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PLURIPOTENTIAL THEORY AND COMPLEX DYNAMICS IN

HIGHER DIMENSION

TIEN-CUONG DINH

Abstract

Positive closed currents, the analytic counterpart of effective cycles in algebraic
geometry, are central objects in pluripotential theory. They were introduced in com-
plex dynamics in the 1990s and become now a powerful tool in the field. Challenging
dynamical problems involve currents of any dimension. We will report recent devel-
opments on positive closed currents of arbitrary dimension, including the solutions to
the regularization problem, the theory of super-potentials and the theory of densities.
Applications to dynamics such as properties of dynamical invariants (e.g. dynamical
degrees, entropies, currents, measures), solutions to equidistribution problems, and
properties of periodic points will be discussed.
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1 Introduction

Let X be a compact Kdhler manifold of dimension k. Let f : X — X be a dynamical
system associated with a dominant holomorphic map, or more generally, a meromorphic
map or correspondence, i.e. multivalued map. As a basic example, one can consider
the complex affine space C¥ as the complement of a projective hyperplane in the complex
projective space PX. Then, any polynomial map from C* to C¥ extends to a meromorphic
map from P* to P¥.

Denote by f” := f o---o f (n times) the iterate of order n of f. The aim of the the-
ory of complex dynamics is to study the longtime asymptotic behaviour of the sequence
(f™)n>0- This includes not only the study of the orbits of points, sets, currents, measures,
under the action of f, but also the dynamical invariants such as dynamical degrees, en-
tropies, Green currents, equilibrium measures, and the distribution of periodic points, etc.

Complex dynamics in dimension 1 has a long history, going back to the works by Fa-
tou and Julia in 1920s, see e.g. Berteloot and Mayer [2001] and Carleson and Gamelin
[1993]. In 1965, Brolin considered the harmonic measure of the Julia set of a polynomial
in one complex variable which turns out to be a fundamental dynamical object, see Brolin
[1965]. In 1981, Sibony considered the Green functions associated with Brolin’s measures
of polynomials of fixed degree. They can be obtained as the rate of escaping to infinity
of the orbits of points in C under the action of the polynomials, see Sibony [1984, 1999].
Sibony also considered these Green functions in a family which constitute the Green func-
tion for some dynamical systems in higher dimension. Hubbard extended this notion of
Green function to complex Hénon maps on C?2, see Hubbard [1986]. In 1990, Sibony con-
sidered positive closed currents associated to these Green functions and their intersection,
see Bedford, Lyubich, and Smillie [1993b, p.78] and also Sibony [1999].

Green currents and their intersections turn out to be fundamental objects in dynamics
and pluripotential theory becomes a powerful tool in the field. The theory of complex
dynamics of several variables has been developed quickly, see for example, the works
by Bedford, Lyubich, and Smillie [1993a,b] and Bedford and Smillie [1991, 1992] and
Fornaess and Sibony [1992, 1994a,b,c, 1995a] among others. One can observe that many
works only involve currents of bi-degree (1, 1) and their intersections because pluripoten-
tial theory has been developed first in this setting. However, some very basic questions
already show the necessity of using positive closed currents of arbitrary bi-degree.

We will see in this survey different applications of such currents. Let’s illustrate here
their important role in the following basic picture. The periodic points of period n of f are
the solutions of the equation f”(z) = z. They can be identified with the intersection of
the graph I';, of f” with the diagonal A of X x X. When n goes to infinity, for interesting
dynamical systems, the volume of I';, tends to infinity. So in order to study the distribution
of periodic points when n tends to infinity, it is necessary to consider the positive closed
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(k, k)-current [T, ] associated with I',. Indeed, in this way, one can normalize [I',] to have
mass 1 and consider the limit as n tends to infinity.

It is worth noting that in general I',, is not a complete intersection of hypersurfaces in
X x X : we may need more than k hypersurfaces in order to get I';, as their intersection.
For example, the diagonal of P¥ x P¥, with k > 2, which is the graph of the identity map
on P¥, is not a complete intersection. More generally, the current associated with I',, is
rarely the intersection of positive closed (1, 1)-currents. So it is not enough to use (1, 1)-
currents to study I',. Furthermore, computing the limit of a sequence of intersections of
(1, 1)-currents requires strong conditions on these currents which are not always available
in the dynamical setting.

We will focus our discussion on the recent developments of pluripotential theory for
currents of arbitrary bi-degree and their applications to dynamics. We refer the reader
to the non-exhaustive list of references at the end of the paper, in particular the surveys
Dinh and Sibony [2010a, 2017], Fornaess [1996], and Sibony [1999], for a more complete
panorama of the theory of complex dynamics in higher dimension.

In Section 2, we will recall basic facts on currents and discuss the problem of ap-
proximating positive closed currents by appropriate smooth differential forms. As con-
sequences, we will give some calculus on positive closed currents. Dynamical degrees,
topological and algebraic entropies will be introduced together with the famous Gromov’s
inequality saying that the topological entropy is bounded from above by the algebraic one.
The regularization theorem is a key point in the proofs.

