
Automorphic Galois representations and the
cohomology of Shimura varieties

Michael Harris
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1. Introduction

Algebraic number theory has benefited immeasurably over the past four decades from the
applications of the methods and results of the Langlands program to the study of Galois
representations attached to automorphic forms. Yet Galois representations do not figure
prominently in Langlands’s original conjectures, apart from the complex Galois representa-
tions that are the object of the Artin conjecture. There seems to be no completely precise
statement in the literature of a Langlands reciprocity conjecture – a bijection between rep-
resentations of Galois groups with values in the ℓ-adic points of reductive groups, subject to
certain natural restrictions (including a version of irreducibility), and of automorphic repre-
sentations of related reductive groups – although number theorists believe there should be
such a conjecture and have a general idea of how it should go. The best general account of
this question is still contained in the expanded version [69] of Taylor’s 2002 ICM talk.

The first objective of the present survey is to describe the results in the direction of
reciprocity obtained since the publication of [69]. Construction of the correspondence in
one direction – from automorphic representations to Galois representations – has progressed
considerably, even in directions that could not have been expected ten years ago. All of
the Galois representations associated to automorphic representations have been constructed,
either directly or by p-adic interpolation, using the cohomology of Shimura varieties. This
source of Galois representations has been or soon will be exhausted, and new methods will
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need to be invented in order to find the Galois representations attached to automorphic rep-
resentations that cannot be related in any way to cohomology of Shimura varieties, notably
the representations of Galois groups of number fields that are not totally real nor CM.

Little was known at the time of [69] regarding the converse direction, the problem of
proving that a given Galois representation ρ is attached to automorphic forms, when dim ρ >
2. Now there is a mature theory of automorphy lifting theorems, in the spirit of the results
developed by Wiles for his proof of Fermat’s Last Theorem, applying in all dimensions.
The attempt to complete this theory represents one of the most active branches of algebraic
number theory, and is largely responsible for the rapid growth of interest in the p-adic local
Langlands program.

Let K be a number field. The Galois group ΓK := Gal(Q/K) acts on the p-adic étale
cohomology of an algebraic variety or motive M defined over K, and this action determines
the L-function L(s,M). Theoretical considerations guarantee that the p-adic Galois repre-
sentations on the cohomology of most algebraic varieties cannot be realized in the cohomol-
ogy of Shimura varieties; for example, the cohomology of a generic hypersurface cannot be
obtained in this way. Present methods, therefore, cannot prove the analytic continuation of
L(s,M) for most motives arising from geometry. When the Galois representation is attached
to an automorphic form, on the other hand, then so is L(s,M), and this implies analytic (or at
least meromorphic) continuation of the latter. Moreover, the conjectures concerned with the
values at integer points of L(s,M) (of Deligne, Beilinson, or Bloch-Kato) can be studied
with the help of automorphic forms. Everything one knows in the direction of the Birch-
Swinnerton-Dyer Conjecture, for example, has been proved by means of this connection.
There has been a great deal of activity in this direction as well, especially in connection with
the growth of the “relative” theory of automorphic forms (the relative trace formula and con-
jectures of Gan-Gross-Prasad, Ichino-Ikeda, and Sakellaridis-Venkatesh). The second part
of this paper reviews some of the recent results on special values of L-functions.

The conjectures on special values of complex L-functions are accompanied by conjec-
tures on the existence of p-adic analytic functions interpolating their normalized special
values. The article concludes with a few speculative remarks about automorphic p-adic L-
functions.

2. Automorphic forms and Galois representations

2.1. Construction of automorphic Galois representations. Class field theory classifies
abelian extensions of a number field K in terms of the the structure of the idèle class group
GL(1,K)\GL(1,AK). In doing so it also identifies 1-dimensional representations of ΓK

with continuous characters of the idèle class group. Non-abelian class field theory can be
traced back to the 1950s, when Eichler and Shimura realized that 2-dimensional ℓ-adic Ga-
lois representations could be attached to classical cusp forms that are eigenvalues of the
Hecke algebra. A conjectural classification of n-dimensional ℓ-adic Galois representations,
in terms of the Langlands program, was formulated in Taylor’s 2002 ICM talk (cf. [69]). We
review this conjecture quickly. For any finite set S of places of K, let ΓK,S be the Galois
group of the maximal extension of K unramified outside S. Taylor adopts the framework
of Fontaine and Mazur, who restrict their attention in [25] to continuous representations
ρ : ΓK → GL(n,Qℓ) satisfying the following two axioms:
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1. ρ factors through ΓK,S for some finite set S of places of K (usually containing the
primes dividing ℓ);

2. For all primes v of K of residue characteristic ℓ, the restriction of ρ to a decomposition
group Gv ⊂ ΓK at v is de Rham in the sense of Fontaine.

A ρ satisfying these two conditions is either called geometric or algebraic, depend-
ing on the context. Condition (1) guarantees that, at all but finitely many primes v of
K, the restriction ρv of ρ to a decomposition group Gv is determined up to equivalence,
and up to semisimplification, by the characteristic polynomial Pv(ρ, T ) of the conjugacy
class ρ(Frobv) ∈ GL(n,Qℓ). One of the Fontaine-Mazur conjectures implies that there
is a number field E such that all Pv(ρ, T ) have coefficients in E; by choosing an embed-
ding ι : E ↪→ C we may thus define Pv(ρ, T ) as a polynomial of degree n in C[T ] with
non-vanishing constant term. The set of such polynomials is in bijection with the set of
(equivalence classes of) irreducible smooth representations Πv of GL(n,Kv) that are spher-
ical: the space of vectors in Πv that are invariant under the maximal compact subgroup
GL(n,Ov) ⊂ GL(n,Kv), where Ov is the ring of integers in Kv , is non-trivial and nec-
essarily one-dimensional. We let Πv(ρ) be the spherical representation corresponding to
Pv(ρ, T ).

An irreducible representation Πv(ρ) of GL(n,Kv) can be attached to ρ for primes v ∈ S
as well. If v is not of residue characteristic ℓ, the restriction of ρ to Gv gives rise by a simple
procedure to an n-dimensional representation WD(ρ, v) of the Weil-Deligne group WDv

at v. The local Langlands correspondence [41, 43] is a bijection between n-dimensional
representations of WDv and irreducible smooth representations of GL(n,Kv), and we ob-
tain Πv(ρ) using this bijection. If v divides ℓ, condition (2) allows us to define WD(ρ, v)
by means of Fontaine’s Dpst functor. Fontaine’s construction also provides a set of Hodge-
Tate numbers HT (ρ, v) for each archimedean prime v. This datum, together with the action
of a complex conjugation cv in a decomposition group Gv when v is a real prime, defines
an n-dimensional representation ρv of the local Weil group Wv , and thus an irreducible
(gv, Uv)-module Πv(ρ), where gv is the (complexified) Lie algebra of G(Kv) and Uv is
a maximal compact subgroup of G(Kv). We let Π(ρ) denote the restricted direct product
(with respect to the GL(n,Ov)-invariant vectors at finite primes outside S) of the Πv(ρ), as
v ranges over all places of K.

If v is an archimedean place of K, the Harish-Chandra homomorphism identifies the
center Z(gv) with the symmetric algebra of a Cartan subalgebra tv ⊂ gv . The maximal
ideals of Z(gv) are in bijection with linear maps Hom(t,C). The infinitesimal character of
an irreducible (gv, Uv)-module Πv is the character defining the action of Z(gv) on Πv; its
kernel is a maximal ideal of Z(gv), and thus determines a linear map λΠv ∈ Hom(tv,C). In
[17], Clozel defines an irreducible (gv, Uv)-module Πv to be algebraic if λΠv belongs to the
lattice in Hom(tv,C) spanned by the highest weights of finite-dimensional representations.
Denote by | • |v the v-adic absolute value, | • |A the adele norm. The following corresponds
to Conjectures 3.4 and 3.5 of [69].

