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Abstract

Optimal control under state constraints has brought new mathematical chal-
lenges that have led to new techniques and new theories. We survey some recent
results related to issues of regularity of optimal trajectories, optimal controls
and the value function, and discuss optimal synthesis and necessary optimality
conditions. We also show how abstract inverse mapping theorems of set-valued
analysis can be applied to study state constrained control systems.
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1. Introduction

We consider here finite dimensional control systems by which we mean ordinary
differential equations of the form

{
x′(t) = f(t, x(t), u(t)), u(t) ∈ U a.e. in [0, 1],
x(0) = x0,

(1)

where U is a complete separable metric space, f : [0, 1] × IRn × U → IRn,
x0 ∈ IRn, x(t) is called the state of the system, t denotes the time, x′(·) is the
derivative of x(·) with respect to time, and the function u(·) has to be chosen
so that the corresponding solution x(·) has some desirable properties; in other
words, u(·) “controls” the solution x(·) of (1). As a set of controls we choose
the set of all Lebesgue measurable functions u(·) : [0, 1] → U , while a solution
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x(·) (called here a trajectory of control system) is an absolutely continuous
function satisfying x(0) = x0 and x′(t) = f(t, x(t), u(t)) almost everywhere in
[0, 1] (in the sense of Lebesgue measure) for some control u(·). Once we choose
a control u(·), system (1) becomes an ordinary differential equation for which
conditions for existence, uniqueness and properties of trajectories are classically
known. Measurable controls have proven to be well adapted for investigation of
existence of solutions to optimal control problems in the general case.

The importance of control systems in mathematics and science is nowadays
widely acknowledged. Indeed, not only do they respond to basic issues arising
in engineering and social sciences, but they serve as subsumption of previous
theories - e.g., the classical calculus of variations - and stimulus to progress in
related mathematical fields as well. For example, some fundamental research
directions such as weak solutions of nonlinear first (and second) order par-
tial differential equations, set-valued, variational and nonsmooth analysis, have
found their inspiration and motivation in control theory and differential games.

The analysis of properties of trajectories of (1) becomes much more chal-
lenging to study if the states x(t) are required to belong to a certain region;
then we say that the control system (1) is subject to state constraints. To be
specific, let K be a given closed subset of IRn and consider state constraint of
the form

x(t) ∈ K for all t ∈ [0, 1]. (2)

A trajectory x(·) of (1) satisfying the state constraint (2) is called a viable (or
feasible) trajectory of the control system. Properties of viable trajectories could
be quite different from those of system (1) only.

From now on, we denote by C the space of continuous functions from
[0, 1] to IRn with the supremum norm ∥ · ∥C and by W 1,1([0, 1]; IRn) the
space of absolutely continuous functions from [0, 1] to IRn with the norm
∥w∥W 1,1 = ∥w∥L1 + ∥w′∥L1 . Let BC and BW 1,1 denote the closed unit balls
in the corresponding spaces.

Consider the set S(x0) of all trajectories of (1) and let SK(x0) denote the set
of all trajectories of (1), (2). If f is Lipschitz with respect to x with a constant
independent of t and u, then the set-valued map x0 ❀ S(x0) is Lipschitz
continuous in the sense that for some L ≥ 0, S(x0) ⊂ S(y0) + L|x0 − y0|BW 1,1

for all x0, y0 ∈ IRn. This is no longer the case for the set-valued map SK(·)
even for simple sets K and even with BW 1,1 replaced by BC .

Example. K = {x = (x1, x2) ∈ IR2 |x2 ≤ x2
1}, U = [−1, 1]× {0}. Consider the

following control system under a state constraint

x′(t) = u(t), u(t) ∈ U a.e. in [0, 1], x(t) ∈ K ∀ t ∈ [0, 1].

Then x(t) := (1− t, 0) is a viable trajectory with the initial state x(0) = (1, 0).
Pick any x2 ∈ (0, 1] and y(·) ∈ SK((1, x2)). Denoting by | · | the Euclidean norm
in IR2, we get |x(1)− y(1)| ≥ √

x2 and therefore SK(·) : K ❀ C is not Lipschitz
on any neighborhood of (1, 0). ✷
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• Existence of viable trajectories. In general, for some initial conditions,
trajectories of (1) satisfying the state constraint (2) may not exist; for instance
when for every u ∈ U , f(0, x0, u) points strictly outside of K and f is contin-
uous. The tangent vectors to the set K turn out to be very instrumental for
investigating existence of trajectories of a control system under state constraint.

Denote the distance from y ∈ IRn to K by dist(y;K). The contingent cone
and the Clarke tangent cone to K at x ∈ K are defined respectively by

TK(x) := {v ∈ IRn | lim infh→0+
1
h
dist(x+ hv;K) = 0};

CK(x) := {v ∈ IRn | limh→0+, K∋y→x
1
h
dist(y + hv;K) = 0};

and the normal cone to K at x by NK(x) := {p ∈ IRn | ⟨p, v⟩ ≤ 0 ∀ v ∈
CK(x)}.

Set f(t, x, U) :=
⋃

u∈U{f(t, x, u)} and W (t, x) := {u ∈ U | f(t, x, u) ∈
TK(x)}. Observe that x(·) ∈ SK(x0) if and only if x(0) = x0 and for almost
every t ∈ [0, 1]

x′(t) ∈ f(t, x(t),W (t, x(t))) = f(t, x(t), U) ∩ TK(x(t)).

In other words x(·) is a trajectory of the following control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ W (t, x(t)) a.e. in [0, 1], x(0) = x0. (3)

The main difficulty in investigating the above system consists in high irreg-
ularity of the set-valued map (t, x) ❀ W (t, x). For this reason usually one
constructs trajectories of (1) satisfying state constraint (2) instead of solving
directly (3).

Existence of viable trajectories can be studied using viability theory, which
was developed for systems described by differential inclusions. Control sys-
tems are a particular case of differential inclusions for set-valued maps (t, x) ❀
f(t, x, U).

Let F : IRn
❀ IRn be a Marchaud map, i.e. an upper semicontinuous set-

valued map with nonempty convex compact values and linear growth and let
x0 ∈ K. Consider the differential inclusion

⎧
⎨

⎩

x′(t) ∈ F (x(t)) for a.e. t ≥ 0
x(t) ∈ K for all t ≥ 0
x(0) = x0.

(4)

A locally absolutely continuous function x(·) : [0,∞) → IRn satisfying the
above relations is called a viable (in K) trajectory. A necessary and sufficient
condition for the existence of a trajectory of (4) for every x0 ∈ K is the viability
condition

F (x) ∩ TK(x) ≠ ∅ ∀x ∈ K. (5)

(see for instance [3, Theorems 3.3.2 and 3.3.5]). Similar conditions allowing
to handle time dependent constraints K(t) with F depending also measurably
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on time as well as infinite dimensional control systems and stochastic systems
can be found for instance in [3]. Viability theory has numerous applications to
control, such as for investigation of uniqueness of solutions to Hamilton-Jacobi-
Bellman equations, of invariance of stochastic control systems, of optimal syn-
thesis, etc.

• Inward pointing condition. In the example above the mapping f(x, u) = u
is Lipschitz, f(x, U) = [−1, 1]× {0} is compact and convex and viability condi-
tion (5) is satisfied. Thus (5) is not sufficient for the local Lipschitz continuity of
SK(·) : K ❀ C on K (and on the interior IntK of K) even when f is Lipschitz.
For guaranteing such property a stronger tangential condition is needed

F (x) ∩ IntCK(x) ≠ ∅ ∀x ∈ ∂K. (6)

ForK having a smooth boundary, the control system (1) with the time indepen-
dent f and F (x) := f(x, U), (6) is equivalent to the so called inward pointing
condition

∀x ∈ ∂K, ∃ ux ∈ U such that ⟨nx, f(x, ux)⟩ < 0 (7)

for the outward unit normal nx to K at x. Condition (7) was introduced in [79]
to investigate continuity of the value function of an infinite horizon problem
and then to study uniqueness of viscosity solutions to a Hamilton-Jacobi PDE.