In Section 3, we will introduce the notion of super-potentials which are canonical
functions associated with positive closed (p, p)-currents. They play the role of quasi-
plurisubharmonic functions which are used as quasi-potentials for positive closed (1, 1)-
currents. An intersection theory for positive closed currents of arbitrary bi-degrees will be
presented. We then state some theorems in dynamics on the equidistribution of orbits of
points and varieties. Unique ergodicity property and rigidity for dynamical currents will
be discussed.

In Section 4, we will introduce the theory of densities for positive closed currents. A
basic example of the theory is the case of two analytic subsets whose intersection is larger
than expected, in terms of dimension. The densities are introduced in order to measure
the dimension excess for the intersection of positive closed currents, see Fulton [1998]
for an algebraic counterpart. Applications to dynamics concerning the distribution or the
counting of periodic points will be considered.

Finally, in Section 5, some open problems in dynamics will be stated. They are related
to the discussions in the previous sections and will require new ideas from pluripotential
theory or from complex geometry. We expect that the solutions to these questions will
provide new tools for complex dynamics.
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2 Regularization of currents, dynamical degrees and entropies

In this section, we will discuss a regularization theorem for positive closed currents and its
applications. We refer the reader to Demailly [2012], Hérmander [1990], Siu [1974] for
basic notions and results of pluripotential theory and to Voisin [2002] for Hodge theory
on compact Kéhler manifolds.

Let X be a compact Kéhler manifold of dimension k£ and let w be a Kdhler form on
X. Let T be a positive closed (p, p)-current on X. The pairing (T, *~?), i.e. the
value of T at the test form w¥~?, depends only on the (Hodge or de Rham) cohomology
classes of T and w. Moreover, this quantity is comparable with the mass of 7 which is, by
definition, the norm of 7 as a linear operator on the space of continuous test (k — p, k — p)-
forms. Therefore, a large part of the computations with positive closed currents reduces
to a computation with cohomology classes which is often simpler.

Positive closed currents can be seen as positive closed differential forms with distribu-
tion coefficients. In general, they are singular and calculus with them requires suitable
regularization processes. The following result gives us a regularization with a control of
the positivity loss, see Demailly [1992] and Dinh and Sibony [2004]. The loss of positiv-
ity is unavoidable in general. For simplicity, we also call ||T'|| := (T, w¥~P) the mass of
T.

Theorem 2.1 (Demailly for p = 1, Dinh-Sibony for p > 1). Let (X, w) be a compact
Kdhler manifold. There is a constant ¢ > 0 depending only on X and w satisfying the
Jollowing property. If T is a positive closed (p, p)-current on X, there are positive closed
(p, p)-currents T and T~ which can be approximated by smooth positive closed (p, p)-
Sforms and such that

T=Tt—T~ and |TE|<c|T]|.

This result still holds for larger classes of currents, e.g. positive dd¢-closed currents.
It is the analytic counterpart of the known fact in algebraic geometry that any cycle can
be represented as the difference of movable effective cycles. The regularization process
used in the proof preserves good properties of 7 when they exist. We will give now two
consequences of the regularization theorem. They are used to prove the properties of
dynamical degrees and entropies that we will discuss later.
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Corollary 2.2. Let X, w be as above and let U be an open subset of X. Let Ty, ..., T, be
positive closed currents on X of mass at most equal to 1 whose total bi-degree is at most
(k,k). Assume that Ty, ..., T,—1 are given by smooth positive closed forms on U, so the
intersection (wedge-product) Ty A ... A Ty, is a well-defined positive closed current on U.
Then, there is a positive closed current S on X suchthat Ty A...ANT, < S on U and the
mass of S on X is bounded by a constant depending only on X, w.

In the dynamical setting, we need to work with positive closed forms which are smooth
outside an analytic subset of X. This corollary allows us to show that the integrals involv-
ing such singular forms do not explode near the set of singularities.

Recall that a meromorphic map from X to X is a holomorphic map f from a dense
Zariski open set 2 of X to X whose graph in {2 x X is a Zariski open set of an irreducible
analytic subset I' of dimension k in X x X. For simplicity, we call I the graph of the
meromorphic map f : X — X. We assume that f is dominant, that is, the image of
f contains a non-empty open subset of X, see Oguiso [2016b,a, 2017] and Oguiso and
Truong [2015] for some recent examples.

Denote by 1 and w5 the two canonical projections from X x X to X. So the map 74
restricted to I is generically 1:1. Let 7 ( /) be the set of points x € X such that TNyt (x)
is not a single point, or equivalently, of positive dimension. This is the indeterminacy set
of f which is an analytic subset of codimension at least 2 in X. It is non-empty when f
is not holomorphic on X.

Consider two dominant meromorphic maps f and f”’ from X to X. We can define the
composition f’ o f as a holomorphic map on a suitable Zariski open set of X and then
extend it to a meromorphic map from X to X. By composing f with itself, we obtain the
iterates of f.

Let S be a (p, q)-current on X. Define formally the pull-back of S by f by

JH(8) = (m)«(m3 (S) A 1)),

when the last expression makes sense. Since the operators 7;* and (77; )« are well-defined
on all currents, the last definition is meaningful when the wedge-product 75 (S) A [I'] is
meaningful. Similarly, the push-forward operator f is defined by

Ja(S) 1= (m2)u (77 (S) A IT),

when the last expression makes sense.

