
to the unit sphere. The same computation as in the Kepler case leads to an average 
action At, such that 

Ak
m^A<^P-+ £ mjmk 2 T i4l<P

 Jo [R{t) r ^ ) J 
jk 1 1 dt, 

where rjf. = \fk — fA and tju is defined by rjk(t) = R(t) (the inequality sign comes 
from the fact that the deformations do not keep the center of mass fixed). 

As rjk(t) = Cjkts, one concludes as in the Kepler case that A^ — A <0. 
Remark. We could have dispensed with "blow up" in case similitude classes of 
central configurations were isolated but certainly not otherwise. This is because, 
the best control Sundman's theory may give us on the asymptotic behaviour of 
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the colliding bodies is that their moment of inertia Ic with respect to their center 
of mass and their potential Uc are respectively equivalent to lot* and Uot^s (see 
[C2]). This implies the existence, for 1 < j < k < p, of 0 < CLJU < bju such that for 
t small enough, one has a,jkt* < rjk(t) < bjut*. It follows that 

j^k,j<p XL J J J 

If similitude classes of central configurations are isolated, there is a limit shape and 
we may take CLJU and bju as close as we wish. Otherwise we cannot conclude. 

3.3 The el imination of non-isolated collisions. It remains to prove that (Up) 
implies (Ip+i). We use energy considerations, an idea which goes back to R. Mont-
gomery and was further developed in Venturelli's thesis [V2]. 

Proposition. Let x(t) be a minimizer of the fixed ends problem. If x(t) has no 
p-body collisions for p <po, collisions of po bodies are isolated. 

Sketch of proof. I shall give the proof in the case of a total collision (i.e. po = n) 
and then explain what has to be changed in the general case. 

(i) Using the behavior of the action under reparametrization, let us prove that 
the energy stays constant along a minimizer, whatever be the collisions. For this 
let us consider variations xf_(t) of the form xf_(t) = x(pf_(tj) where t >-¥ r = pt(i) is 
a differentiable family of diffeomorphisms of [0,T] starting from po(t) = t : 

A(xt)= [ f i la l i 2 +U(x€(t)))dt= [ ( x ) H^ll2 +X€(r)U(x(T)))dT, 
Mr) 

where Xf_ = dt/dr = l/(p(((p~1(T)). The derivative at e = 0 of a(e) = A(xf_) is 

da I1 / l lffrìll2 \ I1 

7ei0) = Jo [i}3YJL^U(x(T)))ÔX(T)dT = Jo H(x(T),x(T))öX(T)dT, 

where ÔX(T) = '^J \€=o- As the variations ÔX satisfy the constraint jQ ÔX(r)dr = 
0, which comes from the fact that JQ Xf_ (r)dT = T, we get that there exists a real 
constant c such H(X(T),X(T)) = c wherever it is defined. 

(ii) Let to be an instant at which total collisions accumulate. Let us chose two 
sequences (an) and (6„) of instants of total collision which converge to to and are 
such that no total collision occurs in the open intervals ]an,bn[. The moment of 
inertia i of the system with respect to its center of mass is equal to zero at each of 
the instants an or bn and hence has at least one maximum £„ in the interval ]an, bn[. 
As no partial collision occurs, the motion is regular in each of these intervals and 
at each such maximum, the second time-derivative i(£») has to be non positive. 
But the value U(Çn) of the potential function tends to +oo a s n - > +oo, while the 
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energy Ü stays constant. One then deduces from the Lagrange -Jacobi relation 
I = 4Ü + 2U that i(£«) —̂  +00, which is a contradiction. 

In the general case, when p is some cluster not containing all the bodies, the 
energy Hß of p is no more constant but one can get from a refinement of the same 
proof that it is still an absolutely continuous function of time as long as no collision 
occurs between a body of the cluster and a body of the complementary cluster (see 
[V2]). This implies that Hß stays locally bounded and allows the argument of (ii) 
to work because, by hypothesis, no partial collision occurs in the cluster. 