• Inward pointing condition and linearization of control systems.
When K is an intersection of closed sets with smooth boundaries, a gener-
alization of (6) to the time dependent f implies that, under some mild as-
sumptions on f and a transversality assumption on K, for any n× n matrices
A(t) = (aij(t)), i, j = 1, ..., n with aij(·) ∈ L1(0, 1) and every trajectory/control
pair (x̄(·), ū(·)) of (1), (2), there exists a solution w(·) to the following linear
control system

⎧
⎨

⎩

w′(t) = A(t)w(t) + v(t), v(t) ∈ Tco f(t,x̄(t),U)(f(t, x̄(t), ū(t))) a.e.
w(0) = 0
w(t) ∈ IntTK(x̄(t)) for all t ∈ (0, 1],

(8)

where co states for the convex hull (see [11], and [53] for w(0) = w0 ∈
IntTK(x̄(0))). When A(t) = ∂f

∂x
(t, x̄(t), ū(t)), the control system in (8) is a lin-

earization of (1) along the trajectory/control pair (x̄(·), ū(·)), while the relation
w(t) ∈ IntTK(x̄(t)) can be considered as linearization of the state constraint
along x̄(·).

Existence of a solution to (8) is important in various applications. For in-
stance it yields normality of necessary optimality conditions for some optimal
control problems. Observe that it resembles a constraint qualification condition
in mathematical programming, which guarantees existence of Lagrange mul-
tipliers in normal form. In Section 2 existence of a solution to (8) is used to
investigate local Lipschitz continuity of SK(·) : IntK ❀ C and in Section 4 it
is applied to derive normal first order necessary optimality conditions.
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• Value function of the Mayer optimal control problem. Let ϕ : IRn →
IR ∪ {+∞} be an extended-real-valued function, bounded from below.

Consider the Mayer problem

minimize {ϕ(x(1)) | x(·) ∈ SK(x0)} . (9)

A trajectory x̄(·) ∈ SK(x0) is called optimal if ϕ(x̄(1)) =
minx(·)∈SK(x0) ϕ(x(1)) < +∞. Let t0 ∈ [0, 1], y0 ∈ K and consider the
control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ U a.e. in [t0, 1], x(t0) = y0. (10)

The value function V : [0, 1]× IRn → IR∪ {+∞} associated to (9) is defined by

V (t0, y0) = inf{ϕ(x(1)) | x(·) is a trajectory of (10), x([t0, 1]) ⊂ K}, (11)

(we adopt the convention that the infimum inf over an empty set is equal to
+∞).

Value functions arising in various optimal control problems have been ex-
tensively used since their introduction by Bellman and Isaacs in the fifties. In
general, even for smooth f, ϕ and in the absence of state constraints, the value
function of Mayer’s problem may be not differentiable. Its lack of differentia-
bility is related to the multiplicity of optimal trajectories (see [19]). This may
be also explained by the shocks of characteristics of the associated Hamilton-
Jacobi equation, see [25, 26, 55]. Conversely, as it was shown in [16] - [18],
the absence of shocks guarantees smoothness of the value function. The Hamil-
tonian H : [0, 1] × IRn × IRn → IR ∪ {+∞} of the Mayer problem is defined
by

H(t, x, p) = sup
u∈U

⟨p, f(t, x, u)⟩.

Under appropriate assumptions, V is a unique solution in a generalized sense
to the Hamilton-Jacobi equation

−∂V
∂t

+H

(
t, x,−∂V

∂x

)
= 0, V (1, x) = ϕ(x), (t, x) ∈ [0, 1]×K. (12)

It is well known that (12) does not have smooth solutions and for this reason
the notion of solution was extended to non differentiable functions. The most
popular are continuous viscosity solutions using superdifferentials and subdif-
ferentials instead of gradients for defining super and subsolutions to (12). See
for instance [6, 32, 33, 46] and the references contained therein.

The HamiltonianH defined above is convex with respect to the last variable.
When K = IRn (no state constraint) this actually allowed to get a simpler
definition of lower semicontinuous solution involving only subdifferentials and
equalities (see [7] for an approach based on PDE arguments and [50, 51, 58]
for the one based on viability theory). An extension to systems under state
constraints is given in [57].
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The value function is also an important tool for investigating optimality con-
ditions. For instance it follows from [19] that in the absence of state constraints,
sufficient conditions for optimality for the Mayer problem can be expressed us-
ing extremal points of the generalized gradients of the value function and that
the optimal trajectories are unique at points of differentiability of the value
function whenever H is smooth enough. Furthermore, the adjoint variable in
the maximum principle (discussed below) satisfies some additional relations in-
volving superdifferentials of the value function. These additional relations make
the maximum principle not only a necessary but also a sufficient optimality con-
dition (see [19] and [81]). When ϕ and f are smooth enough, the value function
is semiconcave (see [24] for a nice collection of results on semiconcave functions
and applications of semiconcavity to problems of optimal control or [19] for
both a proof of semiconcavity of the value function of Mayer’s problem and
sufficient optimality conditions). In the presence of state constraint, in general,
V is not semiconcave even for smooth f, ϕ. Observe that if ϕ(·) is locally Lip-
schitz, then local Lipschitz continuity of SK(·) : K ❀ C yields local Lipschitz
continuity of the value function.

• Maximum principle. Assume f differentiable with respect to x and ϕ
differentiable. Let x̄(·) be optimal for problem (9) and let ū(·) be a corre-
sponding control. Then, under some technical assumptions, the celebrated max-
imum principle under state constraint holds true (see [43] and also [60] for
an earlier version): there exist λ ∈ {0, 1}, an absolutely continuous mapping
p(·) : [0, 1] → IRn and a mapping ψ(·) : [0, 1] → IRn of bounded total variation
satisfying

(i) the adjoint equation (where ∗ states for the transposition)

−p′(t) =
∂f

∂x
(t, x̄(t), ū(t))∗(p(t) + ψ(t)) a.e. in [0, 1], (13)

(ii) the maximum principle

⟨p(t)+ψ(t), f(t, x̄(t), ū(t))⟩ = max
u∈U

(⟨p(t)+ψ(t), f(t, x̄(t), u)⟩ a.e. in [0, 1] (14)

and the transversality condition −p(1)− ψ(1) = λ∇ϕ(x̄(1)). Furthermore ψ(·)
is linked to the state constraint in the following way : there exist a positive
(scalar) Radon measure µ on [0, 1] and a Borel measurable ν(·) : [0, 1] → IRn

satisfying

ν(s) ∈ NK(x̄(s)) ∩B µ − a.e., (15)

ψ(t) =

∫

[0,t]
ν(s)dµ(s) ∀ t ∈ (0, 1]. (16)

See the monograph [82] for different forms of maximum principle under state
constraints and [72] for some historical comments on the maximum principle.
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The above necessary optimality condition is said to be normal if λ = 1. It
was shown in [11] and [53] that a generalized inward pointing condition yields
normality of the maximum principle for a class of state constraints with non
smooth boundaries. Normality is very useful for investigation of Lipschitz conti-
nuity of optimal trajectories (with respect to the time), to avoid the Lavrentieff
phenomenon, see [21, 41, 54, 59, 62, 67, 78]. Let us underline that regularity
of optimal trajectories is important in discrete approximations and hence for
numerical solutions.

• Adjoint state and gradient of the value function. It is well known that
if K = IRn and if the value function is differentiable, then −p(t) = ∇xV (t, x̄(t))
for all t. In [30], for K = IRn, this relation was extended to a locally Lipschitz
value function using generalized gradient instead of gradient. It follows from
[27] that in the presence of a state constraint if V (0, ·) is locally Lipschitz at
x0 ∈ IntK, then p(·) in the maximum principle satisfies −p(0) ∈ λ∂xV (0, x0),
where ∂xV (0, x0) denotes the generalized gradient of V (0, ·) at x0. For K with
a smooth boundary, the relation −p(t) − ψ(t) ∈ ∂xV (t, x̄(t)) for a.e. t ∈ [0, 1]
was recently obtained in [14], using a slightly different notion of generalized
gradient on the boundary of K.

• Regularity of optimal trajectories. The mapping ψ(·) in the maximum
principle may be very irregular and have an infinite number of jumps (see [71]
for a relevant example in IRn with n ≥ 3). For this reason optimal controls
may also be highly discontinuous with respect to the time. However for some
classes of nonlinear constrained optimal control problems of Bolza type (see
(34) in Section 4 below) this is no longer the case. This was observed first in
[62] for linear problems with convex cost and convex state constraints and ex-
tended in [67] to constrained control systems that are nonlinear with respect
to the state. Further generalizations to systems affine with respect to control
under nonlinear state constraints were obtained in [59]. In [53] it was shown
that for the Bolza optimal control problem, whose Hamiltonian has a coercive
gradient in the directions normal to constraint, ψ(·) is continuous on (0, 1).
This helps to investigate the continuity of optimal controls. Moreover, under a
uniform coercivity assumption in the directions normal to constraint, ψ(·) be-
comes absolutely continuous on (0, 1), implying in turn that optimal trajecto-
ries have absolutely continuous derivatives. For some classes of control systems
this allows to get absolutely continuous and even Lipschitz continuous optimal
controls.