Conjecture 2.1.

(1) Let ρ : ΓK → GL(n,Qℓ) be an irreducible geometric Galois representation. Then
the local component

Πv(ρ)

(
1− n

2

)
:= Πv(ρ)⊗ | • |

1−n
2

v ◦ det
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is algebraic at each archimedean prime v of K, and the representation Πv(ρ) of
GL(n,AK) occurs in the space of cusp forms on GL(n,K)\GL(n,AK).

(2) Conversely, let Π be a cuspidal automorphic representation of GL(n,AK). Suppose
Πv(

1−n
2 ) is algebraic for every archimedean place v of K. Then for each prime ℓ,

there exists an irreducible geometric n-dimensional representation

ρℓ,Π : ΓK → GL(n,Qℓ)

such that
Π

(
1− n

2

)
:= Π⊗ | • |

1−n
2

A ◦ det ∼−→ Π(ρℓ,Π).

The Galois representations ρℓ,Π are called automorphic.1 Quite a lot is known about
this conjecture when K is either a CM field or a totally real field, almost exclusively in
the regular case, when λΠ is the infinitesimal character of an irreducible finite-dimensional
representation of G(Kv) for all archimedean v. Let S be a finite set of primes of K, let ρ
be an n-dimensional ℓ-adic representation of ΓK , and say that Π and ρℓ correspond away
from S if Πv = Πv(ρ) for v /∈ S. The following theorem represents the current state of
knowledge regarding part (b) of Conjecture 2.1; part (a) will be treated in the next section.
In its details it may already be obsolete by the time of publication.

Theorem 2.2. Let K be a CM field or a totally real field. Let Π be a cuspidal automorphic
representation of GL(n,AK). Suppose Πv is algebraic and regular for every archimedean
place v of K.

(a) Let S be the set of finite primes at which Π is ramified. If ℓ is a rational prime, let S(ℓ)
denote the union of S with the set of primes of K dividing ℓ. For each prime ℓ, there
exists a completely reducible geometric n-dimensional representation

ρℓ,Π : ΓK → GL(n,Qℓ)

such that Π( 1−n
2 ) and ρℓ,Π correspond away from S(ℓ).

(b) Suppose Π is polarized, in the following sense:

(1) If K is a CM field,
Π∨

∼−→ Πc,

where c denotes the action of complex conjugation acting on K

(2) If K is totally real,
Π∨

∼−→ Π⊗ ω

for some Hecke character ω of GL(1,AK).

Here ∨ denotes contragredient. Then there is a compatible family of n-dimensional
representations ρℓ,Π satisfying (b) of 2.1. Moreover, ρℓ,Π is de Rham, in the sense of
Fontaine, at all primes v dividing ℓ.

1When G is a reductive algebraic group, Buzzard and Gee have conjectured a correspondence between auto-
morphic representations of G that satisfy an algebraicity condition at archimedean places and compatible systems
of ℓ-adic representations with values in the Langlands L-group of G [9]. The relation of this conjecture with
Conjecture 2.1 is a bit subtle; two different algebraicity conditions are relevant to the conjecture.
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2.1.1. p-adic approximation. To forestall certain kinds of cognitive dissonance, we switch
from ℓ-adic to p-adic representations in this section. Part (b) of Theorem 2.2 has been proved
over the course of several decades by a number of people. For general n-dimensional repre-
sentations, the most relevant references are [17, 41, 48] for work before the proof by Laumon
and Ngô of the Fundamental Lemma; and [16, 19, 20, 51, 56, 62, 64] for results based on the
Fundamental Lemma. I refer the reader to the discussion in [35], and take this opportunity to
insist on the centrality of Labesse’s results in [51] and earlier papers, which are inexplicably
omitted from some accounts.2

Under the polarization hypothesis of case (b), most ρp,Π are realized in the cohomol-
ogy of Shimura varieties S(G) attached to appropriate unitary groups G. Some important
representations are nevertheless missing when n is even. To complete the proof of (b), the
missing representations are constructed by p-adic approximation. One needs to show that Π
is in some sense the limit of a sequence of Πi that do satisfy the strong regularity hypothe-
sis3 For n = 2 two approximation methods had been applied: Wiles used the ideas due to
Hida, while Taylor obtained the most complete results by adapting ideas of Ribet. In the
intervening years, the theory of eigenvarieties, which originated in the work of Coleman and
Mazur, had been developed to define p-adic famiies of automorphic forms in a very general
setting. Chenevier’s thesis [14] generalized the approximation method of Wiles to attach
p-adic Galois representations of dimension n > 2 to non-ordinary Π, using eigenvarieties.
Its extension in the book [6] with Bellaïche, and the subsequent article [15] were almost
sufficient to construct the missing ρp,Π as the limit of ρp,Πi as above. The final steps in the
construction, and the proofs of most of the local properties of 2.1, were carried out in [16],
using a descent argument introduced by Blasius and Ramakrishnan in [8] and extended by
Sorensen in [65]. The remaining local properties – determination of local ℓ-adic and p-adic
monodromy of ρp,Π were not known when [35] was written; they were obtained in most
cases in [4] and completed in [12, 13].

Part (a) of Theorem 2.2 is much more recent. The first result of this type was obtained
for GL(2) over imaginary quadratic fields by Taylor in [67], following his joint work [40]
with Soudry and the author; this was extended to general CM fields by Mok [54]. The proof
of part (a) in [38] starts with an old idea of Clozel. Let K be a CM field and let K+ ⊂ K be
the fixed field under complex conjugation. Let Gn be the unitary group of a 2n-dimensional
hermitian space over K, and assume Gn is quasi split. Then Gn, viewed by restriction of
scalars as an algebraic group over Q, contains a maximal parabolic subgroup Pn with Levi
factor isomorphic to RK/QGL(n)K . Let S(n,K) be the locally symmetric space attached
to GL(n,AK). Since K is a CM field, S(n,K) is not an algebraic variety, and therefore its
ℓ-adic cohomology does not carry a representation of any Galois group. If Π is a cuspidal
automorphic representation of GL(n,AK) that is polarized, then the twisted trace formula
attaches to Π a collection (an L-packet) of automorphic representations of the unitary group
G mentioned above; thus Π transfers to the cohomology of the S(G), and this is where the
Galois representation is realized (in nearly all cases).

When Π is not polarized, one uses the theory of Eisenstein series for the parabolic group

2Although complete base change from unitary groups remains to be established (the quasi-split case has recently
been treated in [55]), Labesse proved the basic properties in the case of cohomological representations, without
which the proof of Theorem 2.2 would have been impossible.

3Strictly speaking, the limits discussed here are taken relative to the Zariski topology on appropriate eigenva-
rieties, so the term “p-adic limit" would not be quite appropriate. In many cases the missing representations can
indeed be obtained as actual limits in the p-adic topology, but as far as I know these cases have not been given an
intrinsic characterization.
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Pn to attach a family E(s,Π) of automorphic representations of Gn, with s ∈ C. Up to
twisting Π by a positive integral power of the norm, we may assume E(s,Π) is regular at 0
and write E(Π) = E(0,Π). Then E(Π) is also cohomological and (for nearly all positive
integral twists) defines a non-trivial class in the cohomology of the Shimura variety S(Gn)
attached to (the unitary similitude group of) Gn. The realization in p-adic étale cohomology
of this Eisenstein class then defines a p-adic Galois representation. However, it is easy to see
that the semisimplification of this representation is a sum of abelian characters, and therefore
it cannot be used to construct the desired ρp,Π.

