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Tangent Cauchy-Riemann Equations and the 
Yang-Mills, Higgs and Dirac Fields 

The first part of the paper contains a survey of conditions for the local 
and global solvability of the tangent Oauchy-Biemann equations on 
g-concave CB-manifolds. 

In the second part results are presented concerning the representation 
(by the Badon-Penrose type transformation) of the classical Yang-Mills, 
Higgs and Dirac fields as solutions of the Oauchy-Biemann equations 
on 1-concave submanifolds of twistor (or supertwistor) space. 

1. Cauchy-Riemann equations on g-concave CR-manifolds 

1.1. ôr-cIosed forms and their local approximation by gT-exact forms. Let 
X be an ^-dimensional complex manifold, let JE be a holomorphic vector 
bundle over X. We denote by ô a Cauehy-Biemann operator annihilating 
all holomorphic sections of the fibre bundle E over X. Let Ji be a real, 
closed submanifold of X of co-dimension Jc which can be represented in 
each coordinate neighbourhood i 3 c l i n the form : 

LnQ = {ze Q: QX(Z) = . . . = Qk(z) = 0}, (1.1) 
where {QV} are smooth real-valued functions in the domain fì c X satis-
fying the condition 1)QXA ... AdQk ^ 0 on L n Q. 

For a fixed point p eL the complex tangent space Tc
p(L) has a complex 

dimension n — Jc and in local coordinates z = (zx,..., zn) is determined 
by the equations 

T°p(L)=heCn: J?^r(P)b=<>> »=1,2,...,*}. 
Such a manifold is called a (generic) OB-manifold. 

[809] 
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Let us denote by G[s}q(L, E), 0 < q < n — Je, s > 0, the space of differ-
ential forms of type (0, q) on M with E-valued <7(s)-smooth coefficients. 

If / G O0jö_1(J}, E) and g e G0tQ(L, E) are such that for any compactly 
supported form <p e ö ^ J _ M ( Z , E*), where J7* is the fibre bundle dual 
to E, we have 

JgA9={-l)qJfAfy, 
L L 

then, by definition, we shall write 
3T/ = ff, (1.2) 

where dT is the tangent Cauehy-Biemann operator. 
A necessary condition for (1.2) to be locally solvable is, first of all, 

the condition dxg = 0 on L. The forms (resp. the functions) satisfying 
this condition are called OB-forms (resp. OE-functions). ' 

If the manifold L and the form g are real-analytic then the condition 
drg = 0 is also sufficient for the local solvability of (1.2). In this case 
the dimensions of the domains in M where (1.2) is solvable depend not 
only on the manifold L but also on real-analytic properties of the CB-form 
g (see [43]). 

If either the form g or the manifold M is not real-analytic, then, 
generally speaking, the condition Bxg = 0 is no longer sufficient for the 
local solvability of (1.2) (Hans Lewy's effect). 

In this case, however, an important general result concerning the 
approximate local solvability of equation (1.2) is proved by M. Baouendi 
and P . Treves. 

THEOREM 1.1 (P. Treves [45]). Let L be a smooth GB-submanifold (of 
co-dimension Jc) in a complex manifold X. Then for any point p eL there 
exists a neighbourhood Qp such that every OE-form g e C$(L), r == 0,1,... 
...,n — Jc, can be approximated on LnQp by d-closed forms from Gi^}(ûp) 
as exactly as desired in O^-topology. If, moreover, r > 0 then these forms 
are dx-exact on Lc\Qp. 

For hypersurfaces this result was proved earlier (see [1,13]). 

