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In this article, I show some applications of Kirillov's method of orbits to the 
harmonic analysis of bi-invariant differential operators on Lie groups. For instance, 
we obtain the Plancherel formula for an exponential solvable group, and the fact 
that on such a group a bi-invariant differential operator has a fundamental solu-
tion. We prove that, on a solvable group, a bi-invariant differential operator is 
locally solvable. This is a joint work with Mustapha Raïs. 

1. Notations. We consider a connected Lie group G with Lie algebra g. We choose 
a Haar measure dX on g and denote by dg the associated left Haar measure on G. 
We define a positive function j on g byj{X)2 = d{txp X)jdX. We denote by A the 
modular function on G: A{g) = d{hg)jdh. We denote by U{g) the complex envelop-
ing algebra of g9 by Z{g) its center, by Z'{g) the set of semi-invariants in U{g). 
We denote by S{g) the complex symmetric algebra of g, by I{g) the subalgebra of 
invariants. 

Let ßr* be the dual space of g. It is identified to the dual group of g by the pairing 
exp(/ </, X}). If m is a bounded measure on g9 we put m{f) = <m, e*f}. If n is a 
bounded measure on g*9 we put n{X) = <w, eiX}. We denote by dfths dual Haar 
measure on g*. 

Let/e 0*. We denote by Gf the stabilizer of/ in G9 and by gf its Lie algebra. 
Then gf is the kernel of the 2-form Bf on g defined by/. Let Q <= g* be a G-orbit. 
We denote by ßQ the canonical invariant measure on Û, normalized as in [1, p. 20]. 

2. Definition of the mapping a. We fix a connected G-invariant open neighbor-
hood F of 0 in fir such that exp is a diffeomorphism of V onto W = exp(F). Let 
^ be a distribution on W. We define a distribution a(^) on V by the formula 
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<a{<p)9j<p o exp> = (<j>9 <p} for all tp e C?{W). 
When G is semisimple (and F completely invariant), Harish-Chandra [5] proved 

the following result: 
(1) a{u * <f>) = a{u) * a{<f>) for all u G Z(fir) and all central distributions <f> on W. 

This paper would be greatly simplified if we knew this result for all Lie groups. 
Suppose G is solvable. Then I proved in [3] that (1) is true if <f> is in Z{g). We shall 
prove below that (1) is also true for some distributions associated with orbits of G 
in fir*. 

3. Definition of some distributions. We fix a G-orbit Q in g* of maximal dimen-
sion, a character % of G with values in C*9 and a function ^ on Q such that <J){g~lf) 
= %Gf)0(/) f°r a U / G $ andgeG. We shall say that 0has weight %. We assume 
that the following is verified: 

There exist a positive N and a norm || • || on g* such that 
(2) j ( l + | | / | | ) ^ | ^ ( / ) | ^ ( r f / ) < a ) . 

For cp G CC{W), we put 
(3) <0(ß, 0), p> = J Up « exp)A {f)ab{f)ßQ{df). 

Q 

Thus, 0(0, >̂) is a distribution on PF, and a{<f>{Q9 cß)) is the restriction to V of the 
Fourier transform (ç%>)~ of $3fl. Under the adjoint representation, <fi{Q, <jj) is 
semi-invariant with weight A^. 

4. The distributions <f>{Q9 (p) on solvable groups. We assume that G is a solvable 
connected simply connected Lie group. We consider an integral (j-orbit Q c g*: 
This means there exists a unitary character yj of Gf {fis some point of Q) whose 
differential is the restriction of */to gf. Fix such a character TJ. We denote by icQti} 
the irreducible unitary class of representations of G associated to these data by 
Auslander and Kostant, with the normalization of [1, p. 217]. 