• Outline. In the next section we discuss the local Lipschitz continuity of
SK(·) and in Section 3 the local Lipschitz continuity of the value function and
optimal synthesis. Section 4 relates the adjoint state p(0) of the maximum
principle to the generalized gradient of the value function. Finally, Section 5
is devoted to smoothness of ψ(·) in the maximum principle and regularity of
optimal trajectories and controls for the Bolza optimal control problem.
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2. Lipschitz Dependence of Viable Trajectories

on Initial States and Inverse Mapping

Theorems

By B(x0, ε) (or BX(x0, ε)) we denote the closed ball in a metric space X of
center x0 ∈ X and radius ε > 0 and by B or BY the closed unit ball centered
at zero in a Banach space Y . The Euclidean norm in IRn is denoted by | · |.

Let (X, dX) be a metric space, Y be a Banach space and G : X ❀ Y
be a set-valued map. G is said to be locally Lipschitz, if it has nonempty
values and for every x0 ∈ X there exist ε > 0, L ≥ 0 such that G(x1) ⊂
G(x2) + L|x1 − x2|BY for all x1, x2 ∈ BX(x0, ε). The graph of G is defined by
Graph (G) := {(x, y) | y ∈ G(x)}.

Consider a set-valued map F : [0, 1] × IRn
❀ IRn, a closed set K ⊂ IRn,

x0 ∈ K and the differential inclusion
{

x′(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1],
x(0) = x0.

(17)

It is worth to underline that if the mapping f from the introduction is mea-
surable with respect to t and continuous with respect to x, u, then the set of
trajectories of control system (1) coincides with the set of trajectories of dif-
ferential inclusion (17) for F (t, x) = f(t, x, U), see for instance [5, Theorem
8.2.10]. Define

S(x0) :=
{
x(·) ∈ W 1,1([0, 1]; IRn) | x(·) satisfies (17)

}
,

SK(x0) := {x(·) ∈ S(x0) | x(t) ∈ K for all t ∈ [0, 1]} .

We say that SK(·) is locally C−Lipschitz (respectively W 1,1−Lipschitz) on a
subset D ⊂ K if it is locally Lipschitz as a set-valued map from D into the
space C (respectively into the space W 1,1([0, 1]; IRn)).

Theorem 2.1. Assume there exists γ > 0 such that supv∈F (t,x) |v| ≤ γ(1+ |x|)
and F (t, x) is nonempty and closed for all (t, x) ∈ [0, 1]× IRn, that F is locally
Lipschitz and that the “inward pointing condition”

F (t, x) ∩ IntCK(x) ≠ ∅ ∀ x ∈ ∂K, ∀ t ∈ [0, 1] (18)

holds true. Then the set-valued map SK(·) is locally C−Lipschitz on K.

The above theorem is an extension of a result due to Filippov [45] to sys-
tems under state constraints. In the absence of a state constraint a stronger
conclusion holds true : S(·) is locally W 1,1−Lipschitz under less restrictive as-
sumptions, for instance F may be unbounded and measurably dependent on
time. Furthermore [45] provides also estimates of the W 1,1−distance from an
arbitrary x(·) ∈ W 1,1([0, 1]; IRn) to the set S(x0) ⊂ W 1,1([0, 1]; IRn).
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There exist several approaches dealing with the question of Lipschitz conti-
nuity of SK(·). We briefly describe some of them.

• The first one was initiated in [79] for the time independent control systems
when the boundary of K is C2 and extended in [23] to Hilbert spaces. It is
based on the local Lipschitz continuity of S(·) and on a modification of controls
in a suitable way to satisfy state constraints.

Actually the very same approach can be used to prove Theorem 2.1. More
precisely fix r > 0 and x0 ∈ K. Then there exists Lr ≥ 0 such that for any
x1, x2 ∈ K ∩ B(x0, r) and every y(·) ∈ SK(x1) we can find z̃(·) ∈ S(x2)
satisfying ∥y − z̃∥C ≤ Lr|x1 − x2|. Then to prove Theorem 2.1 it is sufficient
to find z(·) ∈ SK(x2) verifying ∥z − z̃∥C ≤ c̄|x1 − x2| for a constant c̄ ≥ 0
depending only on (the magnitude of) r + |x0|.

To construct such z(·), assume that z̃(·) /∈ SK(x2) and define t0 =
inf{t | z̃(t) /∈ K}. By the inward pointing condition, it can be shown that
for some v0 ∈ F (t0, z(t0)) ∩ IntCK(z(t0)), ε > 0 and τ > t0 there exists a
trajectory z(·) of the differential inclusion z′(s) ∈ F (s, z(s)) a.e. in [t0, τ ] such
that

z(s) ∈ z(t0) + (s− t0)v0 +B (0, ε(s− t0)) ⊂ Int K ∀ s ∈ (t0, τ ].

Filippov’s theorem from [45] and the local Lipschitz continuity of F (·, ·) imply
the existence of a trajectory x(·) to the differential inclusion x′(s) ∈ F (s, x(s))
a.e. in [τ, 1] such that |x′(s) − z̃′(s − τ + t0)| ≤ c(τ − t0) for all s ∈ [τ, 1] and
x(τ) = z(τ), where the constant c ≥ 0 depends only on |x0|+ r. It follows that
for some t1 > τ , x([τ, t1[) ⊂ IntK and either t1 = 1 or x(t1) ∈ ∂K and t1 < 1.
Denote by z(·) the restriction of x(·) to [τ, t1]. By assumptions of Theorem 2.1
it is possible to choose β > 0 and α > 0 depending only on |x0|+ r in such way
that for some τ > t0 satisfying τ − t0 ≤ β|x1 − x2| we have t1 ≥ min{τ + α, 1}
for sufficiently small |x1 − x2|.

Repeating the described process (a finite number of times) we construct z(·)
on [0, 1] as required. This approach uses a time shift in the definition of z(·) on
[t0 + τ, t1] (which is not convenient when applied to some questions arising in
differential games, where players have to adapt to each other strategies without
knowing the future, i.e. using non anticipative controls).

• The second approach uses the so called neighbouring feasible trajectories the-
orems. These theorems provide a sufficient condition for the existence of Lr ≥ 0
depending only on |x0|+r such that for any y0 ∈ K ∩B(x0, r) and x(·) ∈ S(y0)
we can find x̄(·) ∈ SK(y0) satisfying ∥x − x̄∥C ≤ Lr maxs∈[0,1] dist(x(s);K).
This approach was initiated in [47] for differential inclusions under a much
stronger inward pointing condition. Constructions proposed in proofs of these
theorems are still “anticipative”. Neighbouring feasible trajectories theorems
imply the local C−Lipschitz continuity of SK(·). We refer to [8] for the most
recent neighbouring feasible trajectories theorem in the space W 1,1([0, 1]; IRn)
for F depending measurably on time and K having a smooth boundary.
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When the boundary of K is non smooth and F is discontinuous with respect
to the time, neighbouring feasible trajectories theorems are no longer valid
neither in W 1,1([0, 1]; IRn) nor even in C. Some counterexamples are proposed
in [8] with a state independent F and K being a convex cone in IR2.

• The third approach was initiated in [9] for control systems of the form
(1) with bounded f and when the boundary of K is smooth. It was fur-
ther assumed that the sets f(t, x, U) are convex and closed. Then an ex-
tension to unbounded set-valued maps was proposed in [10], where, instead
of Lipschitz continuity of SK(·), its pseudo-Lipschitz continuity was investi-
gated. The advantage of this construction is of formulating the problem into
the viability theory framework and therefore proceeding in a non anticipative
way. Let y(·) ∈ SK(x1) and let u(·) be a control corresponding to y(·). Set
r(t, x) := dist

(
f(t, x, u(t)); f(t, x, U) ∩ TK(x)

)
,

G(t, x) := f(t, x, U) ∩B(f(t, x, u(t)), r(t, x))

and consider the differential inclusion
{

z′(t) ∈ G(t, z(t))

z(0) = x2 ∈ K.

By the measurable viability theorem from [56] it has a viable trajectory z(·) ∈
SK(x2). An analysis of z(·) yields estimates ∥y − z∥W 1,1 ≤ Lr|x1 − x2| for a
constant Lr ≥ 0 depending only on |x0|+ r.