4. Periodic solutions 
4.1 Homological or homotopical constraints. Going back to the 1896 Note 
of Poincaré already alluded to, the idea of constructing periodic solutions of the 
n-body problem as the "simplest" (action minimizing) ones in a given homology 
or homotopy class of the configuration space is very natural if one compares to 
the construction of periodic geodesies as minimizing the length in a non trivial 
homology or homotopy class. As already noticed by Poincaré, this works beautifully 
in the so-called "strong force problem", corresponding to a potential in 1/r2 or 
stronger, where each collision path has infinite action [CGMS]. Unfortunately, in 
the Newtonian case, most of the time minimizers have collisions and hence are 
not true periodic solutions [M]. This is already true in the planar Kepler problem: 
it follows from Gordon's work [G] (see also [C3]) that the only minimizers of the 
action among the loops of a fixed period T whose index in the punctured plane 
is different from 0, ± 1 , is an ejection-collision one ! (for an analogue result in the 
planar three-body problem, see [VI]). 

In such cases, solving the fixed ends problem is of no use. Among the cases 
where minimizers in a fixed homology or homotopy class have no collision are 

1) Gordon's theorem for the planar Kepler problem when one fixes the index 
to ±1 (resp. when one insists only on the index being different from 0): a minimizer 
is any elliptic solution of the given period. 

2) Venturelli's generalization [VI] of Gordon's theorem to the planar three-
body problem whith homogy class fixed in such a way that along a period, each side 
of the triangle makes exactly one complete turn in the same direction: a minimizer 
is any elliptic homographie motion of the equilateral triagle, of the given period. 

4.2 Symmetry constraints. In order to find "new" solutions as action minimizers, 
another type of constraints on the loops must be introduced, which somewhat allows 
using fixed ends type results. We ask the loops to be invariant under the action 
of a finite group G. An invariant loop is completely defined by its restriction to 
an interval of time on which G induces no constraint. The restriction to such 
a "fundamental domain" of a minimizer among G-invariant loops is a minimizer 
of the fixed ends problems between its extremities. This leads to a new collision 
problem: a minimizer could well have a collision at the initial or final instant. 
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(i) Choreographies. We first show, following Andrea Venturelli, the 

Theorem. A minimizer among n-choreographies has no collision. 

Recall that the choreographies are fixed loops under the action of the group 
/Z/nM whose generator cyclically permutes the bodies after one n-th of the period 
(see [CGMS]); hence a fondamental domain can be chosen as any time interval of 
length T/n. If there were collisions at the ends, one would get a contradiction with 
the theorem by just shifting the fondamental domain to the right or to the left. 
One can prove (using [CD]) that the regular n-gon minimizes in all cases where it 
minimizes U = I2U. But this is no more true for n > 6. So, what is the min ? 
(ii) Generalized Hip-Hops. This works also for the "italian" (anti)symmetry: 

Theorem. A minimizer among loops x(t) in JR3 such that x(t + T/2) = —x(t) has 
no collision. Moreover, it is never a planar solution. 

The last assertion comes from the fact that a relative equilibrium x(t) whose 
configuration Xo minimizes U = I2U is always a minimizer among the planar 
(anti)symmetric loops ([CD] and [C3]). But, applied to a variation z(t) = zo cos 2jr 
normal to the plane of x(t), the Hessian of the action is easily seen [C4] to be 

- i fT 2irt 
d2A(x(t))(z(t,z(t)) = I0

 2d2U(xo)(zo,z0) / cos2 —dt, 

where io = xo • xo- Now, results of Pacella and Moeckel [Mol] say that one can 
always choose zo such that d2U(xo)(zo, zo) < 0. Hence, a relative equilibrium ceases 
being a minimizer in IR?. This ends the proof because other possible minimizers of 
the planar problem would have the same action as a relative equilibrium (thanks 
to A. Venturelli for this remark). In reference to [CV], I propose to call generalized 
Hip-Hops these minimizers. They are the best approximations I can think of in IR? 
to the non-existing relative equilibria of non-planar central configurations (recall 
[AC] that such relative equilibria exist in IR4). 
(iii) Eights with less symmetry. As another example, we prove the existence of 
solutions "of the Eight type" but with less symmetry than the full dihedral group 
D6 = {s,a\s6 = 1,<72 = l,sa = as^1} (see [C3]). We consider the subgroups 
2Z/62Z = {s} and D3 = {s2,a}. 