Let i be a character of G with values in (0, oo), and 0 a positive function of 
weight x on Q. There is a canonical way to associate to ^ a selfadjoint positive (in 
general unbounded) operator A^ in the space of %Qili such that 

W & ^ V ^ f e " 1 ) = X(S)^ for all g G G. 
Suppose moreover that (2) is verified and that Q has maximal dimension. Then, if 
<p G C~(G), the operator Ay2-n:QiV{(p)Ay2 can be extended to a trace class operator, 
and we have 
(4) tr{Al'2iüQiV{<p)A}/2) = (<j>{Q9 4>)9 p> for all <p G C?{W). 
(This is an extension of [1, Chapter IX].) 

Let u G Z{g). Then a{u)A is an invariant polynomial on g*. We denote by a{u)A{Q) 
its constant value on Q. We have 
(5) 7CQ,v{u) = a{ur{Q)Id. 
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If ^ is a distribution on G9 put d${g) = d<j>{g"1). Formulas (4) and (5) imply 

(6) Ü * <j>{Q9 ab) = a{u)A{Q)<j>{Q9 <jj) 

which is equivalent to 

(7) a{ü * 0 ( 0 , </>)) = <u) * a{<l>{Q9 <fi)). 

When (2) is verified, but Q not integral, there is probably a formula analogous to 
(4) involving instead of 7c0tV one of the factorial normal representations constructed 
by Pukanszky [7]. 

5. Harmonic analysis of the distributions w(s) {u G Z{g)). We do not suppose for 
the moment that G is solvable. We suppose there is a G-invariant subset gf of g* 
which is the union of locally closed orbits of maximal dimension, and such that 
0* —ff? is of Lebesgue measure 0. Choose a nonzero rational function d' on g^9 
semi-invariant with weight A~l (cf. [2]) and put 0 = |0' | . The measure d{f)~1df 
on g* is (/-invariant. The quotient space X = g*/G is a standard Borei space. There 
exists a positive Borei measure me on X such that 

(8) f Kf) df = J mm S KfW)ß0{df) 
g* X 0 

for all positive Borei functions on g*. 
Apply (8) to the function h{f) = (1 + \\f\\)'N9 where N = 1 + dim g. Fubini's 

theorem shows that we have 

(9) f(l + |/|)-W)|9fl(40<°o, 
Q 

for almost all OeX. Then, the distribution <$>{Q9 0) is defined on W for almost all 
QeX. Notice that these distributions are central. We shall use them to decompose 
other interesting central distributions on W. 

Let p G S{g) be such that p is a positive function on g*. For seC with Re(>s) ^ 
0, we denote by ps the tempered distribution on g whose Fourier transform is ps. 
Then, by the Atiyah-Bernstein theorem, ps can be extended to a meromorphic 
function of £ defined in C with values in the space of tempered distributions. Let 
ueZ{g) such that a{u)A is positive. We shall denote by u{s) the distribution on 
W such that a{u{s)) = a{u)s. Thus w(s) is a meromorphic function of ssC with 
values in the space of central distributions on W. 

From (8) and (3), we get the following formula: Let u G Z{g) such thata(w)A is 
positive. Suppose Re{s) ^ 0. Let cp G CC{W). We have 

(10) <«w, <p} = J md{dQ)a{ür{Q)K<f>{Q, 6)9 p>. 

When w = 5, (10) gives a local inversion formula: 

(11) v(l)-^mém<tfP,<r),9>' 
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6. Solvability of bi-invariant differential operators on solvable Lie groups. In this 
section, G is a simply connected solvable Lie group. 

We have the following result. Let u G Z{g) be such that a{u)A is positive, and let 
v G Z{g). We have the equality of meromorphic functions: 

(12) a{v * M(S)) = a{v) * a{u{s)). 

To prove (12), we imbed G in a simply connected group G corresponding to an 
algebraic envelope g of g9 and remark that we can assume G = G. Then all orbits 
of G in g* are integral and locally closed. Then (12) follows from (7) and (10). 