• To summarize, the first construction allows us to prove the local C−Lipschitz
continuity of SK(·). When the boundary of K is sufficiently smooth, the second
and third approaches imply W 1,1−Lipschitz continuity of SK(·) even when
F is only measurable in time. Still counterexamples to neighbouring feasible
trajectories theorems do exist when K is an intersection of sets with smooth
boundaries and F is discontinuous in time. The third approach provides a non
anticipative construction when in addition the sets f(t, x, U) are convex and
closed.

• We propose now an inverse mapping theorem approach to C−Lipschitz
continuity of SK(·) on IntK for constraints with possibly nonsmooth boundary
and f measurable with respect to the time.

Recall that for a subset Q ⊂ IRn with nonempty boundary ∂Q the oriented
distance to ∂Q is the function dQ(·) : IRn → IR defined by

dQ(x) := dist(x;Q)− dist(x; IRn \Q).

See [37, 38] for interesting and detailed discussions about relations between
smoothness of the oriented distance function and regularity of the boundary of
Q. We write dQ ∈ C1,1

loc if for any r > 0 there exists ε > 0 such that the gradient
of dQ(·) is Lipschitz continuous on (∂Q ∩B(0, r)) +B(0, ε).
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In Theorem 2.2 below we suppose that K is an intersection of closed sets
having smooth boundaries

⎧
⎪⎨

⎪⎩

∅ ≠ K = ∩m
j=1Kj

for some closed subsets Kj ⊂ IRn such that dj ∈ C1,1
loc ∀ j = 1, ...,m ;

0 /∈ co{∇dj(x) | j ∈ J(x)} ∀ x ∈ ∂K,
(19)

where dj = dKj
and J(x) = {j |x ∈ ∂Kj}. Then TKj

(x) = {v | ⟨∇dj(x), v⟩ ≤ 0}
for every j ∈ J(x), TK(x) =

⋂m
j=1 TKj

(x) and TK(x) = CK(x).
Can we expect the local C−Lipschitz continuity of the set-valued map SK(·)

on the interior of K when f is only measurable in time and the inward pointing
condition holds true ? A positive answer is provided in [13] on the basis of
an inverse mapping theorem of set-valued analysis. Lipschitz-like properties
of inverse maps in an abstract setting were studied by many authors, see for
instance [2, 5, 42, 64] and the references contained therein.

Consider the Banach space C0 := {x(·) ∈ C |x(0) = 0} with the norm ∥ · ∥C
and define for every y0 ∈ K the set

K(y0) := {x(·) ∈ C | x(0) = y0, x(t) ∈ K ∀ t ∈ [0, 1]} .

Then K(y0) is a complete metric space with the metric induced by the C-norm.
We associate with every y0 ∈ K the set-valued mapGy0

: K(y0) ❀ C0 defined by
Gy0

(y(·)) = S(y0) − y(·) and consider the problem: find x(·; y0) ∈ K(y0) such
that 0 ∈ S(y0) − x(·; y0). Observe that x(·; y0) ∈ SK(y0). Thus C−Lipschitz
continuity of SK(·) may be studied by investigation of Lipschitz behaviour of
the set-valued map G−1

y0
(0) with respect to the parameter y0. This question

is related to set-valued implicit function theorems (see [42] for a very clear
exposition of this topic).

Let U be a complete separable metric space and f : [0, 1]× IRn × U → IRn.
In the theorem below we impose the following assumptions on f
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f is Lebesgue measurable in t and continuous in u ;

∀ r > 0, ∃ kr ≥ 0 such that f(t, ·, u) is kr − Lipschitz on B(0, r) ∀ t, u ;

∃ γ > 0 such that supu∈U |f(t, x, u)| ≤ γ(1 + |x|) ∀ t, x ;

f(t, x, U) is compact ∀ t, x
(20)

and the inward pointing condition
{

∀ r > 0, ∃ ρr > 0 such that ∀x ∈ ∂K ∩B(0, r), ∀ t ∈ [0, 1],

∃ vt,x ∈ co f(t, x, U) satisfying ⟨∇dj(x), vt,x⟩ ≤ −ρr ∀ j ∈ J(x).
(21)

Theorem 2.2 ([13]). Assume (19) - (21) and that f is differentiable with
respect to x. Then the set-valued map SK(·) is locally C−Lipschitz on IntK.
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To simplify the discussion of methodology for proving Theorem 2.2 via set-
valued inverse mapping theorems we consider only the case when in addition

f(t, x, U) is convex for all t, x.

The relaxation theorem and some variational arguments allow to remove this
assumption. Then Graph(Gy0

) is closed for every y0 ∈ K. Assumptions (19)-
(21), convexity of f(t, x, U) and the measurable viability theorem from [56]
imply that SK(x0) ≠ ∅ for all x0 ∈ K. Furthermore, for every x0 ∈ K and
r > 0 there exists c(x0, r) ≥ 0 such that for any x1, x2 ∈ K ∩ B(x0, r) and all
z̄(·) ∈ S(x1), ȳ(·) ∈ K(x1), we can find z(·) ∈ S(x2) and y(·) ∈ K(x2) satisfying
∥z(·)− z̄(·)∥C + ∥y(·)− ȳ(·)∥C ≤ c(x0, r)|x1 − x2|.

Theorem 2.2 is deduced from a result similar to the classical implicit func-
tion theorem. Indeed the underlying idea is to show that for any y0 ∈ IntK and
any x̄(·) ∈ SK(y0) ⊂ K(y0) the “derivative” of Gy0

at x̄ is surjective. However
K(y0) being a metric space and Gy0

being a set-valued map, derivatives have
to be replaced by set-valued variations and surjectivity by an uniform cover-
ing property of variations. Furthermore, Lipschitz continuity of the inverse is
replaced by pseudo-Lipschitz continuity (also called Aubin continuity in [42]),
because “surjectivity” at x̄ implies Lipschitz-like behaviour of the inverse only
in a neighborhood of (0, x̄). In such framework a general inverse mapping the-
orem from [49] can be applied to deduce the local C−Lipschitz continuity of
SK(·) on IntK.

Definition 2.3 ([49]). Let Φ : X ❀ Y be a set-valued map from a metric space
X to a Banach space Y . The variation of Φ at (x̄, ȳ) ∈ Graph(Φ) is the closed
subset of Y defined by

Φ(1)(x̄, ȳ) := Limsuph→0+
Φ(B(x̄, h))− ȳ

h
.

In the above Limsup stands for the Painlevé-Kuratowski upper limit of sets
(see for instance [65, 5]). In other words v ∈ Φ(1)(x̄, ȳ) whenever there exist hi >
0 converging to 0 and vi ∈ Y converging to v such that ȳ+ hivi ∈ Φ(B(x̄, hi)).

Let (Y, dY ) be a metric space. The Hausdorff semidistance between two
subsets A and C of Y is defined by

e(A;C) := sup
a∈A

distY (a;C) ∈ IR+ ∪ {+∞},

where we set e(A;C) = +∞ if one of the subsets A, C is empty.

Definition 2.4 ([2]). Let Ψ : X ❀ Y be a set-valued map from a metric
space (X, dX) to a metric space (Y, dY ). Ψ is called pseudo-Lipschitz at (ζ̄, ξ̄) ∈
Graph (Ψ) if there exist L > 0 and η > 0 such that

e(Ψ(ζ) ∩BY (ξ̄, η); Ψ(ζ ′)) ≤ LdX(ζ, ζ ′), ∀ ζ, ζ ′ ∈ BX(ζ̄, η).
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The main assumption of the inverse mapping theorem [49, Theorem 6.1] is
a uniform covering property of variations. In terms of our setting, denoting by
BC0

the closed unit ball in C0, the uniform covering property at x0 ∈ Int K
means that for some ρ > 0, ε0 > 0 and ε > 0,

ρBC0
⊂ G(1)

y0
(y(·), z(·)− y(·)) (22)

for all x1, y0 ∈ B(x0, ε0) ⊂ K, x̄(·) ∈ SK(x1), y(·) ∈ K(y0) and z(·) ∈ S(y0)
satisfying ||x̄(·)−y(·)||C+ ||x̄(·)−z(·)||C ≤ ε. If such uniform covering condition
holds true, then the inverse set-valued map G−1

y0
defined by

G−1
y0

(ζ) = {ξ | ζ ∈ Gy0
(ξ)}

is pseudo-Lipschitz on a neighbourhood of (z(·)− y(·), y(·)) for all z(·), y(·) as
above. Furthermore L and η of Definition 2.4 do not depend on x̄(·), y(·) and
z(·). That is for some c ≥ 0, η0 > 0, η > 0 and all x1, y0 ∈ B(x0, η0) ⊂ K,
x̄(·) ∈ SK(x1), y(·) ∈ K(y0) and z(·) ∈ S(y0) satisfying ||x̄(·)− y(·)||C + ||x̄(·)−
z(·)||C ≤ η the following inequality holds

distC(y(·);G−1
y0

(0)) ≤ c∥z(·)− y(·)∥C .