Some years later, Skinner (and independently Urban) revived Clozel’s idea by suggest-
ing that E(Π) might be realized as the limit in a p-adic family of a sequence of cuspidal
cohomological automorphic representations τi of Gn. One then considers the collection of
2n-dimensional representations ρp,τi . The symbol χE(Π) = limi trρp,τi then makes sense
as a Qp-valued function on ΓK,S for appropriate S, and because it is the limit of traces of
genuine representations it defines a 2n-dimensional pseudorepresentation. The latter notion
is an abstraction of the invariance properties of the character of a representation, first con-
structed in the 2-dimensional case by Wiles, then defined by Taylor in general using results
(especially results of Procesi) from invariant theory. Taylor’s theory implies that χE(Π) is
the character of a unique 2n-dimensional representation, and by varying Π among its abelian
twists it can be shown by elementary methods that χE(Π) breaks up as the sum of two n-
dimensional pieces, one of which is the ρp,Π of Theorem 2.2.

The hard part is to obtain E(Π) as the limit of cuspidal τi. What this means is that the
eigenvalues of Hecke operators at primes at which Π is unramified are p-adic limits of the
corresponding Hecke eigenvalues on τi. In [38] this is achieved by realizing E(Π) in a p-
adic cohomology theory that satisfies a short list of desirable properties. The most important
properties are (i) the global cohomology is computed as the hypercohomology in the (rigid)
Zariski topology of the de Rham complex and (ii) the cohomology has a weight filtration,
characterized by the eigenvalues of an appropriate Frobenius operator. The cohomology
theory chosen in [38] is a version of Berthelot’s rigid cohomology (generalizing Monsky-
Washnitzer cohomology). This is calculated on the complement, in the minimal (Baily-
Borel) compactification S(Gn)∗ of S(Gn), of the vanishing locus of lifts (modulo increasing
powers of p) of the Hasse invariant. This complement is affinoid and therefore by (i) the
cohomology can be computed by a complex whose terms are spaces of p-adic modular forms,
in the sense of Katz. By analyzing the finiteness properties of this complex, and using the
density of genuine holomorphic modular forms in the space of p-adic modular forms, [38]
writes E(Π) as the limit of cuspidal τi, as required.

About a year after the results of [38] were announced, Scholze discovered a more flexible
construction based on a very different cohomology theory, the p-adic étale cohomology of
perfectoid spaces. The topological constructions in [38] can in principle also lift torsion
classes in the cohomology of the locally symmetric space attached to GL(n,AK) to torsion
classes in the cohomology of S(Gn), but rigid cohomology cannot detect torsion classes.
The p-adic étale cohomology of perfectoid spaces does not have this defect, and Scholze’s
article [61] not only gives a new and more conceptual proof of the results of [38] but applies
to torsion classes as well. Thus Scholze proved a long-standing conjecture, first formulated
by Ash in [2], that has greatly influenced subsequent speculation on p-adic representations of
general Galois groups. The reader is referred to Scholze’s article in the current proceedings
for more information about his results.
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Restrictions on Galois representations on the cohomology of Shimura varieties. In part
(b) of 2.2 the proof of the deepest local properties of the (polarized) ρp,Π at primes dividing
p were proved by finding representations closely related to ρp,Π (the images under tensor
operations) directly in the cohomology of Shimura varieties. When Π is not polarized, the
ρp,Π are still constructed in [38] and [61] by a limiting process , starting from a family of
ρp,Πi of geometric origin, but there is every reason to believe (see below) that the ρp,Π and its
images under tensor operations will almost never be obtained in the cohomology of Shimura
varieties, and although they are expected to be geometric no one has the slightest idea where
they might arise in the cohomology of algebraic varieties.

Room for improvement. The infinitesimal character λΠ ∈ Hom(tv,C) is regular provided
it is orthogonal to no roots of tv in gv; in other words, if it is contained in the interior of a
Weyl chamber. The regularity hypothesis in Theorem 2.2 can sometimes be relaxed to allow
non-degenerate limits of discrete series, whose infinitesimal characters lie on one or more
walls of a Weyl chamber. The first result of this type is the Deligne-Serre theorem which
attaches (Artin) representations of ΓQ to holomorphic modular forms of weight 1. This has
recently been generalized by Goldring [28] to representations of GL(n) obtained by base
change from holomorphic limits of discrete series of unitary groups.

2.2. Reciprocity. Number theorists can’t complain of a shortage of Galois representations.
The étale cohomology of algebraic varieties over a number field K provides an abundance of
ℓ-adic representations of ΓKsatisfying the two Fontaine-Mazur axioms. One of the Fontaine-
Mazur conjectures predicts that any irreducible representation of ΓK satistying these axioms
is equivalent to a constituent of ℓ-adic cohomology of some (smooth projective) variety V
over K. The reciprocity Conjecture 2.1 (a) has been tested almost exclusively for ρ arising
from geometry in this way. The paradigmatic case in which K = Q and V is an elliptic curve
was discussed in the ICM talks of Wiles (in 1994) and Taylor (in 2002).4 The Fontaine-
Mazur conjecture itself has been solved in almost all 2-dimensional cases when K = Q for
ρ that take complex conjugation to a matrix with determinant −1. Two different proofs have
been given by Kisin and Emerton; both of them take as their starting point the solution by
Khare and Wintenberger of Serre’s conjecture on 2-dimensional modular representations of
ΓQ. All of these results are discussed in a number of places, for example in [24, 46, 47]. I
will therefore concentrate on results valid in any dimension n.

Let ρ : ΓK → GL(n,O) be a continuous representation with coefficients in an ℓ-adic
integer ring O with maximal ideal m and residue field k; let ρ̄ : ΓK → GL(n, k) denote
the reduction of ρ modulo m. We say ρ is residually automorphic if ρ̄ ∼−→ ρ̄ℓ,Π for some
cuspidal automorphic representation Π of GL(n,AK). The method for proving reciprocity
initiated by Wiles consists in proving theorems of the following kind:

Theorem 2.3 (Modularity Lifting Theorem, prototypical statement). Suppose ρ̄ is residually
automorphic. Then every lift of ρ̄ to characteristic zero that satisfies axioms (1) and (2) of
Fontaine-Mazur, as well as

(1) a polarization condition;

(2) conditions on the size of the image of ρ̄ (typically including the hypothesis that ρ̄ is

4The nomenclature associated with the conjecture in this particular case, which predates the Fontaine-Mazur
conjecture, is a matter of considerable sociological and philosophical interest.
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absolutely irreducible); and

(3) ramification conditions at primes dividing ℓ (typically including a regularity hypothe-
sis)

is automorphic. In particular, if ρ itself satisfies conditions (1), (2), and (3), then ρ is
automorphic.

The method for proving such theorems is called the Taylor-Wiles method or the Taylor-
Wiles-Kisin method, depending on context, and is named after its inventors in the setting
when n = 2. The first theorems of this kind for arbitrary n were proved in [21, 70]. Together
with the results of [39] they imply the Sato-Tate theorem for elliptic curves over Q with non-
integral j-invariant (see below). Subsequent improvements have allowed for less restrictive
conditions in (2) and (3). The following theorem of Barnet-Lamb, Gee, Geraghty, and Taylor
[3] represents the current state of the art.