1.2. g-concave CR-manifolds and the local exactness of CR-forms of type 
(0, r) for r < q and r> n — Jc — q. The study of conditions for the exact 
(and not merely approximate) local and global solvability of the equation 
(1.2), initiated by H. Lewy in his classical work, has been carried suffi-
ciently far for the case where L is a hypersurface in X (see J. J. Kohn [25], 



Tangent Caucïiy-Riemann Equations 811 

J. Kohn, H. Eossi [26], A. Andreotti, 0. D. Hill [1], G. M. Henkin [13], 
A. Bogges [6]). 

In recent years the results of these works have been generalized to 
the case of OB-manifolds of arbitrary ^co-dimension. The formulations 
of the main results use E. Levi's form of a manifold L. The last one is 
given by the equality 

where peL, f e TC
P(L), heBh. 

The manifold L is said to be g-concave (resp. weak gj-concave) at the 
point p eL, if for all A e J2&\{0} the form LPtK(L) has on T%(L) at most q 
negative (resp. q nonpositive) eigenvalues. 

The basic theorems on the local solvability of the equation (1.2) result 
from the following general proposition on the g-closed extension of 0E-
forms into a neighbourhood of a generic OB-manifold. 

THEOREM 1.2 (G. M. Henkin [16]). If tJie OB-manifold of tlie form 
(1.1) is q-concave then there exists a neighbourhood Xf of the manifold L, 
sucJi tJiat for all r satisfying condition 0 < r < q or n — Jc — q<r^n--Jt, 
and for any GB-form f eG$r(L,E), s > 0 , there exists a d-olosed form 
EeO{

Q
s~ll2-B)(X',E) suchthat E\L = / and FAÔQxA...AdQk e G^(QnX') 

for every coordinate neighbourhood Q on X. 

The method used in the proof öf Theorem 1.2 actually gives an explicit 
integral formula for F in terms of / . 

In the case of OB-functions Theorem 1.2 confirms a conjecture due 
to I. N&ruki [35], where the respective statement concerning OB-f unctions 
was proved for "standard" OE-manifolds, i.e. for manifolds of the type 

L ^{(z,w)eCkxCn-1c: Ims„ =Fv(w,w), v = 1, 2, . . . , Jc},, 

where {Fy} are Hermitian forms on Cn"k. 
For hypersurfaces and s = oo Theorem 1.2 was first obtained in 

a paper by A. Andreotti and 0. D. Hill [1]. 
From Theorem 1.2 the following facts can be deduced concerning the 

local solvability of the equation (1.2). 

THEOREM 1.2a ([16]). Under tlie conditions of Tlieorem 1.2 for any 
point p EL and any sufficiently small neigJibourhood Qp of the point p,, 
for all r ; 1 < x < q, and for any GB-form g e G$(L, E), there exists a form 
feG^l^'^Lnfì^jE) satisfying on Lc\Qp tJie equality dvf = g> 
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Theorem 1.2a was regarded in the literature as a plausible conjecture 
(see [2, 44]). Earlier similar results had been obtained (for s =* oo) in 
the work of E. Treves [44] for "tubelike" OB-manifolds, i.e., for mani-
folds of the type 

L = {# e Cn: Imsv = ^(Ims?Ä+1,..., ImzJ, v = 1, 2 , . . . , ilk}, 

and also for "standard" manifolds, in the work of H. Bossi, M. Vergne 
[40]. Moreover, in the work of M. Sato, T. Kawai, M. Kashivara [41], 
the microlocal variant of Theorem 1.2a was established. 

THEOREM 1.2b ([16]). Under the conditions of Theorem 1.2, for any 
Stein domain Ü c X, for all r, n — Jc—q<r^n — Jc, and for any GB-form 
geG[%LnQ,E), there exists a form f eG{^"e)(Lc\Q,E) satisfying on 
Lc\Q the equality dTf = g> 

Eor s == oo Theorem 1.2b was first obtained in a very important 
paper by Ì. Haruki [34]. 

1,3« A criterion for the local solvability of "nonsolvable" tangent Cauchy-
Riemann equations in g-concave manifolds. Th,e requirement of g-concavi-
ty of the OB-manifold L in the formulation of Theorem' 1.2 would be an 
adequate condition provided that the following result explaining H. Lewy's 
effect were true. 