Consider the particular case of a smooth differential (p, ¢)-form ¢ on X. The wedge-
product 75 (¢p) A [['] is well-defined because 75 (¢p) is smooth. So f*(¢) is well-defined
in the sense of currents. Moreover, the value of f*(¢) at a point x is roughly the sum of
the values of 75 (¢) on the fiber 771 (x) N I'. We can check that f*(¢) is in general an
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L' form and it may be singular at the indeterminacy set 7( f). So we cannot iterate the
operator f* on smooth forms.

Recall that the Hodge cohomology group H 7?4 (X, C) of X can be defined using either
smooth forms or singular currents. When ¢ is closed or exact then f*(¢) is also closed or
exact. Therefore, the above operator /™ induces a linear map from H?-?(X, C) to itself,
that we still denote by f*. The operator f, on H?4(X,C) is defined similarly. We can
iterate those operators as for every linear operator on a vector space but in general we
don’thave (f")* = (f*)" on H?4(X,C).

Consider an arbitrary positive closed (p, p)-current 7 on X . The pull-back f*(T') and
the push-forward fi(T') of T are not always well-defined. We can however define a strict
transform of T by f in the following way. Choose a Zariski open set €2 of X such that o
restricted to I' N 75 1(Q) defines a unramified covering over €. Then the pull-back of T
by 7o is well-defined on T' N 751 (£2). We can show using Theorem 2.1 that it has finite
mass and then its extension by 0 is a positive closed current on X x X, according to a
theorem of Skoda [1982]. The push-forward of the last current by 7 is a positive closed
(p, p)-current of X that we denote by f°*(T"). We define fo(7') in a similar way.

In the following result, the norms of the operators f* and f. are considered using a
fixed norm on the vector space H?-? (X, C).

Corollary 2.3. There is a constant ¢ > 0 depending only on X,® and the norm on
HPP(X,C) such that

15 (DI < clITIS™ - HPP(X.C) — HPP (X, C)|

and
| /(T <clTI f5 : HPP(X,C) - HPP(X,C)].

This result is clear when T is a smooth form. We then deduce the general case using
Theorem 2.1. Note that the operators f* and f, depend on the choice of a Zariski open
set. However, when we work with L' forms for example, this choice is not important.
Note also that the constants involved in the above results do not depend on 7 nor on f.
In the proofs of the results below, they will intervene under the form ¢!/” and their role
will be negligible when n goes to infinity.

As mentioned above, we don’t have in general (f")* = (f*)" on H?4(X,C). How-
ever, we can show that the following quantities are always well-defined.

Definition 2.4. We call dynamical degree of order p of f the following limit
dp(f) = lim (/") : HPP(X.C) — HP?(X.C)[",
and algebraic entropy of f the following quantity
ha(f) = Jnax, logdp,(f).
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The last dynamical degree di (f) is also called topological degree because it is equal to
the number of points in £ ~*(a) for a generic point @ in X.

Note that by Poincaré duality, we also have
dp(f) = lim [[(f")s: H<PF7P(X,C) — HE=PR=P (X, O/,
n—>oQ

Theorem 2.5 (Dinh-Sibony). The limit in the above definition of d,( f) always exists.
1t is finite and doesn 't depend on the choice of the norm on HP?(X,C). Moreover, the
dynamical degrees and the algebraic entropy are bi-meromorphic invariants of the dynam-
ical system: if w : X' — X is a bi-meromorphic map between compact Kdihler manifolds,
then

dp(”_lofoﬂ):dp(f) and ha(n~' o fom) = ha(f).
We also have forn > 1 that d,(f") = d,(f)" and hq(f") = nhe(f).

When X is a projective space, the first statement was used by Fornass—Sibony for p =
1 in order to construct the Green dynamical (1, 1)-current Fornass and Sibony [1994c].
Also for projective spaces, it was extended by Russakovskii—Shiffman for higher degrees
Russakovskii and Shiffman [1997]. In this case, the group H?:? (X, C) is of dimension 1
and the action of (f™)* is just the multiplication by an integer d, ,. Therefore, we easily
get dppym < dpndym which implies the existence of the limit of (d,,)'/" as n tends
to infinity.

The proof of the above theorem in the general case uses in an essential way a computa-
tion with positive closed currents and Theorem 2.1 plays a crucial role. We refer to Dinh
and Sibony [2004, 2005] for details and Dinh, Nguyén, and Truong [2012], Esnault and
Srinivas [2013], and Truong [2016] for related results. We also obtained in these works
the following result, which is due to Gromov for holomorphic maps Gromov [2003].

Theorem 2.6 (Gromov, Dinh—Sibony). Let X and f be as above. Then the topological
entropy hy(f) of f is bounded from above by its algebraic entropy hq( f). In particular,
the topological entropy of f is finite.