This implies Theorem 2.2, because it is enough to choose z(·) ∈ S(x2) and
y(·) ∈ K(x2) satisfying ∥z(·)− x̄(·)∥C + ∥y(·)− x̄(·)∥C ≤ c(x0, η0)|x1 − x2|.

The following lemma allows to check the covering property.

Lemma 2.5 ([13]). Assume (19) - (21), that f is differentiable with respect to x
and x0 ∈ IntK. Then for some α > 0, ε > 0 and σ > 0, for any x1 ∈ B(x0, ε) ⊂
K and x̄(·) ∈ SK(x1) with maxt∈[0,1] dK(x̄(t)) > −α, the following holds true:
if y0 ∈ B(x0, ε), y(·) ∈ K(y0), z(·) ∈ S(y0) are such that ||y(·)− x̄(·)||C+ ||z(·)−
x̄(·)||C ≤ ε, then for any control u(·) satisfying z′(t) = f(t, z(t), u(t)) a.e., there
exist δ > 0, a measurable selection v(t) ∈ co f(t, z(t), U) a.e. in [0, 1] and a
solution w(·) to the linear system

{
w′(t) = ∂f

∂x
(t, z(t), u(t))w(t) + r(t)(v(t)− z′(t)), r(t) ≥ 0 a.e. in [0, 1]

w(0) = 0,
(23)

such that ||w(·)||C ≤ 1
2 ,

max
t∈[0,δ]

dK(y(t)) < 0 and ⟨∇dj(y(t)), w(t)⟩ ≤ −σ ∀ t ∈ (δ, 1], j ∈ J(y(t)).

(24)

Observe that (23) is a linear control system with non negative scalar con-
trols. To check that variations of Gy0

do have a uniform covering property,
consider α, ε, σ as in Lemma 2.5. We may assume that σ < 1 and ε < α

2 .
Let x1, y0 ∈ B (x0, ε), x̄(·) ∈ SK(x1), y(·) ∈ K(y0) and z(·) ∈ S(y0) be such
that ||y(·) − x̄(·)||C + ||z(·) − x̄(·)||C ≤ ε. If maxt∈[0,1] dK(x̄(t)) ≤ −α, then
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y(·) + hBC0
⊂ K(y0) for all sufficiently small h > 0. Hence z(·)− y(·) + hBC0

⊂
Gy0

(B(y(·), h)) and therefore BC0
⊂ G(1)

y0
(y(·), z(·) − y(·)). Consider next the

case maxt∈[0,1] dK(x̄(t)) > −α and let w(·) be as in Lemma 2.5.
By the variational equation of control theory (see for instance [48]), there

exist wh(·) converging uniformly to w(·) as h → 0+ such that z(·) + hwh(·) ∈
S(y0). Let w(·) ∈ C0 be such that ∥w(·)∥C ≤ σ

2 . From (24) we deduce that for
all small h > 0, y(·) + h(wh(·) − w(·)) ∈ K(y0) ∩ BC(y(·), h). Therefore for all
small h > 0,

z(·)− y(·)+hw(·) = z(·)+hwh(·)− (y(·)+h(wh(·)−w(·))) ∈ Gy0
(BC(y(·), h)),

implying that w(·) ∈ G(1)
y0

(y(·), z(·)−y(·)). Thus (22) holds true with ρ replaced
by σ

2 . Therefore variations do have the announced uniform covering property.

3. Value Function and Optimal Synthesis

Let ϕ : IRn → IR ∪ {+∞} be an extended-real-valued lower semicontinuous,
bounded from below function and f, U, K be as in the introduction. Consider
the Mayer optimal control problem

minimize {ϕ(x(1)) | x(·) ∈ SK(x0)} (25)

and let V : [0, 1] × IRn → IR ∪ {+∞} be the value function associated to it
by (11). Then x̄(·) ∈ SK(x0) is optimal for the Mayer problem if and only if
V (·, x̄(·)) ≡ const ≠ +∞. Therefore if K = IRn and V ∈ C1, then, by (12), the
set-valued map Λ : [0, 1]× IRn

❀ U given by

Λ(t, x) := {u ∈ U | H(t, x,−V ′
x(t, x)) = ⟨−V ′

x(t, x), f(t, x, u)⟩}

can be seen as an optimal synthesis for the optimal control problem (25). Indeed
a trajectory/control pair (x̄(·), ū(·)) is optimal for (25) if and only if ū(t) ∈
Λ(t, x̄(t)) a.e. Thus the set of optimal trajectories coincides with the set of
trajectories of

x′(t) ∈ f(t, x(t),Λ(t, x(t))) a.e. in [0, 1], x(0) = x0. (26)

If V is not differentiable, but f is sufficiently smooth with respect to x, then it
is still possible to express the optimal synthesis using superdifferentials of the
value function. Recall [33] that the superdifferential of a function g : IRn → IR
at x is a closed convex, possibly empty, subset of IRn defined by

∂+g(x) =

{
p ∈ IRn | lim sup

y→x

g(y)− g(x)− ⟨p, y − x⟩
|y − x| ≤ 0

}
.

Assume next that f is time independent, that f(x, U) is closed and convex
for every x and define for all t ∈ (0, 1) and x ∈ IRn

Λ(t, x) := {u ∈ U | pt + ⟨px, f(x, u)⟩ = 0 ∀ (pt, px) ∈ ∂+V (t, x)}. (27)
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If ∂+V (t, x) = ∅, then we set Λ(t, x) = ∅. Observe that f(x,Λ(t, x)) is closed
and convex (possibly empty) for all t ∈ (0, 1) and x ∈ IRn. From [52, Theorems
4.1 and 4.3], it follows that for smooth enough f and ϕ, the differential inclusion
(26) with Λ(t, x) defined by (27) characterizes all optimal trajectories. There is
no analogue of this result when f is only Lipschitz continuous. Also, in general,
the set-valued map (t, x) ❀ f(x,Λ(t, x)) is not upper semicontinuous.

Directional derivatives of V seem to be better adapted to express “synthesis
equations” for optimal trajectories to encompass problems with Lipschitz dy-
namics and state constraints. For all t ∈ [0, 1), x ∈ K such that V (t, x) ≠ +∞
and all v̄ ∈ IRn the contingent derivative of V at (t, x) in the direction (1, v̄) is
defined by

D↑V (t, x)(1, v̄) := lim inf
h→0+, v→v̄

V (t+ h, x+ hv)− V (t, x)

h
.

We associate to it the set

G(t, x) = {v ∈ f(t, x, U) | D↑V (t, x)(1, v) ≤ 0} .

The proof of the next result is immediate.

Proposition 3.1. Assume that V is locally Lipschitz on [0, 1]×K. Then x(·) ∈
SK(x0) is optimal for the Mayer problem if and only if

x′(t) ∈ G(t, x(t)) a.e. in [0, 1], x(0) = x0. (28)

A refinement of the results of the previous section allows to deduce the fol-
lowing two theorems about the local Lipschitz continuity of the value function.

Theorem 3.2. Assume that ϕ is locally Lipschitz, that for every r > 0 there
exists Lr > 0 such that f(·, ·, u) is Lr−Lipschitz on [0, 1]×B(0, r) for all u ∈ U ,
that f is continuous with respect to u, that the sets f(t, x, U) are closed and
for some γ > 0, supu∈U |f(t, x, u)| ≤ γ(1 + |x|) for all (t, x) ∈ [0, 1] × IRn. If
for every t ∈ [0, 1] and x ∈ ∂K, f(t, x, U) ∩ IntCK(x) ≠ ∅, then V is locally
Lipschitz on [0, 1]×K.

Theorem 3.3. Assume (19) - (21), that f is differentiable with respect to x
and that ϕ is locally Lipschitz. Then V is locally Lipschitz on [0, 1]× Int K.

Theorem 3.2 and Proposition 3.1 allow to characterize all optimal trajec-
tories of the optimal control problem (25) as trajectories of the differential
inclusion (28) when the inward pointing condition is satisfied. The differential
inclusion (28) is not simple to handle because, in general, the set-valued map
G neither has convex values nor it is upper semicontinuous. If K = IRn and
V is semiconcave (see [19] for sufficient conditions for such regularity of V ),
then the set-valued map (t, x) ❀ G(t, x) is upper semicontinuous. However, in
general, for control systems under state constraints V is not semiconcave.
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In conclusion, the optimal synthesis problem presents the same difficulty
than investigation of control systems under state constraints mentioned in the
introduction - it leads to control systems (differential inclusions) having highly
irregular right-hand sides.