Theorem 2.4 (Modularity Lifting Theorem). Let K be a CM field with totally real subfield
K+, and let c ∈ Gal(K/K+) denote complex conjugation. Let ρ be as in 2.3. Suppose
ℓ ≥ 2(n + 1) and K does not contain a primitive ℓ-th root of 1. Suppose ρ satisfies axioms
(1) and (2) of Fontaine-Mazur, as well as

(1) ρc
∼−→ ρ∨ ⊗ µ, where µ is an ℓ-adic character of ΓK+ such that µ(cv) = −1 for

every complex conjugation cv;

(2) The restriction of ρ̄ to ΓK(ζℓ) is absolutely irreducible; and

(3) For any prime v of K dividing ℓ the restriction ρv of ρ to the decomposition group
Γv is potentially diagonalizable and is HT -regular: ρv has n distinct Hodge-Tate
weights.

Suppose ρ is residually automorphic. Then ρ is automorphic.

Remark 2.5. This is not the most general statement – there is a version of this theorem when
K is totally real, and condition (2) can be replaced by adequacy.

Remark 2.6. The first novelty is the simplification of condition (2) on the image of ρ̄:
Thorne showed in [72] that the Taylor-Wiles-Kisin method works when the image of ρ̄ is
what he called adequate, and this condition is implied by the irreducibility condition (2) as
long as ℓ ≥ 2(n + 1). The second novelty in 2.4 is the notion of potential diagonalizabil-
ity. This is roughly the requirement that, after a finite base change, ρv , for v dividing ℓ, is
crystalline and can be deformed in a moduli space of crystalline representations to a sum of
characters. It is known that ρv in the Fontaine-Laffaille range (the setting of [21, 70]) and
ordinary ρv (the setting of [5, 27]) are potentially diagonalizable, but the condition is more
general. In particular, it is preserved under finite ramified base change, which allows for
considerable flexibility.

2.3. Potential automorphy. The need to assume residual automorphy places important re-
strictions on the application of theorems on the model of 2.3 to reciprocity. For some appli-
cations, however, it is enough to know that a given ρ is potentially residually automorphic:
that ρ becomes residually automorphic after base change to an unspecified totally real or CM
Galois extension K ′/K. One can then often use a modularity lifting theorem to prove that
ρ | ΓK′ is automorphic, in other words that ρ is potentially automorphic. If ρ is attached to
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a motive M , then L(s, ρ) = L(s,M) is given by an Euler product that converges absolutely
in some right half-plane. An application of Brauer’s theorem on induced characters then
implies that L(s, ρ) has a meromorphic continuation to the entire plane, and moreover (by a
theorem due to Shahidi and to Jacquet-Piatetski-Shapiro-Shalika) that L(s, ρ) has no zeroes
down to the right-hand edge of the critical strip.

Potential automorphy was introduced by Taylor in [68] in order to prove a potential
version of the Fontaine-Mazur conjecture for 2-dimensional Galois representations. The
method was generalized to higher dimensions in [39] and in subsequent work of Barnet-
Lamb. The idea is the following. A theorem of the form 2.3 can be applied to an ℓ-adic
ρ that is residually automorphic. But it can also be applied if ρ = ρℓ is a member of a
compatible family {ρℓ′} of ℓ′-adic representations, where ℓ′ varies over all primes, provided
at least one ρℓ1 in the family is known to be residually automorphic. It thus suffices to find a
motive M of rank n such that

Hypothesis 2.7. ρ̄ℓ,M ≃ ρ̄ and ρ̄ℓ1,M is known a priori to be residually automorphic for
some ℓ1 ̸= ℓ.

Typically one assumes ρ̄ℓ′,M is induced from an algebraic Hecke character. The motives
used in [39] are the invariants Mt, under a natural group action, in the middle-dimensional
cohomology of the n−1-dimensional hypersurfaces Xt with equation (depending on t, with
tn+1 ∈ P1 \ {0, 1,∞} )

ft(X0, . . . , Xn) = (Xn+1
0 + · · ·+Xn+1

n )− (n+ 1)tX0 . . . Xn = 0 (2.1)

This Dwork family of hypersurfaces was known to physicists for their role in the calculations
that led to the formulation of the mirror symmetry conjectures [11]; and they were known
to number theorists because Dwork had studied their cohomology in connection with p-adic
periods.

The isomorphism class of Xt depends on tn+1 and one sees that their cohomology de-
fines a hypergeometric local system over P1 \ {0, 1,∞}. Properties of this local system
proved by a number of people, are used, together with a “local-global principle" due to
Moret-Bailly, to find a t over a totally real (or CM) Galois extension K ′/K such that Mt

satisfies Hypothesis 2.7.
Applying the method of potential automorphy is not always automatic. One has to satisfy

the conditions of Moret-Bailly’s theorem as well as conditions (1), (2), and (3) of 2.3. More
details can be found in [35] (which was written, however, before the simplifications of [72]
and [3]). Here are a few applications:

Theorem 2.8. Let K = Q and let Π be a cuspidal holomorphic automorphic representation
of GL(2)Q (attached to an elliptic modular form of weight k ≥ 2, say) to which one can
associate a compatible family of 2-dimensional ℓ-adic representations ρℓ,Π. Suppose Π is
not obtained by automorphic induction from a Hecke character of an imaginary quadratic
field. Then Symnρℓ,Π is potentially automorphic for all n ≥ 1.

This theorem was proved first when k = 2 in [21, 39, 70], assuming Πv is a Steinberg
representation for some v. This hypothesis was dropped, and was generalized to all k in [5].
It follows from the arguments of Serre in [63] and from the non-vanishing of L(s, Symnρ)
mentioned above, that this implies the Sato-Tate conjecture for elliptic modular forms [5, 21,
39, 70]:
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Theorem 2.9. Let f be an elliptic modular newform of weight k for Γ0(N) (for some N ),
and assume the ℓ-adic Galois representations ρℓ,f attached to f are not dihedral. For any
prime p not dividing N , let ap(f) denote the eigenvalue of the normalized Hecke operator
at p on f . Let ãp(f) = ap(f)/2p

k−1
2 , which is known to be a real number in the interval

[−1, 1]. As p varies, the ãp(f) are equidistributed in [−1, 1] for the measure
√
1− t2dt.

In particular, if E is an elliptic curve over Q without complex multiplication, and 1+p−
ap(E) is the number of points of E over Fp, then the numbers ap(E)/2p

1
2 are equidistributed

in in [−1, 1] for the measure
√
1− t2dt.

The hypothesis that f has trivial nebentypus (is a form for Γ0(N)) is unnecessary and
was only included to allow for a simple statement. A version of 2.8 for Hilbert modular
forms was proved by Barnet-Lamb, Gee, and Geraghty, and they derived the corresponding
version of Theorem 2.9. All of these results were subsumed in the following theorem of
Patrikis and Taylor [59], a strengthening of one of the main theorems of [3]:

Theorem 2.10. Let K be totally real (resp. CM) and let {rλ} be a weakly compatible
family of λ-adic representations of ΓK (where λ runs over finite places of a number field
M ). Assume the rλ are pure of fixed weight w (the Frobenius eigenvalues at an unramified
place of norm q are Weil q

w
2 -numbers); that they are HT -regular; and that they satisfy an

appropriate polarization condition. Then there is a finite totally real (resp. CM) Galois
extension K ′/K over which the family becomes automorphic.