The topological entropy is an important dynamical invariant. It measures the rate of
divergence of the orbits of points. The formal definition for meromorphic maps is the same
as the Bowen’s definition for continuous maps, except that we don’t consider orbits which
reach the indeterminacy set. Therefore, it is not obvious that the entropy of a meromorphic
map is finite. Note also that when f is a holomorphic map, the above result combined
with a theorem by Yomdin [1987] implies that the topological entropy is indeed equal to
the algebraic one. This property still holds for large families of meromorphic maps. We
don’t know if in general, there is always a map f bi-meromorphically conjugate to f such

that hi;(f) = ha(f), see Problem 5.1 below.
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Observe that the action of f” on H?*4(X, C) is not explicitly used in the above prop-
erty of entropies when p # ¢. This can be explained by the following inequality from
Dinh [2005]

limsup || (/") : HP(X,C) — HP4(X,C)|'" < \/dp(f)dg(f).
n—>0o0
Let T be a positive closed (p, p)-current on X, for example, the current of integration
on a complex subvariety of codimension p. Applying Corollary 2.3 to /" instead of f, we
obtain that the mass of (f”)®(7") is bounded by a constant times (d,, (/) + €)" for every
€ > 0. Similarly, the mass of (/" )«(7") is bounded by a constant times (dx—,( f) + €)".
We see that dynamical degrees measures the growth of the degree and volume of varieties
under the action of f oritsinverse f . So dynamical degrees are fundamental invariants
in the study of the orbits of varieties. They play, with some variants, an important role
in the problem of classification of meromorphic dynamical systems using invariant mero-
morphic fibrations, see Amerik and Campana [2008], Dinh, Nguyén, and Truong [2012],
Nakayama and Zhang [2009], Oguiso [2016a], and Zhang [2009a,b] for details
Finally, recall that a direct consequence of the mixed Hodge—Riemann theorem applied
to (resolutions of singularities of) the graphs of f”, see e.g. Dinh and Nguyén [2006] and
Gromov [1990], implies that, the function p +— logd,( f) is concave. Equivalently, we
have

dp(f)? = dp-1(f)dps1(f) for 1<p<k—1.

In particular, we have 1 < d,(f) < d1(f)?, ha(f) > Oifand only if d1(f) > 1, and
there are two numbers 7 and s with 0 < r < s < k such that

L=do(f) < <dr(f) = =ds(f) > > dr(f).

The maximal dynamical degree d,(f) is also called the main dynamical degree. The
algebraic entropy of f is then equal to log d, ().

3 Super-potentiel theory and equidistribution problems

Super-potentials have been introduced in order to deal with positive closed currents of ar-
bitrary bi-degree. Let T be a positive closed (p, p)-current on a compact Kéhler manifold
X as above. Any analytic set of pure codimension p in X defines by integration a positive
closed (p, p)-current. So the current 7' can be seen as a generalization of analytic sets of
codimension p.

When p = 1, the current 7' can be seen as a generalization of hypersurfaces. Locally,
we can write T = dd“u, where u is a plurisubharmonic (p.s.h. for short) function. This
function is unique up to an additive pluriharmonic function which is real analytic. Globally,
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if o is a smooth closed real (1, 1)-form on X, in the cohomology class of T, by the classical
90-lemma, one can write 7 = « + dd“u. Here, u is a quasi-p.s.h. function on X, that is,
u is locally the sum of a p.s.h. function and a smooth function. It is uniquely determined
by T and «, up to an additive constant. In particular, there is a unique function u such that
maxu = 0. Recall that d¢ := 5-(d —0)and dd€ = ’;35

For the case of higher bi-degree, the current 7' corresponds to a generalized algebraic
cycle of higher co-dimension. We still can write 7" in a similar way but u will be a current
of bi-degree (p —1, p—1). It doesn’t satisfy a similar uniqueness property and there is no
intrinsic choice for u. Super-potentials are canonical functions defined on some infinite
dimensional spaces. They play the role of quasi-potentials as quasi-p.s.h. functions do for
bi-degree (1, 1). For simplicity, we will not introduce this notion in full generality and
refer the reader to Dinh and Sibony [2009, 2010c] for details.

Let 94(X) denote the real vector space spanned by positive closed (g, g)-currents
on X. Define the *-norm on this space by ||R||« := min(||R*|| 4+ |R™||), where R*
are positive closed (g, g)-currents satisfying R = R™ — R~. We consider this space of
currents with the following topology : a sequence (Ry)n>0 in 94(X) converges in this
space to R if R, — R weakly and if || R, ||« is bounded independently of n. On any
*-bounded subset of 9, (X), this topology coincides with the classical weak topology
for currents. By Theorem 2.1, the subspace 5(1()( ) of real closed smooth (g, g)-forms is
dense in 9, (X) for the considered topology.

Let §7(X) and 52 (X') denote the linear subspaces in 9,4 (X ) and 5q (X) respectively
of currents whose cohomology classes in H%4(X,R) vanish. Their co-dimensions are
equal to the dimension of H9-9(X, R) which is finite. Fix a real smooth and closed (p, p)-
form o in the cohomology class of 7" in H 7+ (X, R). We will consider the super-potential

of T which is the real function Wz on $2_p+1(X) defined by

Ur(R):=(T —a.Ug) for ReD)_,  (X).

where Ug is any smooth form of bi-degree (k — p,k — p) such that dd“Ugr = R. This
form always exists because the cohomology class of R vanishes. Note that since the co-
homology class of T — « vanishes, we can write T — o = dd U7 for some current Ur.
By Stokes theorem, we have

Wr(R) =(dd°Ur,Ug) = (Ur,ddUg) = (Ur, R).