An alternative way to characterize optimal trajectories is to consider an
extended constrained control system under an extended state constraint that
we now describe. Below we denote by epi(V ) the epigraph of V defined by

epi(V ) = {(t, x, r) ∈ [0, 1]×K × IR | r ≥ V (t, x)}.

Assume that V (0, x0) < +∞ and consider the following viability problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s′(t) = 1, s(0) = 0

x′(t) = f(t, x(t), u(t)), u(t) ∈ U a.e. in [0, 1], x(0) = x0

z′(t) = 0, z(0) = V (0, x0)

(s(t), x(t), z(t)) ∈ epi(V ) for all t ∈ [0, 1].
(29)

Then a trajectory x̄(·) of (1), (2) is optimal for the Mayer problem (25) if and
only if for some real-valued absolutely continuous functions s(·) and z(·) defined
on [0, 1], the triple (s(·), x̄(·), z(·)) satisfies (29).

Observe that if (20) holds true and f(t, x, U) is convex for every (t, x) ∈
[0, 1] × IRn, then V is lower semicontinuous and therefore epi(V ) is a closed
set. The viability problem (29) is a new control system under a state constraint
where two very simply evolving variables (s, z) were added. Such transforma-
tions, introduced in [3], now became standard in various applications of viability
theory.

It is worth to underline that algorithms for solving (12) approximate numer-
ically the value function and optimal controls, but not super/subdifferentials.
Note that once a viable trajectory of (29) has been found, an optimal control
can be associated to it by a measurable selection theorem.

Regular optimal synthesis should not be expected for general nonlinear con-
trol systems. However a locally Lipschitz continuous approximate optimal syn-
thesis can be derived via non smooth analysis techniques, see [29].

4. Value Function and Maximum Principle

Let ϕ : IRn → IR be locally Lipschitz and f, U, K be as in the introduction.
Consider again the Mayer minimization problem (25). This section illustrates
how Lemma 2.5, Theorem 3.3 and arguments of convex analysis can be applied
to derive a normal first order necessary optimality condition involving the gen-
eralized gradient of V (0, ·) at x0 ∈ IntK. The result we state below is by no
means the most general. Notations ∂ϕ(x0) and ∂xV (0, x0) stand respectively
for the Clarke generalized gradient of ϕ and of V (0, ·) at x0.
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Let NBV ([0, 1]; IRn) (Normalized Bounded Variations) denote the space of
functions ψ : [0, 1] → IRn of bounded variation on [0, 1], continuous from the
right on (0, 1) and such that ψ(0) = 0. The norm of ψ(·) ∈ NBV ([0, 1]; IRn),
∥ψ∥TV , is the total variation of ψ(·) on [0, 1].

Theorem 4.1 ([27]). Assume (19) - (21), that f is differentiable with respect
to x and let x0 ∈ IntK. If x̄(·) ∈ SK(x0) is optimal for problem (25) and
ū(·) is a control corresponding to x̄(·), then there exist ψ(·) ∈ NBV ([0, 1]; IRn)
and p(·) ∈ W 1,1([0, 1]; IRn) satisfying the adjoint equation (13), the maximum
principle (14), the transversality condition −p(1)−ψ(1) ∈ ∂ϕ(x̄(1)) and linked
to the value function by the inclusion

−p(0) ∈ ∂xV (0, x0). (30)

Furthermore ψ(·) satisfies (16) for a positive (scalar) Radon measure µ on [0, 1]
and a Borel measurable ν(·) : [0, 1] → IRn as in (15).

It follows from [14], that for a state constraint K with smooth boundary
and under more general assumptions on f , −p(t)− ψ(t) ∈ ∂xV (t, x̄(t)) for a.e.
t ∈ [0, 1] satisfying x̄(t) ∈ IntK and also that a related inclusion holds true for
a.e. t ∈ [0, 1] such that x̄(t) ∈ ∂K.

Sketch of proof of Theorem 4.1. By Theorem 3.3, V is locally Lipschitz on
[0, 1]× Int K. Consider the linearized control system

w′(t) =
∂f

∂x
(t, x̄(t), ū(t))w(t) + v(t), v(t) ∈ Tcof(t,x̄(t),U)(f(t, x̄(t), ū(t))) a.e.

(31)
and define the convex sets

SL =
{
w(·) ∈ W 1,1([0, 1]; IRn) | w(·) is a trajectory of (31)

}
,

KL = {w(·) ∈ C | w(t) ∈ CK(x̄(t)) ∀ t ∈ [0, 1]}.

Then IntKL = {w(·) ∈ C |w(t) ∈ IntCK(x̄(t)) ∀ t ∈ [0, 1]}. As in Lemma 2.5,
it can be shown that for every θ ∈ IRn there exists w(·) ∈ SL∩ IntKL such that
w(0) = θ. Recall that the Clarke directional derivative of a locally Lipschitz
function g : IRn → IR at y0 ∈ IRn in the direction θ is defined by

g0(y0)(θ) = lim sup
y→y0, h→0+

g(y + hθ)− g(y)

h
.

Let V 0
x (0, x0)(θ) be defined as above for g(·) = V (0, ·), y0 = x0 and let w(·) ∈

SL∩ IntKL. Consider any sequence hi → 0+. By the variational inclusion from
[48] there exist xi(·) ∈ S(x0 + hiw(0)) such that xi(·)−x̄(·)

hi
converges uniformly

to w(·) when i → ∞. Then for all large i, xi(·) ∈ SK(x0 + hiw(0)). Since V
is nondecreasing along viable trajectories, it follows that ϕ(xi(1)) ≥ V (0, x0 +
hiw(0)). Therefore, from the optimality of x̄(·) we deduce that ϕ0(x̄(1))(w(1))+
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V 0
x (0, x0)(−w(0)) ≥ 0. Denoting by clSL the closure of SL in the space C, we

obtain

ϕ0(x̄(1))(w(1)) + V 0
x (0, x0)(−w(0)) ≥ 0 ∀ w(·) ∈ clSL ∩ Int KL. (32)

Define the linear operator γ : C → IRn × IRn by γ(x(·)) = (x(0), x(1)) for all
x(·) ∈ C. For a subset E ⊂ C, let [E ]+ denote its positive polar cone. Inequality
(32) implies that for some a ∈ −∂xV (0, x0) and b ∈ ∂ϕ(x̄(1)) we have γ∗(a, b) ∈
[clSL ∩ IntKL]+ = [clSL]+ + [KL]+. Hence for some β ∈ [KL]+

γ∗(a, b)− β ∈ [clSL]+. (33)

Using [74] it can be deduced that there exists ψ(·) ∈ NBV ([0, 1]; IRn) satisfying
(16) for a positive (scalar) Radon measure µ on [0, 1] and a Borel measurable

ν(·) : [0, 1] → IRn as in (15) such that for every x(·) ∈ C, β(x) =
∫ 1
0 x(t)dψ(t)

(the Stieltjes integral) and ∥β∥ = ∥ψ∥TV (see [27] for details). Observe that SL

is the set of trajectories of a linear control system without state constraint. A
direct analysis of (33) allows to conclude that b = −p(1) − ψ(1) and a = p(0)
for some p(·) as in (13), (14). ✷

Remark 4.2. The derived necessary optimality condition is normal. Assump-
tion (21) yields SL ∩ IntKL ≠ ∅. Without assuming (21) this intersection may
be empty. Still a necessary optimality condition can be obtained by applying
the separation theorem to the convex sets SL and IntKL. The necessary con-
dition is then abnormal (λ = 0) and p(0) = 0 (see [27, Proof of Theorem 3.4],
where a similar result was derived for a differential inclusion under state and
end point constraints).

• Maximum principle of the Bolza problem. In the next section we shall
use the maximum principle of a Bolza optimal control problem under state and
end point constraints that we recall now. For every x(·) ∈ SK(x0) let us denote
by U(x(·)) the set of all controls corresponding to x(·), that is u(·) ∈ U(x(·))
if and only if u : [0, 1] → U is Lebesgue measurable and x′(t) = f(t, x(t), u(t))
a.e.

Let K1 ⊂ IRn and ℓ : [0, 1] × IRn × U → IR. Consider the minimization
problem

min{ϕ(x(1)) +
∫ 1

0
ℓ(s, x(s), u(s))ds |x(·) ∈ SK(x0), u(·) ∈ U(x(·)), x(1) ∈ K1}.