THEOREM 1.3 (A. Andreotti, G. Eredricks, M. Nacinovich [2]). If 
for a GB-manifold of type (1.1), for some p eL and X eBk\{0}, the form 
LPtK(L) is not degenerate on TP(L) and has q negative and n — k — q positive 
eigenvalues, then for any -sufficiently small neighbourhood U of the point 
p there exists a GB-form f from G§$(LnU, E) which is not dt

jexact on Lf\U. 
A microlocal variant of Theorem 1.3 was obtained earlier in a paper 

' by M. Sato, T. Kawai, M. Kashivara [41]. 
Eor hypersurfaces Theorem 1.3 was obtained earlier in a paper by 

A. Andreotti and 0. Hill [1]. 
Theorem 1.3 shows the necessity of complementary conditions for 

the solvability of the equation (1.2) when gr is a CE-form of type (0, q) 
on a g-concave OB-manifold. A criterion for the local solvability of 
(1.2) in this case was obtained in [16]. This criterion we shall now for-
mulate for real-analytic OB-manifolds only, in the form of a criterion of 
extendability of the OB-form gr to a g-closed form g in a neighbourhood 
of L. 
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THEOREM 1.4 ([16]). Let L be a real-analytic q-concave GB-manifold 
of type (1.1). A GB-form g e GQfQ(L, E) can be extended to a 8-closed form 
g in some neigJibourhood of L if and only if, given any p eL, there exists 
a neighbourJiood Qp sucJi tJiat tJie (0, q)-form described by: 

*/(«) = / /(OKfl(t,*) 
CeßpnL 

is real-analytic on L n Qp, wJiere KQ(£, z) is a suitable singular Jcernel of 
tJie OaucJiy-Fantappe type wJiicJi is a real-analytic GB-form of type (n, n — 
—lc~q) with respect to the variable £ e (QpnL)\ {#}. 

Eor hypersurfaces a corresponding criterion was established earlier 
(see [13]). 

Theorem 1.4 is a basis for the proof of the following more subtle solv-
ability criterion, which we shall formulate as the "edge of wedge" theorem 
or OB-forms. 

THEOREM 1.4a (B. A. Ayrapetia-n, G. M. Henkin [4]). Let a q-concave 
îgeneric OB-manifold L of co-dimension Jc in X belong to OB-manifolds Lj9 
j = 1, 2, . . . , fc of co-dimension Jc —1 SUGJI tliat for all peL tJie tangent spaces 
TP(L) belong to tJie linear hull of tlie complex tangent spaces {Tp(L^)}. TJien 
five GB-form g from O0tQ(L) admits a d-olosed extension into a neigJibour-
Jwod of tlie manifold L if the form g is a trace on L of some GB-form 

y- i 
Eor g = 0 Theorem 1.4a is a generalization of a number of results 

extending the classical theorems of S. ST. Bernstein on separate analyticity 
and of 2ST. N. Bogolubov on the "edge of wedge" (see [5], [46]). 

It is also Theorem 1.4 on which is based the proof of the following 
result concerning the solvability of the equation (1.2) on a g-concave 
manifold for (0, g)-forms with a (sufficiently) compact support. 

THEOREM 1.4b (G. M. Henkin [19]). Given a q-concave GB-manifold 
L witli q> 1, for any point p eL, any sufficiently small pseudoconvex 
neiglibourJiood Qp of tJiis point, any r: l < r < g , and any GB-form 
g e C[s}r(L, E) with a support in üpc\L, tJiere exists aformfeG^l^~B)(L, E) 
with a support in Qp c\L satisfying on L the equation dTf = g> 

Eor r < q (and for s = oo) Theorem 1.4b was obtained by I. Naruki [34]. 
Theorem 1.4b seems to be a new one even for hypersurfaces. In particular 
it implies that for a OB-function on any 1-concave OB-manifold L the 
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Hartoggs-Bochner effect holds. This generalizes IT. Sibony's earlier state-
ment [42] concerning the validity of the local maximum principle for 
OE-funetions on a 1-concave OB-manifold. 