We deduce from these identities that Wz (R) doesn’t depend on the choice of Ug and Ur.
However, U7 depends on the reference form «. Note also that if 7 is smooth, it is not
necessary to take R and Ug smooth.

For simplicity, we will not consider other super-potentials of 7. They are some affine
extensions of Uz to some subspaces of Dx_,41(X). The following notions do not de-
pend on the choice of super-potential nor on the reference form «. We say that 7' has
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a bounded super-potential if Ut is bounded on each *-bounded subset of 527}7 11 (X).
We say that T has a continuous super-potential if U7 can be extended to a continuous
function on $,2_ il (X) with respect to the topology previously introduced.

As the definition of super-potentials introduces a new space D—,1(X ), their calcu-
lus is not immediate. Recently, with Nguyen and Vu, we proved that if a positive closed
current is bounded by another one with bounded or continuous super-potentials, then it
satisfies the same property Dinh, Nguyén, and Truong [2017b]. The result plays a role in
some constructions of dynamical Green currents and the study of periodic points. Super-
potentials also permit to build an intersection theory, see Bedford and Taylor [1982], De-
mailly [2012], and Fornass and Sibony [1995b] for the case of bi-degree (1,1). In the
dynamical setting, they allow us to define invariant measures as intersections of dynami-
cal Green currents.

Consider two positive closed currents T and S on X of bi-degree (p, p) and (g, q)
respectively. Assume that p + ¢ < k and that T has a continuous super-potential. So W
is defined on whole $2_ il (X). We can define the wedge-product T A S by

(TAS,¢):=(aAS,¢)+Ur(SAddP)

for every smooth real test form ¢ of bi-degree (k — p—¢q,k — p—q). Note that S Add ¢
belongs to $2_p+1 (X) because it is equal to dd (S A ¢). It is not difficult to check that
T A S is equal to the usual wedge-product of 7 and .S when one of them is smooth. The
current 7 A S is positive and closed, see Dinh, Nguyén, and Truong [2017b], Dinh and
Sibony [2009, 2010c], and Vu [2016b] for details.

In this short survey, we will not be able to discuss all properties of super-potentials. Let
us focus our discussion in a key property which is crucial in the solution of equidistribution
problems. It also illustrates how one can use super-potentials in a similar way that one can
do with quasi-p.s.h. functions.

It is not difficult to show that quasi-p.s.h. functions are integrable with respect to the
Lebesgue measure on X. However, we have the following much stronger property, see
e.g. Dinh, Nguyén, and Sibony [2010], Kaufmann [2017], and Vu [2016a]. It implies that

quasi-p.s.h. functions are L? forall 1 < p < oo.

Theorem 3.1 (Skoda). Let X and w be as above. Let a be a smooth real closed (1,1)-
form on X. There are constants A > 0 and ¢ > 0 such that if T is any positive closed
(1, 1)-current in the cohomology class of o and u is the quasi-p.s.h. function satisfying
dd‘u =T — o and maxu = 0, then we have

/ Mgk < ¢
X
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It is not clear how to generalize this result to super-potentials because there is no natural
measure on the domain of definition of super-potentials. The following result of Dinh and
Sibony [2009, 2010c] gives us an answer to this question.

Theorem 3.2 (Dinh—Sibony). Let X and w be as above. Let o be a smooth real closed
(p, p)-form on X. There is a constant ¢ > 0 such that if T is any positive closed (p, p)-
current in the cohomology class of o and Ut is its super-potential defined above, then

|'Wr(R)| < c(1+1logh ||R]er).

for R € $2_p+1(X) with || R||« = 1, where log™ := max(log, 0).

If we remove log™ from the statement, the obtained estimate is much weaker and easy
to prove. So the contribution of log™ here is similar to the role of the exponential in The-
orem 3.1. Several applications of super-potentials in dynamics have been obtained. We
will only present here two results and refer the reader to Ahn [2016], De Thélin and Vigny
[2010], and Dinh and Sibony [2009, 2010c¢] for some other applications, in particular, for
dynamics of automorphisms of compact Kéhler manifolds.

Let J¢; denote the family of all holomorphic self-maps of P such that the first dy-
namical degree is an integer d > 2. This can be identified to a Zariski open subset of
a projective space. A generic map from Ck to Ck whose components are polynomials
of degree d can be extended to a holomorphic self-map of PX. The following result was
obtained in Dinh and Sibony [2009], see also Ahn [2016] for some extension.

Theorem 3.3 (Dinh-Sibony). There is an explicit dense Zariski open subset H); of H4
such that for every f in K} and every analytic subset V of pure codimension p and of
degree deg(V) of P¥ we have

lim ——(f")*[V]=T?,
0, T dea(V) v
where TP is the p-th power of the dynamical Green (1, 1)-current T of f. Moreover, the
convergence is uniform on V and exponentially fast with respect to some natural distances
on the space of positive currents.