(34)

Denote by M(n× n) the set of n× n matrices and for every λ ≥ 0, define the
Hamiltonian Hλ : [0, 1]× IRn × IRn → IR ∪ {+∞} of the Bolza problem by

Hλ(t, x, p) = sup
u∈U

(⟨p, f(t, x, u)⟩ − λℓ(t, x, u)).
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Definition 4.3. A trajectory/control pair (x̄(·), ū(·)) of (1), (2) with x̄(1) ∈ K1

satisfies the maximum principle (of problem (34)) if there exist λ ∈ {0, 1},
ψ(·) ∈ NBV ([0, 1]; IRn) and p(·) ∈ W 1,1([0, 1]; IRn) not vanishing simultane-
ously such that for some π1 ∈ IRn and some integrable A(·) : [0, 1] → M(n×n),
π(·) : [0, 1] → IRn

−p′(t) = A(t)∗(p(t) + ψ(t))− λπ(t) a.e. in [0, 1], (35)

−p(1)− ψ(1) ∈ λπ1 +NK1
(x̄(1)), (36)

⟨p(t) + ψ(t), f(t, x̄(t), ū(t))⟩ − λℓ(t, x̄(t), ū(t)) = Hλ(t, x̄(t), p(t) + ψ(t)) a.e.
(37)

and (16) holds true for a positive (scalar) Radon measure µ on [0, 1] and a Borel
measurable ν(·) : [0, 1] → IRn satisfying (15). The maximum principle is called
normal if λ = 1.

Remark 4.4. If there exist ε > 0 and k(·) ∈ L1(0, 1) such that f(t, ·, u)
and ℓ(t, ·, u) are k(t)−Lipschitz on B(x̄(t), ε) for a.e. t ∈ [0, 1] and all u ∈
U , then under some mild regularity assumptions on f and ℓ, every optimal
trajectory/control pair (x̄(·), ū(·)) satisfies the maximum principle of Definition
4.3 for some A(t) ∈ ∂xf(t, x̄(t), ū(t)) (generalized Jacobian of f(t, ·, ū(t)) at
x̄(t)), π(t) ∈ ∂xℓ(t, x̄(t), ū(t)) (generalized gradient of ℓ(t, ·, ū(t)) at x̄(t)), π1 ∈
∂ϕ(x̄(1)) and some (λ, p,ψ) ≠ 0 (see [82]).

Furthermore, some other maximum principles that differ only in the adjoint
equation (having the Hamiltonian or the Euler-Lagrange form) can be rewritten
with the adjoint equation like (35). For instance, if p(·) ∈ W 1,1([0, 1]; IRn) and
k(·) ∈ L1([0, 1]; IR+), are such that |p′(t)| ≤ k(t)|p(t) + ψ(t)|+ λk(t) a.e., then
it is not difficult to find A(t) and π(t) not necessarily related to the generalized
Jacobian of f(t, ·, ū(t)) and to the generalized gradient of ℓ(t, ·, ū(t)) such that
A(·) and π(·) are integrable and (35) holds true. This is particularly useful for
deducing normality for other forms of the maximum principle.

• Normality of the maximum principle. We provide next a sufficient con-
dition for normality of the maximum principle of the Bolza problem when
x0 ∈ IntK under the following outward pointing condition

{
∀ r > 0, ∃ σr > 0 such that ∀ t ∈ [0, 1], ∀ x ∈ ∂K ∩B(0, r),

∃ vt,x ∈ co f(t, x, U) satisfying ⟨∇dj(x), vt,x⟩ ≥ σr ∀ j ∈ J(x).
(38)

In Proposition 4.5 below, (38) can be assumed only for x = x̄(t) and all t ∈ [0, 1].
Consider a trajectory/control pair (x̄(·), ū(·)) of (1), (2) satisfying the max-

imum principle (of problem (34)) for some (λ, p,ψ), π1, π(·) and A(·). The
reachable set from zero at time t ∈ [0, 1] of the linear control system

w′(t) = A(t)w(t) + v(t), v(t) ∈ Tcof(t,x̄(t),U)(f(t, x̄(t), ū(t))) a.e. (39)

is a convex cone in IRn defined by

R(t) = {w(t) | w(·) is a trajectory of (39) on [0, t], w(0) = 0}.
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Proposition 4.5. Assume (19), (20), (38). Let x0 ∈ IntK and let a trajec-
tory/control pair (x̄(·), ū(·)) of (1), (2) with x̄(1) ∈ K1 satisfy the maximum
principle for some (λ, p,ψ) ≠ 0 and A(·). Further assume that x̄([0, 1])∩∂K ≠
∅, IntCK1

(x̄(1)) ∩ IntTK(x̄(1)) ≠ ∅ and for t0 = min{t ∈ [0, 1] | x̄(t) ∈ ∂K} we
have IntTK(x̄(t0)) ⊂ R(t0). Then λ = 1.

Proof. As in [53], normality will follow if there exists a solution w(·) to (8) satis-
fying 0 ≠ w(1) ∈ IntCK1

(x̄(1)). Fix any 0 ≠ w1 ∈ IntCK1
(x̄(1))∩IntTK(x̄(1)).

Combining constructions of [53, Corollary 6.4] and [11, Proof of Theorem 3.2]
(made backward in time) we obtain a solution w(·) to (39) defined on [t0, 1]
and satisfying w(1) = w1 and w(t) ∈ IntTK(x̄(t)) for all t ∈ [t0, 1]. Because
IntTK(x̄(t0)) ⊂ R(t0), w(·) can be extended on the time interval [0, t0] by a
solution to (39) in such way that w(0) = 0. Since x̄([0, t0)) ⊂ IntK, the proof
is complete. ✷

When the end point is free, i.e. K1 = IRn, some sufficient inward pointing
conditions for normality can be found in [11, 53, 54]. In [73] for a free end
point optimal control problem the normal maximum principle was derived by
the penalization of a state constraint satisfying the inward pointing condition.

5. Regularity of Optimal Trajectories and

Controls

Consider again the Bolza problem (34). We discuss here regularity (with re-
spect to the time) of trajectories and controls satisfying the normal maximum
principle.

Let the Hamiltonian H1 be defined as in the previous section. Recall that
H1(t, x, ·) is convex and for every q ∈ IRn and u ∈ U satisfying H1(t, x, q) =
⟨q, f(t, x, u)⟩ − ℓ(t, x, u), we have f(t, x, u) ∈ ∂pH1(t, x, q), where ∂pH1(t, x, q)
denotes the subdifferential of H1(t, x, ·) at q. In Proposition 5.1 below we con-
sider only Lipschitz continuous optimal trajectories. A sufficient condition for
the existence of a Lipschitz continuous optimal trajectory for the Bolza problem
can be found for instance in [21, 54]. We also impose some global assumptions
on H1. However most of them can be localized for H1(t, x̄(t), ·), where x̄(·) is a
trajectory of the control system (1), (2) under investigation. Define

M := {(t, x, f(t, x, u), r) | t ∈ [0, 1], x ∈ K, u ∈ U, r ≥ ℓ(t, x, u)}.

Proposition 5.1 ([53]). Assume (19), that M is closed, that H1 is continuous
and that H1(t, x, ·) is differentiable for all (t, x) ∈ [0, 1] × K. Let (x̄(·), ū(·))
satisfy the normal maximum principle for some p(·), ψ(·). If x̄(·) is Lipschitz,
then x̄(·) ∈ C1([0, 1]), the mapping (0, 1) ∋ t 6→ ∂H1

∂p
(t, x̄(t), p(t) + ψ(t)) is

continuous and x̄′(t) = ∂H1

∂p
(t, x̄(t), p(t)+ψ(t)) for every t ∈ (0, 1). Furthermore,

ψ(·) is continuous on (0, 1) provided for every t ∈ (0, 1), x ∈ ∂K and p, q ∈ IRn
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the following implication holds true

⎛

⎜⎝

p− q ∈ NK(x)

H1(t, x, p) = H1(t, x, q)
∂H1

∂p
(t, x, p) = ∂H1

∂p
(t, x, q)

⎞

⎟⎠ =⇒ p = q. (40)

Observe that (40) is satisfied, in particular, when ∂H1

∂p
(t, x, ·) is strictly

monotone in the directions normal to K at every x ∈ ∂K, i.e. when for ev-
ery t ∈ (0, 1) and all p ≠ q ∈ IRn satisfying p− q ∈ NK(x) we have

〈
∂H1

∂p
(t, x, p)− ∂H1

∂p
(t, x, q), p− q

〉
> 0.