Theorem. A minimizer among ZU/ 6ZÜ-invariant loops has no collision. The same 
is true for a minimizer among D^-invariant loops. 

Instead of minimizing the action over one twelfth of the period between an 
Euler configuration at time 0 and an isosceles one at time T/12 (see [CM]), one 
minimizes only over one sixth of the period: in the first case from an isosceles 
configuration at time to to a symmetric one at time to + T/6, in the second one 
from an Euler configuration at time 0 to another one at time T/6. Venturelli's trick 
of translating the fundamental domain works in the first case where to is arbitrary (a 
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translation of time transforms a minimizer into a minimizer) but not in the second 
one where, as for the initial Pg-action, an Euler configuration can only occur at 
times which are integer multiples of T/6. To prove the absence of collisions at the 
initial and the final instant in the second case, we notice that such a collision is 
necessarily a triple (i.e. total) collision. If this happens, the action of the path is 
greater than the one of a homothetic ejection solution of equilateral type, a path 
which is not of the required type, but this is irrelevant here. The conclusion follows 
because the action of this last path is itself greater than the one of one sixth of 
the "equipotential model" (see [C3],[CM]). If a minimizer among Z,/6/Z or P 3 

symmetric loops possesses the whole D6 symmetry of the Eight is unknown. 

(iv) The Pi2 family. Marchai discovered the P12 family, which continues the Eight 
solution in three-space up to Lagrange equilateral solution, through choreographies 
in a rotating frame [Ml]. It is parametrized by an angle u between 0 and | : the 
solution labeled by u minimizes the action in fixed time T/12 between configurations 
which are symmetric with respect to a line A through the origin which contains body 
0 and configurations which are symmetric with respect to a plane P through the 
origin which contains body 2 and makes angle u with A. We shall think of A as 
being horizontal and of P as being vertical (Figure 1). 

0 < U < J I / 6 U=ä /6 

Figure 1 (fixed frame) 

For u = 0, one gets the Eight in the vertical plane orthogonal to A (and hence 
to P); for u = f, one gets Lagrange solution in the horizontal plane (containing A 
and orthogonal to P) . For n/6 < u < n/3, the minimizer is a horizontal Lagrange 
solution whose size increases to infinity and action decreases to 0. The x4-type 
bifurcation of the minimizer at u = n/6 was analyzed by Marchai. In a frame 
rotating around the vertical axis of an angle —u in time T/12, one gets a family 
of Pg-symmetric choreographies of period T between the Eight and twice Lagrange 
(figure 2). 

The relevant action of Pg on the configuration space of three bodies in IR? is 
a direct generalization of the one which leaves the Eight invariant. It is defined as 
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0<u<j t /6 u=?r/6 

Figure 2 (rotating rame) 

follows (the notations are the ones of [C3]): 

a(s)(Po,Pi,P2) = (£?2,£?0 ,£?i) , ß(s)(t) = t + T/6, 
a(a)(Po,Pi,P2) = (Af0 ,Af2 ,Afi) , B(a)(t) = -t, 

where S (resp. A) denotes the symmetry with respect to the horizontal plane (resp. 
to the line A). 

Thanks to the fact that a minimizer of the fixed ends problem has no collision, 
the proof boils down to proving that a minimizing path has no collisions at its ends. 

(i) Getting rid of triple collisions is easy: one notices firstly that the action 
of any path undergoing a triple collision is bigger than the action .43 = | (-^-)5Ts 
(notation of [CM]) of the homothetic solution of the equilateral triangle which goes 
in the same amount of time T from collision to zero velocity, secondly that this 
last action is bigger than the one Ai -r ( f — u) s T a of a horizontal Lagrange 
solution which rotates an angle | — u during the given amount of time. In fact, this 
last action is even smaller than the action A2 = (3^/2)^3 A3 u s e c[ m [CM] as long 
as u > (s/2 — l)f , in which case, the absence of any kind of collision in a minimizer 
follows. 