We have not yet introduced the Green current T'. This is a positive closed (1, 1)-current
on P¥, invariant by d ' f*, with unit mass and continuous potentials. The power 77
is well-defined and is called Green (p, p)-current of f. The last theorem gives us a
construction of 7' by pulling back a hypersurface V by f" (case p = 1). However, T
was originally constructed for every f € H; by pulling back smooth positive closed
(1, 1)-forms, see Dinh and Sibony [2010a] and Sibony [1999] for details.
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Note that Theorem 3.3 still holds if we replace V] by any positive closed ( p, p)-current.
So f satisfies the unique ergodicity for currents. The result is however not true for every
map f in #;. In general, there may exist exceptional analytic sets V' for which the con-
vergence in the theorem doesn’t hold, see Conjecture 5.2 below. There are satisfactory
equidistribution results for general maps f only when p = k and p = 1, that is, when V'
is a point or a hypersurface. The full result for p = k was obtained by Dinh and Sibony
[2003, 2010b] generalizing results obtained by Fornass and Sibony [1994c] and Briend
and Duval [2001]. The case p = 1 was obtained in Dinh and Sibony [2008] and Taflin
[2011] generalizing results obtained earlier by Fornass and Sibony [1994b], Russakovskii
and Shiffman [1997] and Favre and Jonsson [2003] (for p = 1, k = 2). The same property
for dynamics in one variable, except the rate of convergence, has been proved by Brolin
[1965], Freire, Lopes, and Maifié¢ [1983] and Ljubich [1983].

The convergence of currents in Theorem 3.3 is equivalent to the convergence of their
super-potentials. The rate of the convergence of super-potentials implies the rate of con-
vergence of currents with respect to some natural distances for positive currents. These
distances are analogous to the classical Kantorovich—Wasserstein distance for measures.

We discuss now the second result where, as for the last result, super-potentials and
Theorem 3.2 play crucial roles in the proof. Let f be a polynomial automorphism of
Ck. We extend it to a birational map on the projective space PX. Denote by I (f) and
I(f~1) the indeterminacy sets of f and f ! respectively. They are analytic subsets of
the hyperplane at infinity PX \ C¥. The following notion was introduced under the name
of regular automorphisms in Sibony [1999].

Definition 3.4 (Sibony). We say that f is a Hénon-type automorphism if f is not an
automorphism of PX and I (f) N I(f1) = @.

This is a large family of maps. In dimension 2, all polynomial automorphisms of C? are
conjugated either to Hénon-type maps as in Definition 3.4 or to elementary maps whose
dynamics is simple to study, see Friedland and Milnor [1989]. Consider a Hénon-type
map f as above. It is known that there is an integer p such thatdim I (f) =k —p —1
and dim I (f~') = p — 1. The action of f on cohomology is simple and d,( /) is the
main dynamical degree.

It is also known that the set I ( f 1) is attractive for f. Let U( f) denote the basin of
I(f~1) which is an open neighbourhood of 7 ( f 1) in P¥. The set X ( f) := C*\ U(f)
is the set of all points z € C¥ whose orbits by f are bounded in C¥. The closure X (f)
of X (f) in P¥ is known to be the union of K (f) with I(f). The following result was
obtained in Dinh and Sibony [2009] generalizing results by Bedford, Lyubich, and Smillie
[1993b] and Fornzss and Sibony [1994c], where the case of dimension 2, except the rate
of convergence, was considered.
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Theorem 3.5 (Dinh—Sibony). Let V' be an analytic subset of pure dimension k — p and
of degree deg(V) in P* such that V 0 I (f~') = @. Then deg(V) ™ d,(f) ™" (f™)*[V]
converges exponentially fast to a positive closed (p, p)-current T f) with support in

K(f). Moreover, the set K (f) is rigid in the sense that T (f) is the unique positive
closed (p, p)-current of mass 1 with support in KX ( f).

Note that the rigidity of X ( /) implies the convergence of deg(V ) ™1d, ( f) ™" (f")*[V]
to T(f) because f (V) converges to K (f). However, it doesn’t imply the rate of
convergence. The current 7'( f') is the dynamical Green (p, p)-current of f. It was con-
structed by Sibony as a power of the dynamical Green (1, 1)-current. The later has been ob-
tained by pulling back smooth positive closed (1, 1)-forms, see Sibony [1999] and Taflin
[2011] for details. Observe that Theorem 3.5 still holds if we replace [V] by any positive
closed (p, p)-current whose support is disjoint from 7 (f~1). The result can be applied
for £~ instead of f since f ' is also a Hénon-type automorphism of C¥. We refer the
reader to the survey Dinh and Sibony [2014] for a more complete panorama on rigidity
property in dynamics.

4 Theory of densities of currents and periodic points

The theory of densities has been introduced in order to study the intersection between pos-
itive closed currents of arbitrary dimension. These currents may not admit an intersection
in the classical sense. In particular, the theory permits to measure the dimension excess of
the intersection and to understand what happens for the limit of such intersections. Such
situations appear in several dynamical problems. We will not report on the theory in full
generality and refer the reader to Dinh and Sibony [2012, 2018] for details. Some appli-
cations in dynamics will be discussed at the end of this section.