The Hodge-Tate multiplicities of n-dimensional ℓ-adic representations realized on the
cohomology of the Dwork family are at most 1; moreover, n has to be even, and each Hodge-
Tate weight between 0 and n−1 occurs. Griffiths transversality implies that such a condition
is inevitable when Hodge structures vary in non-trivial families. This appears to restrict
the applicability of the Dwork family to proving potential automorphy. However, it was
observed in [34], and more generally in [5], that it suffices to prove that a given ρℓ,Π becomes
automorphic after tensoring with the Galois representation obtained by induction from an
automorphic Galois character attached to a Hecke character of an appropriate cyclic CM
extension K ′/K. This observation was applied in the proof of 2.9 and more systematically
in [3], in both cases in order to replace the given Hodge-Tate weights of ρ by the set of
weights adapted to the cohomology of the Dwork family.

Remark 2.11. Let f be as in Theorem 2.9 and Π the associated automorphic representation.
Theorem 2.9 is equivalent to the assertion that, as p varies over primes unramified for ρℓ,Π,
the conjugacy classes of ρℓ,f (Frobp), normalized so that all eigenvalues have complex ab-
solute value 1, are equidistributed in the space of conjugacy classes of SU(2). A version of
the Sato-Tate conjecture can be formulated for a general motive M ; SU(2) is replaced by
the derived subgroup of the compact real form of the Mumford-Tate group MT (M) of M .
In order to prove this conjecture for more complicated MT (M) one would have to be able to
prove the corresponding generalization of Theorem 2.8, with the symmetric powers replaced
by the full set of equivalence classes of irreducible representations σ of MT (M)der. But
even if the ℓ-adic representation ρℓ,M attached to M is HT -regular, σ ◦ ρℓ,M is generally
not HT -regular, and thus cannot be obtained by Theorem 2.2. Thus one has no way to start
proving potential automorphy of σ ◦ ρℓ,M once MT (M)0,der is of rank greater than 1.

2.3.1. p-adic realization of very general Galois representations. It was mentioned above
that the proof of 2.2 is completed by a p-adic approximation argument. One says more gen-
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erally that a p-adic representation ρ : ΓK,S → GL(n,Qp) for some S is p-adically auto-
morphic if ρ = limi ρi (for example, in the sense of pseudo-representations, where the limit
can be in the Zariski or in the p-adic topology), where each ρi is an automorphic Galois rep-
resentation of ΓK,S . The theory of eigenvarieties shows that p-adically automorphic Galois
representations vary in p-adic analytic families. The representations ρp,Π of 2.2 are HT -
regular because Π is cohomological, but analytic families of p-adically automorphic Galois
representations can specialize to representations that are Hodge-Tate but not regular, and to
representations that are not Hodge-Tate at all.

One can ask whether a given ρ is p-adically automorphic. There are discrete obstructions;
for example the set of ramified primes is finite in any p-adic family. There are also sign
obstructions. The 2-dimensional Galois representations ρℓ,f attached to an elliptic modular
form f are odd: det ρℓ,f (c) = −1 when c is complex conjugation. In other words, no
representation ρ for which det ρℓ,f (c) = 1 can be obtained in the cohomology of a Shimura
variety. The signature of complex conjugation is constant on p-adic analytic families of
Galois representations, and therefore represents an obstruction to realizing such an even
representation as a p-adically automorphic representation.

However, the direct sum of two even representations does not necessarily have such
a sign obstruction. Similar discrete invariants characterize p-adically automorphic Galois
representations in higher dimension, but they can be made to vanish upon taking appropriate
direct sums. Say ρ is p-adically stably automorphic if ρ ⊕ ρ′ is p-adically automorphic for
some ρ′. One knows what this means if K is a totally real or CM field. If not, let K0 ⊂ K be
the maximal totally real or CM subfield, and say a p-adic representation ρ is p-adically stably
automorphic if ρ ⊕ ρ′ is the restriction to ΓK of a p-adically automorphic representation of
ΓK0 .

Question 2.12. Is every p-adic representation of ΓK that satisfies the Fontaine-Mazur ax-
ioms stably p-adically automorphic?

The main theorem of [30] states, roughly, that every p-adic representation of ΓK is
“stably potentially residually automorphic,” where the reader is invited to guess what that
means.

One can often define analytic or geometric invariants of p-adic families by interpolation
of their specializations to automorphic points. Thus one defines p-adic L-functions or Galois
cohomology (Selmer groups) of p-adic families. Specializations to points not known to be
automorphic (e.g., because they are not HT -regular) define invariants of the corresponding
Galois representations.

2.3.2. Prospects for improvement.

(a) Condition (1) in Theorem 2.4 corresponds to the polarization condition in (b) of The-
orem 2.2. At present no one knows how to remove this condition and thus to prove the
reciprocity conjecture for all representations constructed in Theorem 2.2 (see, how-
ever, the articles [10] of Calegari and Geraghty and [31] of Hansen). Removing con-
dition (1) is sufficient, and probably necessary, to show that the ρℓ,Π of Theorem 2.2
are irreducible for (almost) all ℓ.

(b) Although we have seen that substitutes can be found for residual irreducibility in ap-
plications to compatible families, it remains a major obstacle for many applications. In
addition to the argument applied in Skinner-Wiles for 2-dimensional representations
of ΓQ, Thorne has recently found a new method based on level raising [73].
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(c) The article [70] replaces the very deep questions regarding congruences between au-
tomorphic forms of different levels (“level-raising”, which an earlier version of [21]
proposed to solve by generalizing Ihara’s Lemma on congruences between elliptic
modular forms) by a careful study of the singularities of certain varieties of tame rep-
resentations of local Galois groups. But this comes at the cost of losing control of
nilpotents in the deformation rings. In particular, current methods cannot classify lift-
ings of ρ̄ to rings in which ℓ is nilpotent. This may be important if one wants to extend
the results of this section to the torsion representations constructed by Scholze.

(d) Dieulefait has expanded on the ideas used by Khare and Wintenberger to prove the
Serre conjecture and has proved some astonishing results. For example, he has proved
base change of elliptic modular forms to any totally real extension [23]. The methods
of [46] and of [23] do not assume residual automorphy but actually prove it in the
cases they consider. It is not yet known whether or not these methods can be applied
in higher dimension.

(e) The authors of [3] ask whether every potentially crystalline representation is poten-
tially diagonalizable. An affirmative answer would expand the range of their methods.
The regularity hypothesis of Condition (3) seems insuperable for the moment. At
most one can hope to prove reciprocity for representations like those constructed in
[28], with Hodge-Tate multiplicities at most 2. The recent proof by Pilloni and Stroh
of the Artin conjecture for (totally odd) 2-dimensional complex representations of ΓK ,
when K is totally real, is the strongest result known in this direction. As long as one
has no method for constructing automorphic Galois representations with Hodge-Tate
multiplicities 3 or greater, the reciprocity question for such representations will remain
inaccessible.