It follows from (12) that the constant term of the Laurent expansion of w(s) at 
s = — 1 is a distribution E on W which verifies u*E = E*u = d (the Dirac mass at 
1). From this, it is easy to obtain the following theorem. 

THEOREM 1. Let G be a connected solvable Lie group. Keep the notations O / § § 1 
and 2. Let u e Z'{g). There exists a distribution E on Wsuch that u*E = E*u = d, 
and such that, for all v G Z'{g)9 a{v * E) = a{v) * a{E). 

When G is an exponential solvable group, we may choose W = G. In this case u 
has a fundamental solution defined in all of G. For G simply connected nilpotent, 
this is due to Raïs [8]. 

We do not know any example of a simply connected solvable group G9 and 
u G Z'{g)9 without a global fundamental solution. 

7. The Fiancherei formula for an exponential solvable group. In this section, G is an 
exponential solvable group. In this case, it is known that all orbits in fir* are locally 
closed and simply connected. To each orbit is associated one unitary irreducible 
class 1ÜQ of representations of G. Choose the function 0 on fir* as in §5. Denote by 
AdfQ the positive selfadjoint operator in the space of %Q associated with the restric-
tion of 0 to Q. Let g* be the union of orbits of maximal dimension in g*. Define 
X and me as in §5. From (11) and (4), we get the following inversion formula. 

For almost all QeX9 the operator A}f% 7CQ{<p)Al(l extends to a trace class opera-
tor for all <p G Q°(G), and we have 

(13) <p{l) = J me{dQ) tT{Al(faQ{<p)Al(l). 
x 

For each QsX, realize icQ in some Hilbert space HQ9 and denote by L2{HQ) the 
Hilbert space of Hilbert-Schmidt operators on HQ. From %Q9 we get an irreducible 
representation of G x G in I^HQ). 

THEOREM 2. Let <p e Li{G) f| L2{G). For almost all QeX, the operator itQ{(p)Al(l 
extends to an element [7CQ{<P)AI{%] of L2{HQ). The mapping ç -+ {[iUçfap)Al{%]}QeX 
extends to an isometry U of L2{G) onto $x L2{H^me{dQ). The isometry U intertwines 
the representation of G x G in L2{G) {the double regular representation) and the 
representation ofGxG in $x L2{HQ)me{dQ). 

Theorem 2 is the Plancherel theorem for G. If G is unimodular, it is a well-known 
application of formula (13). 
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8. Square-integrable representations of exponential solvable groups. In this section, 
G is an exponential solvable group with center Z. We choose a left Haar measure 
on G/Z. Let % be a unitary irreducible representation of G in a Hilbert space H. It is 
square-integrable (mod Z) if and only if it occurs discretely in L2{G9 TJ)9 where y is 
the restriction of it to Z, and L2{G9 yj) the space of the representation induced by y 
to G. Suppose n is square-integrable (mod Z). There is on H a positive self adjoint 
operator K9 called the formal degree, which verifies %{g)K7t{gYl = A{g)~lK for all 
g G G, and such that 

J|(*,*fe)A)|2#= |*||» |*-1/2*||2 

G/Z 
for all k e H and h e dorn #~1/2 (cf. [4]). 

The extension of Theorem 2 to L2{G9 rj) gives the following result (which, if G is 
nilpotent, is due to Moore and Wolf [6]): 

Let 0 <= g*. The representation %Q is square-integrable (mod Z) if and only if 
Gf = Z for all/G Ö. Let eÌ9 •••, e2rf be a basis of r̂/js? such that the unit cube has 
volume 1. If /G fir*, we denote by discr(/) the discriminant of the 2-form on g/z 
deduced from Bf9 relative to the basis eÌ9 •••, e2d. Suppose %Q is square-integrable 
(mod Z). If/GÛ, put (Jj{f) = (2flr)-rf|discr(/)|. Then the formal degree of %Q is 
the operator A$ (cf. §4). 
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