Consider the case of two positive closed currents : the first one is a general positive
closed (p, p)-current T and the second one is the current of integration on a submanifold
V of X. We want to understand the densities of 7', i.e. the repartition of mass in various di-
rections, along V' via a notion of tangent current. The case where V is a point corresponds
to the classical theory of Lelong number for positive closed currents. The rough idea is
to dilate the manifold X in the normal directions to V. When the dilation factor tends to
infinity, the image of 7" by the dilation admits limits that we will call tangent currents of
T along V. They may not be unique but belong to the same cohomology class. However,
in general, there is no natural dilations in the normal directions to V' and tangent currents
are defined in a more sophisticated way.

Let E denote the normal vector bundle to V in X and E its canonical compactification.
Denote by A : E — E the map induced by the multiplication by A on fibers of E with
A € C*. We also identify V with the zero section of E. The tangent currents to 7 along
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V will be positive closed ( p, p)-currents on E which are V-conic, i.e. invariant under the
action of A4, .

Let 7 be a diffeomorphism between a neighbourhood of V' in X and a neighbourhood
of V' in E whose restriction to V is identity. Assume that t is admissible in the sense that
the endomorphism of E induced by the differential of t is the identity map from E to E.
Using exponential maps associated with a Kahler metric on X, it is not difficult to show
that such maps exist. Here is a main result of the theory of densities.

Theorem 4.1. Let X,V,T,E. E, Aj and t be as above. Then the family of currents
T, := (Ap)«t«(T) is relatively compact and any limit current, for A — o0, is a posi-
tive closed (p, p)-current on E whose trivial extension is a positive closed (p, p)-current
on E. Moreover, if' S is such a current, it is V-conic, i.e. invariant under (A} )«, and its
cohomology class in HP*?(E,R) does not depend on the choice of t and S.

Note that T} is not of bi-degree (p, p) in general and one cannot talk about its positivity.
The above theorem not only states the existence of a unique cohomology class, but it claims
that it can be computed using any admissible t. The result still holds and we obtain the
same family of limit currents using local admissible diffeomorphisms. This flexibity is
very useful in the analytic calculus with tangent currents and densities while the use of
global admissible diffeomorphisms is convenient for calculus on cohomology.

We say that S is a tangent currentto T along V. Its cohomology class is called the fotal
tangent class of T along V. Note that this notion generalizes a notion of tangent cone in
the algebraic setting where T is also given by a manifold. It measures the densities of T’
along V. The cohomology ring of E is generated by the cohomology ring of V and the
tautological (1, 1)-class on E. Therefore, we can decompose the cohomology class of S
and associate to it cohomology classes of different degrees on V. These classes represent
different parts of the tangent class of T along V.

Note also that for the general case of two arbitrary positive closed currents 7' and T’
on X (the manifold V is replaced by a general current 7”), the densities between T and
T’ are determined by the densities between the tensor product 7 ® 77 on X x X and the
diagonal of X x X. As already mentioned above, we will not develop the general case in
this report.

It is important to estimate or compute the densities. The following particular case of
Dinh and Sibony [2012, Th.4.11] is used in the proofs of the dynamical properties pre-
sented below. It is analogous to a result by Siu for Lelong numbers.

Theorem 4.2. Let T, be a sequence of positive closed (p, p)-current converging to a
positive closed (p, p)-current T on X. Let V be a submanifold of X and denote by k,, k
the total tangent classes of T,,, T along V. Let ¢ be the cohomology class of a projective
subspace of a fiber of E. Assume that k = Ac for some non-negative constant \. Then
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any cluster value of k, has the form A'c with a constant 0 < A’ < A. In particular, if
A = 0 then ky, tends to 0.

We will give now some applications in dynamics where the last two statements play
a crucial role in the proof. For the following result, see Bedford, Lyubich, and Smillie
[1993a] and Dinh and Sibony [2016].

Theorem 4.3 (Bedford—Lyubich—Smillie for k = 2, Dinh-Sibony for k > 2). Under
the hypotheses of Theorem 3.5, let P, denote the set of periodic points of period n of f
in CK. Then the points in P, (f) are asymptotically equidistributed with respect to the
equilibrium measure p of f. More precisely, if 8, denotes the Dirac mass at a point a,
then

lim dp(f)™" D ba=p.

n—»00
acP,(f)

The result still holds if we replace P, ( f) by the set of saddle periodic points of period n.

The measure . was constructed by Sibony [1999]. With the notations of Theorem 3.5, it
is equal to the intersection of the Green current 7'( /) of f and the Green current 7'( f 1)
of f~'. It has support in the compact set K (f) N K (f ™) in C*. If A denotes the
diagonal of P¥ x P¥, then 1 can be identified with the intersection between the current
[A] and the tensor product T'(f) ® T(f~1).

Let I',, denote the graph of £ in P* x PX. The set P,( f) can be identified with the
intersection of T', and A in C¥ x C¥. Denote for simplicity d := d,(f). We can show
that the positive closed (k, k )-currents d " [I",] converge to the current 7 ( f) @ T (f~1).
Therefore, Theorem 4.3 is equivalent to the identity

. —n _ . —n
Jim (] 7" [E4]) = [A] A (lim d7"10,)
on Ck x C*.