3. Critical values of automorphic L-functions

3.1. Critical values and automorphic motives. Let M be a (pure) motive of rank n over
a number field K, with coefficients in a number field E. By restriction of scalars we can
and will regard M as a motive of rank n[K : Q] over Q. The values at integer points of
the L-function L(s,M) are conjectured to contain deep arithmetic information about M .
If, for example, M = M(A) is the motive attached to the cohomology in degree 1 of an
abelian variety A, then the value, or more generally the first non-vanishing derivative, of
L(s,M(A)) at s = 1 is predicted by the Birch-Swinnerton-Dyer conjecture. This is the only
critical value of L(s,M(A)), in the sense of Deligne (the importance of critical values had
previously been noted by Shimura). Deligne formulated his conjecture on critical values in
one of his contributions to the 1977 Corvallis conference. We follow Deligne in working
with motives for absolute Hodge cycles; thus M is by definition a collection of compatible
realizations in the cohomology of smooth projective algebraic varieties. The realization in
ℓ-adic cohomology gives the Galois representation ρℓ,M on an ℓ-adic vector space Mℓ, and
therefore determines L(s,M). Extension of scalars from Q to C makes M a motive over
C, whose cohomology is thus a direct factor of the cohomology of a complex manifold,
whose topological cohomology is a Q-vector space called MB (Betti realization). Complex
conjugation on the points of M(C) acts on MB as an involution F∞. As a motive over Q,
M also has the algebraic de Rham cohomology, a Q-vector space MdR with a decreasing
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Hodge filtration . . . F qMdR ⊂ F q−1MdR . . . by Q-subspaces. For any integer m let M(m)
denote the Tate twist M ⊗Q(m). Hodge theory defines comparison isomorphisms

I(m)M,∞ : M(m)B ⊗ C ∼−→ M(m)dR ⊗ C.

This isomorphism does not respect the rational structures on the two sides. By restricting
I(m)M,∞ to the +1-eigenspace of F∞ in M(m)B and then projecting on a certain quotient
M(m)dR/F qM(m)dR⊗C, one defines an isomorphism between two complex vector spaces
of dimension roughly half that of M , provided M(m) is critical in Deligne’s sense. The
determinant of this isomorphism, calculated in rational bases of the two sides, is the Deligne
period c+Q (M(m)). It is a determinant of a matrix of integrals of rational differentials in MdR

over rational homology cycles, and is well defined up to Q×-multiples. More generally, if
M is a motive with coefficients in a number field E – in other words, if there are actions of E
on each of the vector spaces MB , MdR, Mℓ, compatible with the comparison isomorphisms
– then there is a Deligne period c+E(M(m)) well-defined up to E×-multiples; moreover,
L(s,M) then defines an element of E ⊗ C, as in [22]. In the following discussion we will
drop the subscript and just write c+(M(m)) for the Deligne period with coefficients.

We call s = m a critical value of L(s,M) if M(m) is critical. The set of critical m can
be read off from the Gamma factors in the (conjectural) functional equation of L(s,M) ([22],
Definition 1.3). When M = M(A), s = 1 is the only critical value. Deligne’s conjecture is
the assertion that

Conjecture 3.1 ([22]). If m is a critical value of the motive M with coefficients in E, then

L(m,M)/c+(M(m)) ∈ E×.

Beilinson’s conjectures express the non-critical integer values of L(s,M) at non-critical
integers in terms of the motivic cohomology (higher algebraic K-theory) of M . Automor-
phic methods give very little information about non-critical values of the L-functions of
motives that can be related to automorphic forms, and this survey has nothing to say about
them. On the other hand, the de Rham realizations of the motives that arise in the coho-
mology of Shimura varieties are given explicitly in terms of automorphic forms. One can
therefore state versions of Deligne’s conjecture for certain of these motives entirely in the
language of automorphic forms.5 The literature on special values of L-functions is vast and a
book-length survey is long overdue. Automorphic versions of Deligne’s conjecture represent
a relatively small segment of the literature that is still too extensive for treatment in the space
of this article. The proofs are generally quite indirect, not least because one can rarely write
down MB in terms of automorphic forms. When M is realized in the cohomology (with co-
efficients) of a Shimura variety S(G), one can occasionally define non-trivial classes in MB

by projecting onto M the cycles defined by Shimura subvarieties S(G′) ⊂ S(G). Integrating
differential forms on S(G) × S(G) over the diagonal cycle S(G) amounts to computing a

5Strictly speaking, Deligne’s conjecture only makes sense in the setting of a theory of motives that is the sub-
ject of very difficult conjectures. For example, one expects that if M and M ′ are motives such that the triples
(MB ,MdR, I(m)M,∞) and (M ′

B ,M ′
dR, I(m)M′,∞) are isomorphic, then M and M ′ are isomorphic as mo-

tives. This would follow from the Hodge conjecture. Similarly, one assumes that L(s,M) = L(s,M ′) implies
that M ≃ M ′; this would follow from the Tate conjecture.

Blasius’s proof of Deligne’s conjecture for L-functions of Hecke characters of CM fields is carried out within
the framework of motives for absolute Hodge cycles. It is practically the only authentically motivic result known in
this direction.
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cohomological cup product. In this brief account we limit our attention to a class of motives
whose Deligne periods can be factored as products of cup products of this kind.

Suppose K is a CM field. As explained in 2.1.1, most of the representations ρℓ,Π of
ΓK are realized in the cohomology of a Shimura varieties S(G) attached to unitary groups
G. Along with the n-dimensional Galois representation this construction yields a candidate
for the rank n motive M(Π). Originally M(Π) is defined over K; one obtains a motive
RM(Π) = RK/QM(Π) by restriction of scalars to Q, taking into account the theorem of
Borovoi and Milne on conjugation of Shimura varieties (the Langlands conjecture). The
spaces RM(Π)dR and RM(Π)B satisfy analogues of conditions (1) and (3) of Theorem
2.4. The regularity condition (3) implies there is a set of integers q1 < q2 < · · · < qn
such that dimE F qRM(Π)dR/F q+1RM(Π)dR = 1 if and only if q = qi for some i, and
the dimension is 0 otherwise. Here E = E(Π) is the field of coefficients of RM(Π) (more
precisely, E is a finite product of number fields). We choose a non-zero Q-rational E-basis
ωi of F qiRM(Π)dR/F qi+1RM(Π)dR, view ωi as a (vector-valued) automorphic form on
G(Q)\G(A), and let Qi(Π) =< ωi,ωi > denote its appropriately normalized L2 inner
product with itself.

Conjecture 3.2. Up to multiplication by E×, each Qi(Π) depends only on the automor-
phic representation Π of GL(n) and not on the realization in the cohomology of a Shimura
variety.

This conjecture is implied by the Tate conjecture. It has been verified in many cases for
the (holomorphic) period Q1(Π). The author has partial results for general Qi(Π).

Given any motive M of rank n satisfying conditions (1) and (3) of 2.4 we can define
invariants Qi(M) in the same way, and a determinant factor q(M) (for this and what follows,
see [32, 36], and section 4 of [29]). For any integer 0 ≤ r ≤ n we write

P≤r(M) = q(M)−1 ·
∏

i≤r

Qi(M).

Let M ′ be a second motive of rank n′, satisfying conditions (1) and (3) of 2.4. Then for any
integer m critical for RK/Q(M ⊗M ′) there is a factorization (cf. [29] (4.11)):

c+(R(M ⊗M ′)(m)) ∼ (2πi)c(m,n,n′)
n∏

r=1

P≤r(M)ar

n′∏

r′=1

P≤r′(M
′)br′ (3.1)

where ∼ means that the ratio of the two sides lies in the multiplicative group of the co-
efficient field, c(m,n, n′) is an explicit polynomial in m and the dimensions, 0 ≤ ar :=
a(r,M,M ′), br′ := b(r′,M,M ′) and

∑

r

ar ≤ n′;
∑

r′

br′ ≤ n.

Defining Π as above, there is an (ad hoc) determinant factor q(Π), and we let

P≤r(Π) = q(Π)−1 ·
∏

i≤r

Qi(Π).