If for all t, x, the Hamiltonian H1(t, x, ·) is twice differentiable and has strictly
positive second derivative, then the last inequality is satisfied for all p ≠ q ∈ IRn.

Note that if ∂H1

∂p
is continuous, then every x̄(·) satisfying the normal maxi-

mum principle (for some control ū(·)) is Lipschitz continuous. The next theorem
provides a sufficient condition for the absolute continuity of the mapping ψ(·)
on (0, 1).

Theorem 5.2 ([53]). Assume (19), that M is closed, H1 is continuous,
H1(t, x, ·) is differentiable for all (t, x) ∈ [0, 1] × K and ∂H1

∂p
is locally Lips-

chitz on [0, 1]×K × IRn. Further assume that for every t ∈ (0, 1), x ∈ ∂K and
p, q ∈ IRn the implication (40) holds true and that for every r > 0 there exist
kr > 0 and ε > 0 such that for all t ∈ [0, 1], x ∈ ∂K∩B(0, r) and p, q ∈ B(0, r)
we have

(p−q ∈ NK(x)∩B(0, ε)) =⇒
〈
∂H1

∂p
(t, x, p)− ∂H1

∂p
(t, x, q), p− q

〉
≥ kr|p−q|2.

If (x̄(·), ū(·)) satisfy the normal maximum principle for some p(·), ψ(·), then
ψ(·) is absolutely continuous on (0, 1) and x̄′(·) is absolutely continuous on
[0, 1].

Moreover, if p(·) is Lipschitz, then ψ(·) is Lipschitz on (0, 1) and x̄′(·) is
Lipschitz on [0, 1].

The coercivity assumption of the above theorem is automatically satisfied

for all p, q ∈ B(0, r) if H1(t, x, ·) is twice differentiable, ∂2H1

∂p2 is continuous

and ∂2H1

∂p2 (t, x, ·) > 0 for all (t, x) ∈ [0, 1] × ∂K. Observe that p(·) is Lipschitz

whenever A(·) and π(·) of the maximum principle are essentially bounded.
The proof of the above theorem relies on an induction argument devel-

oped in [62] for linear control systems, convex Lagrangian ℓ and convex state
constraints. Some sufficient conditions for Hölder continuity of derivatives of
optimal trajectories can be found in [12] and [78].
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Corollary 5.3. Under all the assumptions of Theorem 5.2, suppose that H1 is
locally Lipschitz. If (x̄(·), ū(·)) satisfy the normal maximum principle for some
p(·), ψ(·), then there exists an absolutely continuous function φ : [0, 1] → IR
such that φ(t) = ℓ(t, x̄(t), ū(t)) a.e. Moreover if p(·) is Lipschitz, then φ(·) is
Lipschitz.

By Theorem 5.2, φ(·) defined by φ(t) = ⟨p(t)+ψ(t), x̄′(t)⟩−H1(t, x̄(t), p(t)+
ψ(t)) for t ∈ (0, 1) and φ(0) = φ(0+), φ(1) = φ(1−) is absolutely continuous.
Furthermore, by (37), φ(t) = ℓ(t, x̄(t), ū(t)) a.e. in [0, 1] implying the above
Corollary.

Regularity of ψ(·), p(·) and x̄′(·) helps to study regularity of optimal controls
with respect to the time.

Proposition 5.4. Assume that U is a closed convex subset of IRm, that f, ℓ are
defined on [0, 1]× IRn× IRm and are continuous, and that f(t, x, ·), ℓ(t, x, ·) are
differentiable for all (t, x) ∈ [0, 1]×K. Define H : [0, 1]× IRn × IRn × IRm → IR
by

H(t, x, p, u) := ⟨p, f(t, x, u)⟩ − ℓ(t, x, u).

If for some Φ : IR+ × IR+ → IR satisfying limk→+∞
Φ(k,r)

k
= +∞ for every

r > 0,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i) ℓ(t, x, u) ≥ Φ(|f(t, x, u)|, r) ∀ (t, x) ∈ [0, 1]× (K ∩B(0, r)), r > 0, u ∈ U ;

ii) lim|u|→+∞

(
inf(t,x)∈[0,1]×(K∩B(0,r)) ℓ(t, x, u)

)
= +∞ ∀ r > 0;

iii) ∀ (t, x, p) ∈ [0, 1]×K × IRn, ∀ u1, u2 ∈ U with u1 ≠ u2,
〈
∂H
∂u

(t, x, p, u1)− ∂H
∂u

(t, x, p, u2), u2 − u1

〉
> 0,

then for every (t, x, p) ∈ [0, 1] × K × IRn, there exists a unique v(t, x, p) ∈ U
such that H1(t, x, p) = H(t, x, p, v(t, x, p)). Furthermore H1(·, ·, ·) and v(·, ·, ·)
are continuous.

Corollary 5.5. Under all the assumptions of Proposition 5.4, let (x̄(·), ū(·))
satisfy the normal maximum principle for some p(·), ψ(·). If ψ(·) is continuous
on (0, 1), then there exists a continuous mapping u0(·) : [0, 1] → U such that
u0(·) = ū(·) a.e. in [0, 1]. Consequently x̄(·) is Lipschitz.

Furthermore, if v(·, ·, ·) is locally Lipschitz on [0, 1] × K × IRn and ψ(·) is
absolutely continuous on (0, 1), then u0(·) is absolutely continuous and if p(·)
is Lipschitz and ψ(·) is Lipschitz on (0, 1), then u0(·) is Lipschitz.

Proof. By Proposition 5.4, for every t ∈ (0, 1) there exists a unique u0(t) :=
v(t, x̄(t), p(t) + ψ(t)) ∈ U with H(t, x̄(t), p(t) + ψ(t), u0(t)) = H1(t, x̄(t), p(t) +

ψ(t)). Let ψ̃(·) ∈ C be such that ψ̃(·) = ψ(·) on (0, 1). Then u0(·) :=

v(·, x̄(·), p(·)+ψ̃(·)) is continuous on [0, 1]. By (37), u0(t) = ū(t) for a.e. t ∈ [0, 1].
The remaining statements follow from the very definition of u0(·). ✷

For f affine with respect to controls, the local Lipschitz continuity of v(·, ·, ·)
follows, for instance, from the assumptions of [78]. For such control systems this



Optimal Control under State Constraints 2937

question is related to Lipschitz continuity of a conjugate function. Assume that
f(t, x, u) = a(t, x) + g(t, x)u for some continuous a : [0, 1] × IRn → IRn and
g : [0, 1] × IRn → M(n×m), where u ∈ IRm and let ℓ : [0, 1] × IRn × IRm → IR
be continuous and convex with respect to the last variable. Consider a closed
convex subset U ⊂ IRm and assume that ℓ(t, x, ·) is differentiable and for all
u1, u2 ∈ U with u1 ≠ u2

〈
∂ℓ

∂u
(t, x, u1)−

∂ℓ

∂u
(t, x, u2), u1 − u2

〉
> 0.

Then all the conclusions of Proposition 5.4 hold true whenever there exists θ :
IR+×IR+ → IR such that for every r > 0, limk→+∞

θ(k,r)
k

= +∞ and ℓ(t, x, u) ≥
θ(|u|, r) for all (t, x) ∈ [0, 1]×(K∩B(0, r)) and u ∈ U . Let ιU (·) be the indicator
function of U and denote by ℓF (t, x, ·) the Fenchel conjugate of ℓ(t, x, ·)+ ιU (·).
Then, by the uniqueness of v(t, x, p), the function y 6→ ℓF (t, x, y) is differentiable

and v(t, x, p) = ∂ℓF

∂y
(t, x, g(t, x)∗p). If ∂ℓF

∂y
(·, ·, ·) is locally Lipschitz and g(·, ·) is

locally Lipschitz, then also v(·, ·, ·) is locally Lipschitz.
When the mapping

[0, 1]×K × IRn ∋ (t, x, q) ❀ Υ(t, x, q) := {u ∈ U | H(t, x, q, u) = H1(t, x, q)}

is multivalued, then it may happen that several controls give rise to the same
trajectory and an optimal control may be discontinuous. If Υ enjoys some reg-
ularity properties, then, taking its selections, it is still possible to deduce the
existence of regular optimal controls from the regularity of p(·)+ψ(·) and x̄(·).
In general however we can not expect Lipschitz and even continuous optimal
controls in the nonlinear case even under assumptions like in Theorem 5.2 guar-
anteing Lipschitz continuity of derivatives of optimal trajectories.
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