In the general setting of the theory of currents, the two operations of intersection and of
taking the limit, even when they are well-defined, may not commute. In our setting, the last
identity requires a transversality property described below for the intersection between I,
and A which is, in some sense, uniform in n. To establish this property requires a delicate
analysis using in particular a result by de Thélin [2008].

Let Gr(IP¥ x P, k) denote the Grassmannian bundle over P¥ x P¥ where each point
corresponds to a pair (x, [v]) of a point x € P¥ x P¥ and the direction [v] of a simple
tangent k-vector v of P¥ x P¥ at x. Let T, denote the set of points (x, [v]) in Gr(P¥ x
Pk, k) with x € T, and v a k-vector not transverse to I',, at x. Let A denote the lift of
A to Gr(P¥ x PX k), i.e. the set of points (x, [v]) with x € A and v tangent to A. The
intersection T, N A corresponds to the non-transverse points of intersection between I,
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and A. Note that dim T, + dim A is smaller than the dimension of Gr(P* x P* k) and
the intersection of subvarieties of such dimensions are generically empty.

We show that the currents d " [fn] cluster towards a positive closed current whose tan-
gent currents along A vanish. This together with Theorem 4.2 implies that the intersection
between [, and A is asymptotically transverse as n goes to infinity. As mentioned above,
this is the key point in the proof of Theorem 4.3.

We will end this section with another application of the theory of densities. Let f be
a general dominant meromorphic map from X to X. When the periodic points of period
n of f are isolated, then their number, counting with multiplicity, can be obtained using
Lefschetz fixed point formula. In general, this set may have components of positive di-
mension, but we still want to study the distribution of isolated periodic points, in particular,
to count them. The following result was recently obtained in Dinh, Nguyén, and Truong
[2017a] as a consequence of Theorem 4.2 and some properties of the sequence [',.

Theorem 4.4 (Dinh—Nguyen—Truong). Let f be a dominant meromorphic self-map on a
compact Kéhler manifold X. Let h,( f) be its algebraic entropy and P, ( f) its number
of isolated periodic points of period n counted with multiplicity. Then we have

1
limsup - IOan(f) = ha(f)'
n—oo N
In particular, f is an Artin—-Mazur map, i.e., its number of isolated periodic points of
period n grows at most exponentially fast with n.

Note that there are smooth real maps on compact manifolds which are not Artin-Mazur
maps, see e.g. Artin and Mazur [1965] and Kaloshin [2000]. For large families of mero-
morphic maps or correspondences, we can obtain a sharp upper bound for the cardinality
of P,(f) which is equal to 1 + o(1) times the number given by the Lefschetz fixed point
formula Dinh, Nguyén, and Truong [2015, 2017a,b]. This is a crucial step in the study of
the equidistribution property for these points. Lower bounds for the cardinality of P, ( f)
were also obtained in some cases using other ideas from dynamics. We refer to Can-
tat [2001], Diller, Dujardin, and Guedj [2010], Dujardin [2006], Favre [1998], Iwasaki
and Uehara [2010], Jonsson and Reschke [2015], Saito [1987], and Xie [2015] for lower
bounds and related results.

5 Some open problems

In this section, we will state three open problems which are related to our discussion in the
previous three sections. We think that they are important problems in complex dynamics.
They require new ideas and may provide new techniques that can be used to solve other
questions.
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The following problem is related to Theorem 2.6. It may require some ideas from
complex analysis together with the techniques used by Yomdin [1987]. It was already
briefly mentioned in Section 2.

Problem 5.1. Let / : X — X be a dominant meromorphic map. Does there always exist
a bi-meromorphic map 7 : X’ — X between compact Kéhler manifolds such that the
algebraic and topological entropies of 771 o f o 7 are equal ?

Some trivial examples show that we don’t have this equality without modifying the
manifold X, see Guedj [2005].

The following conjecture was stated in Dinh and Sibony [2008]. It may requires a deep
understanding on the space of positive closed currents which is of infinite dimension. Let
£ be an endomorphism of P¥ of algebraic degree d > 2. A proper analytic subset of
PP* is said to be totally invariant if it is invariant by both f and f~!. They appear as
exceptional sets, where the multiplicity of f is large. Recall that the family of all these
analytic sets is either empty or finite, see Dinh and Sibony [2010b].

Conjecture 5.2. Let T be the Green (1,1)-current of f and let p be an integer with
2 < p <k—1 Then (degV)~td=P"(f")*[V] converge to T? for every analytic subset
V of P¥ of pure codimension p which is generic. Here, V is generic if either V N E = @
orcodimV N E = p 4 codim E for any irreducible component E of a totally invariant
proper analytic subset of P*.

Finally, the following problem seems to be very challenging. The current approach to
get the equidistribution of periodic points in Theorem 4.3 contains different steps. Sev-
eral of them are quantifiable but some of them need to be substituted by new ideas from
pluripotential theory.

Problem 5.3. Study the rate of convergence of periodic points of Hénon-type maps toward
the equilibrium measure.
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