An automorphic version of Deligne’s conjecture is



Automorphic Galois representations and the cohomology of Shimura varieties 381

Conjecture 3.3. Let Π and Π′ be cuspidal automorphic representations of GL(n)K and
GL(n′)K , satisfying the hypotheses of Theorem 2.2 (b). Let m be a critical value of

L(s,RK/Q(M(Π)⊗M(Π′)) = L(s− n+ n′ − 2

2
,Π×Π′).

Then

L(m,RK/Q(M(Π)⊗M(Π′))) ∼ (2πi)c(m,n,n′)
n−1∏

r=1

P≤r(Π)ar

n−2∏

r′=1

P≤r′(Π
′)br′ ,

with ar, br′ as in (3.1).

The integers ar and br′ of (3.1) are determined purely by the relative position of the
Hodge decompositions of MdR ⊗ C and M ′

dR ⊗ C (and don’t depend on m). Suppose
M = RM(Π), M ′ = RM(Π′), with Π and Π′ as in (3.3). The regularity hypotheses
imply that there are finite-dimensional representations W (Π∞) and W ′(Π′∞) of GL(n)K
and GL(n′)K , respectively, such that Π∞ and W (Π∞) (resp. Π′∞ and W ′(Π′∞)) have the
same infinitesimal characters. The ai and bi′ can be computed explicitly in terms of the
highest weights of W (Π∞) and W ′(Π′∞). For example, suppose n′ = n− 1 and

HomGL(n−1,K⊗C)(W (Π∞)⊗W (Π′∞),C) ̸= 0. (3.2)

Then ai = bi′ = 1, 1 ≤ i ≤ n− 1; 1 ≤ i′ ≤ n− 2; an = bn−1 = 0.

Theorem 3.4. Suppose K is an imaginary quadratic field. Let Π and Π′ be as in 3.3. Sup-
pose moreover that the infinitesimal characters of Π∞ and Π′∞ satisfy 3.2 and are sufficiently
regular. Then there are constants c′(m,Π∞,Π′∞) such that

L(m,RK/Q(M(Π)⊗M(Π′)))/[c′(m,Π∞,Π′∞)
n−1∏

r=1

P≤r(Π)
n−2∏

r′=1

P≤r′(Π
′)] ∈ Q (3.3)

for every critical value m.

This is a reinterpretation of Theorem 1.2 of [29]. There the invariants P≤r(Π) are re-
placed by complex numbers P (r)(Π), which are Petersson square norms of holomorphic
automorphic forms on unitary Shimura varieties of different signatures (and it is shown that
the quotient in (3.3) lies in a specific number field). Naturally one expects the constants
c′(m,Π∞,Π′∞) to be powers of 2πi. The Tate conjecture implies an identity between the
two kinds of invariants, and this has been proved (up to unspecified archimedean factors, and
up to Q-multiples) in [33] (and subsequent unpublished work).

The methods of [29] are based on interpreting the Rankin-Selberg integral for GL(n)×
GL(n − 1) as a cohomological cup product. Such arguments have been used previously
by Mahnkopf and Raghuram; see [60] for the most general results in this direction. Earlier
results on this problem were conditional on the conjecture that certain archimedean zeta inte-
grals did not vanish identically. Sun’s recent proof of this conjecture [66] has revived interest
in the problem and one can expect rapid progress in the next few years. For general number
fields one does not have the analogues of the invariants P≤r(Π) and the results of [60] are
expressed in terms of period invariants obtained by comparing the cohomological rational
structure of Π with one defined by Whittaker models. The (mild) regularity hypothesis of 3.4
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is required in the comparison of these Whittaker period invariants with the motivic invariants
P≤r(Π). Similar arguments should suffice to treat the cases of Conjecture 3.3 for n′ ≤ n−1
that satisfy an analogue of (3.2), for general CM fields. (The case where n′ = 1 was treated
by the author in a series of papers, starting with [32], and is used crucially in the proof of
Theorem 3.4.) The full scope of the methods of [29] is not yet clear, but it is certain that it is
not limited to the situation of (3.2). The identification of c′(m,Π∞,Π′∞) with the invariant
(2πi)c(m,n,n−1) is likely to follow from these methods as well.6

3.2. How general are these results? Only a restricted class of Galois representations can
be obtained using the cohomology of Shimura varieties, and only those that can be realized
directly in the cohomology are associated to motives that admit an automorphic interpreta-
tion. The Rankin-Selberg L-functions described in the previous section, along with a few
related constructions (symmetric and exterior squares and adjoint L-functions), seem to be
the only ones whose critical values can be analyzed by automorphic methods. Raghuram’s
results in [60] apply only under the hypothesis (3.2). It should be straightforward to gen-
eralize his methods to pairs Π, Π′ where Π is cuspidal and Π′ is an essentially tempered
cohomological Eisenstein series, as in [29] (or earlier work of Mahnkopf). If Raghuram’s
results could be extended to cases where neither Π nor Π′ is cuspidal, then the hypothesis
(3.2) would be superfluous (in Theorem 3.4 as well).

A motivic analysis of critical values of Rankin-Selberg L-functions, as in Theorem 3.4,
has thus far only been carried out for CM fields. Bhagwat has proved an analogue of the
relation (3.1) when K = Q, following earlier work of Yoshida (see the appendix to [60])
and similar factorizations must hold for totally real fields. As far as I know, no one has
proposed automorphic interpretations of the terms that occur in Bhagwat’s factorization.
For Π satisfying the polarization condition as in (b) of Theorem 2.2 it should be possible to
interpret some of them as periods of motives realized in the cohomology of Shimura varieties
attached to special orthogonal groups of signature (2, n). In the absence of a polarization
condition, Shimura varieties seem to be of no help.

3.3. Exact formulas for the central critical value. The conjectures of Bloch-Kato and
Fontaine-Perrin-Riou give exact formulas for special values of motivic L-functions. The
algebraic quotients L(m,M)/c+(M(m)) and their generalizations to non-critical values
are expressed explicitly as products of local and global algebraic factors defined in terms
of Galois cohomology. For the central critical value these expressions generalize the Birch-
Swinnerton-Dyer conjecture for the value at s = 1 of L(s,M(A)), in the notation of the
previous section.

Beginning with the thesis of Waldspurger, exact formulas have also been found for cer-
tain central values of automorphic L-functions. The conjecture of Ichino-Ikeda, and its
version for unitary groups formulated by N. Harris, [42, 45] give exact formulas for central
values in the framework of the Gan-Gross-Prasad conjectures [26]. In what follows K is
a CM field. We change notation and let Π denote a cuspidal automorphic representation
of GL(n)K that descends to a (cuspidal) L-packet PΠ,V of a given G = U(V ), viewed
as group over K+, with dimV = n. Similarly, Π′ is an automorphic representation of
GL(n− 1)K obtained by base change from a (cuspidal) L-packet PΠ′,V ′ of G′ = U(V ′). It

6Note added in proof. This has now been carried out, at least when the coefficients are sufficiently regular, by
Lin Jie.
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is assumed that V ′ embeds in V as a non-degenerate hermitian subspace of codimension 1.
For any π ∈ PΠ,V and π′ ∈ PΠ′,V ′ , the pairing

I = π ⊗ π′ → C : f ⊗ f ′ $→
∫

G′(K+)\G′(A)
f(g′)f ′(g′)dg′, f ∈ π, f ′ ∈ π′ (3.4)

is invariant under the diagonal action of G′(A). One of the Gan-Gross-Prasad conjectures
asserts that the space of such invariant pairings is of dimension 1 for exactly one pair (V, V ′)
and one pair (π,π′) ∈ PΠ,V × PΠ′,V ′ , and that the lucky pair is identified by a compli-
cated formula involving root numbers. The non-archimedean part of this conjecture has
been proved by R. Beuzart-Plessis, following the method used by Waldspurger to solve the
analogous conjecture for special orthogonal groups [7, 74]. Thus if one fixes a non-trivial
pairing B : π ⊗ π′ → C, the pairing I defined in 3.4 is a multiple of B. The Ichino-Ikeda
Conjecture can be seen as a determination of this multiple. In the statement of the conjecture,
the superscript ∨ denotes contragredient; all integrals are taken with respect to Tamagawa
measure.