(ii) For double collisions, which we have not yet discarded if u < (\/2 — l)f, we 
provide a local deformation of the path which eliminates the collision and lowers the 
action. The two cases (collision at initial or final time) are similar, the only difference 
being the replacement of the symmetry with respect to the line A by the symmetry 
with respect to the plane P in the constraints imposed to the perturbation direction 
v. Supposing that a minimizer x(t) = (Po(t),Pi(t),P2(tj) has a collision between 
bodies 1 and 2 at the initial time 0, we deform it into xf_(t) = x(t) + ep(t)(0, v, —v) 
where p(t) is chosen as in the third proof for the Kepler case, Using Sundman's 
estimates on the behavior of the bodies near a double collision, one shows that for 
a good choice of v, the action again decreases by Cy/e(l + 0(^/elog(l/^/ejj). 
Remarks . 1) Our argument works for one value of « at a time. As no uniqueness 
is proved, neither is continuity with u of the family. Such continuity would imply 
the existence among the family of spatial 3-body choreographies in the fixed frame. 
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2) A direct proof of the existence of the P12 family should stem from the 
following remark: in [CM], the existence of the Eight is deduced from the fact that 
the action A2 of a 2-body solution going from collision to zero velocity is (slightly) 
greater than the action a of an equipotential path for which i = i0 is constant as well 
as K = K0 = U = UQ. For the Lagrange solution also, I = IE,K = KE = U = UE 
are constant and I E > I0, KE = UE. < K0 = UQ. In particular, the action of 
the Lagrange solution is smaller than the one of the equipotential model. When 
u increases, one should be able to construct a path with the right end conditions 
whose action is a decreasing function of u and hence is smaller than A2. 

3) The first continuation of the Eight into a family of rotating planar chore-
ographies was given by Michel Hénon [CGMS] who used the same program as in 
[H]. A third family should exist, rotating around an axis orthogonal to the first two. 

5. Related results and open problems 
Two global questions seem to be out of reach at the moment: unicity and 

possible extra symmetries of minimizers. 
As an example of the first, numerical evidence by Simo suggests unicity of the 

Eight but in [CM] we do not even prove that each lobe is convex, only that it is 
star-shaped (the problem is near the crossing point). This is nevertheless enough 
to imply that the braid it defines in space time M2 x M/T/Z (equivalent to the 
homotopy class in the configuration space) is the "Borromean rings", the signature 
of a truly triple interaction (also noticed in [Ber] in a different context). 

As an example of the second one, we do not know if the ^ / ^^ - symmet ry 
and the "brake" property of the Hip-Hop solution [CV] follow automatically from 
minimizing the action among loops such that x(t + T/2) = —x(t) (compare 4.2 (ii)). 
One is tempted to compare this problem to the celebrated result of Alain Albouy 
[A2] which states the existence of some symmetry in any central configuration of 
4 equal masses (and implies that there is only a finite number of them). But 
there is Moeckel's numerical example [Mo2] of a central configuration of eight equal 
masses without any symmetry. And according to [SW], there exists such an example 
minimizing U for n = 46. For more on symmetry, see [V2]. 

Identifying minimizers, even when one knows that they are collision-free, is 
usually too difficult a problem (see 4.2 (i) and (ii)). Understanding their stability-
properties may sometimes be attempted theoretically [Ar],[0], or numerically [SI]. 

Another type of questions is connected with minimization with mixed con-
straints: symmetry and homology or homotopy. One can ask, for example, if the 
Eight is a minimizing choreography in its homology class (0,0,0) (each side of the 
triangle has zero total rotation). An interesting example of mixed conditions may-
be found in [V2] where generalizations of the Hip-Hop lead to spatial choreogra-
phies of 4 equal masses. But, as for most choreographies, no proof was found of the 
existence of Gerver's "supereight" with four equal masses [CGMS], [C3]. 
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I am indebted to Christian Marchai, Richard Montgomery, David Sauzin, Su-
sanna Terracini and Andrea Venturelli for many illuminating discussions and com-
ments. 
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