Conjecture 3.5 ([45]). Let f ∈ π, f ′ ∈ π′, f∨ ∈ π∨, f ′,∨ ∈ π′,∨, and suppose all four
vectors are factorizable. Then

I(f, f ′) · I(f∨, f ′,∨)
< f, f∨ >2< f ′, f ′,∨ >2

= 2−r
∏

v∈S
Zv(f, f

′, f∨, f ′,∨) ·∆ ·
L( 12 ,Π×Π′)

L(1,π, Ad)L(1,π′, Ad)
.

Here < •, • >2 are the L2 pairings, the factor 2−r is trivial when Π and Π′ are cuspidal
but not in general, S is the set of ramified primes for π,π′, and the chosen vectors, includ-
ing archimedean primes, the Zv for v ∈ S are normalized integrals of matrix coefficients
attached to the data, ∆ is a special value of a finite product of abelian L-functions (the L-
function of the Gross motive), the numerator on the right-hand side is the Rankin-Selberg
product for GL(n) × GL(n − 1), and the factors in the denominator are the Langlands
L-functions for G and G′ attached to the adjoint representations of their L-groups.

Here and elsewhere, L(s, •) denotes the non-archimedean Euler product. The L-functions
in the right-hand side are given the unitary normalization. Thus the completed L-function
Λ(s) = L∞(s,Π×Π′) ·L(s,Π⊗Π′) in the numerator of the right-hand side always satisfies
Λ(s) = ±Λ(1− s). When Π and Π′ satisfy (b) of 2.2, however, there is a second (motivic)
normalization as well, in which the value s = 1

2 is replaced by an integer value, and all the
values of L-functions that occur in the right-hand side are critical.

Conjecture 3.5 is of no interest when the sign is −1, because the numerator vanishes triv-
ially. When the L-function is motivic, there have been proposals for an arithmetic substitute
for the conjecture in this case, with L( 12 , •) replaced by its derivative at s = 1

2 , along the
lines of the Gross-Zagier conjecture and subsequent work. When the sign is +1, the conjec-
ture refines the global Gan-Gross-Prasad conjecture, which asserts that L( 12 ,Π×Π′) = 0 if
and only if the pairing I of 3.4 is trivial.

When L( 12 ,Π×Π′) ̸= 0, Conjecture 3.5 gives an exact expression for its value, provided
one can make good choices of the test vectors f, f ′, f∨, f ′,∨ and can control the local zeta
integrals. It is natural to speculate that these zeta integrals can be interpreted in terms of
local Galois cohomological information, and that when Π and Π′ are attached to motives,
the expressions on the two sides of Conjecture 3.5 can be matched termwise with corre-
sponding expressions in the Bloch-Beilinson and Bloch-Kato conjectures. The local factor
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Zv(f, f ′, f∨, f ′,∨) is the integral of the matrix coefficient of πv attached to the pair (fv, f∨v )
against the matrix coefficient of π′v attached to (f ′v, f

′,∨
v ). The following question is deliber-

ately vague.

Question 3.6. For any given pair of local (ramified) representations πv , π′v , is there a
quadruple fv, f ′v, f∨v , f ′,∨v such that the local zeta integral Zv(f, f ′, f∨, f ′,∨) exactly equals
the local Galois-cohomological factor in the Bloch-Kato conjecture?

As explained in [37], the expressions on the left-hand side are algebraic multiples of
invariants called Gross-Prasad periods that depend only on Π and Π′, provided the test
vectors are chosen to be rationally normalized (with respect to coherent cohomology). The
denominators are closely related to the P≤r defined above. Combining Conjecture 3.5 with
Conjecture 3.3, one gets conjectural expressions for the Gross-Prasad periods as well in
terms of P≤r(π) and P≤r′(π′); see [37], Conjecture 5.16.

In order to compare the local terms of Conjecture 3.5 with the Galois-cohomological
data of the Bloch-Kato conjecture, integral normalizations of the test vectors are needed. It
is well known, however, that even the module of elliptic modular forms with integral modular
Fourier coefficients is not spanned by Hecke eigenfunctions. This is the phenomenon of con-
gruences between Hecke eigenvalues for different automorphic representations, which is the
subject of theorems of the form 2.3, and it is no less relevant to automorphic representations
of groups other than GL(2).

3.3.1. Adjoint L-functions. The denominator of the Ichino-Ikeda formula is relevant to
the problem of integral normalization of test vectors. The point s = 1 is the only criti-
cal value of the adjoint L-functions that occur there. Suppose π has an associated motive
M(Π) = M(π). Then for any prime ℓ, the Bloch-Kato conjecture identifies the ℓ-adic val-
uation of the quotient of L(1,π, Ad) by an (integrally normalized) Deligne period with the
order of a Galois cohomology group that is supposed to count the number of ℓ-adic defor-
mations of the residual Galois representation ρ̄ℓ,π . When n = 2 and K is totally real, a
version of this conjecture has been proved by Diamond-Flach-Guo and Dimitrov, combining
the methods of Theorem 2.4 with the results of [44].

Hida’s paper [44] was the starting point for his theory of families of modular forms, and
was the first to establish a relation between the critical value of the adjoint L-function and
congruences between modular forms. In dimension n > 2, the special cases of the Ichino-
Ikeda conjecture proved by Wei Zhang in [75] are used in [29] to relate the Whittaker period
of a Π satisfying (b) of Theorem 2.2 to L(1,π, Ad), up to rational multiples. One hopes
this provides a starting point for determining L(1,π, Ad) up to units in number fields, as
required by the Bloch-Kato conjecture.

3.4. Two speculative remarks on automorphic p-adic L-functions.

Remark 3.7. Deligne’s conjecture is the starting point of the construction of p-adic L-
functions. The algebraic values on the left-hand side of the identify in 3.1, suitably nor-
malized, are predicted to extend analytically whenever M and m vary in p-adic families.
The literature is vast but fragmentary, and the author’s ongoing project with Eischen, Li,
and Skinner will only add one (rather bulky) fragment to the collection when it is finished.
Current plans are limited to ordinary (Hida) families, but ultimately one expects the method
to extend to completely general families. In particular, such p-adic L-functions could be
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specialized to the “very general” p-adic representations of 2.3.1. Moreover, using Brauer in-
duction, one could even attach a p-adic L-functions to a motivic Galois representation ρp,M
that is potentially p-adically automorphic. Although such a function would have no obvious
connection to the complex L-function of M , it could conceivably be related to the Galois
cohomology of ρp,M .

Remark 3.8. One can study the behavior of the right-hand side of Conjecture 3.5 when Π
and Π′ vary in p-adic families. Given the right choice of data in the local zeta integrals at
primes dividing p, the result should be a p-adic meromorphic function of Π and Π′. Can this
function be constructed directly on the left-hand side of the identity?
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