1.4. Conditions for a global solvability of the tangent Cauchy-Riemann 
equations. Let us denote by A$q(L, E) the subspace in G$a(L, E) composed 
of gT-closed forms, and by Bfy(L, E) the subspace in G^(L,E) com-
posed of forms 0r/, where f eG^}q_x(L, E). We shall consider the space of 
J9T-cohomologies 

El8)(L, E) = A^(L, E)IBi^(L, E). 

Theorems 1.2 and 1.4 enable us to establish a criterion for the global 
solvability of equation (1.2) together with a criterion for the finitely di-
mensionality of the cohomology space H$(L, E). 

THEOREM 1.5 ([16]). Under the conditions of Theorem 1.2 for any r: 1 
< T < q (resp. n — Jc — q<r^n — Jc) and any pseudo-concave (resp. pseudo-
convex) domain Q € X, a necessary and sufficient condition for a GB-form 
f from A$r(Lc\Q, E) to be dx-exact on LnQ, and to belong to the space 
B$(LnQ, E) is that ffAcp = 0 for any form cp e A^l_h_r(X, E*) with 

L 
a support in the domain Q. Furthermore, for all r < q (resp. r >n — Jc~q), 
the spaces E^(LnQ, E) are finitely dimensional. 

In the case where L is a compact hypersurface in X, the statement 
of Theorem 1.5 has been well known (see J. Kohn, H^ Bossi [25], [26]). 

With regard to the subjects considered in the second part of the paper 
we shall now take into consideration smooth (0,l)-forms 0 on JC with 
values in EndJ0. Such a form we shall call gT-exact if 

E~1dxK = d on L, (1.3) 

where K is a smooth function with values in non-degenerate endomorph-
isms E. 

A necessary condition for the local solvability of (1.3) is now the 
equality: 

8rd + dAd = 0. (1.4) 

The space of the smooth (of the class G°°) forms 6 satisfying (1.4) and 
considered up to the transformation of the form 

0 ~ 0 =K^dTK +K~l OK 

we shall further denote by JÎ°'1(JD,GL(JEJ)). 
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Any element 0 from JS0tl(L, GL(JEJ)) defines a OB-fibre bundle E0 
over L which is topologically equivalent to the fibre bundle E. Namely, 
those smooth sections h of the fibre bundle E which are annihilated by 
the operator dx+d, 

drh + 0h = 0 , 

we shall call OB-sections of the fibre bundle Ed. 
In contradistinction to holomorphic fibre bundles over X, a OB-fibre 

bundle over L cannot always be given by transition matrix-functions. 
Eor instance, from Theorem 1.2 it follows that on a 1-concave OB-mani-
fold the OB-fibre bundle E can be given by means of OB-matrix-functions 
of pass on some cover if and only if JE^Ïs a trace on L of some holomorphic 
fibre bundle in a neighbourhood of L. As above, using the Oauchy-Bie-
mann operator dx+6, cohomology spaces Hfs)(L,E0) are introduced. 
Eor a g-concave OB-manifold L, for any 0 eHfs)(L, GL(J37)) and any 
r: l^.r<q or r>n — Jc — q, the local results of Theorems 1.2b and 
1.4b and the global result of Theorem 1.5 are still valid. 

2, Yang-Mills, Higgs and Dirac fields as solutions of Cauchy-Riemann 
equations 

E. Penrose ([36], [37]) has proposed a promising program of a reconstruc-
tion of the foundations of relativistic physics, which would result in 
a transformation of relativistic physics into a part of analytic geometry 
in the space of complex light lines (the theory of twistors). 

We shall present a number of results developing Penrose's program. 
These results prove that the theory of the classical Tang-Mills, Higgs and 
Dirac fields on Minkowski spaces can be transformed into the theory 
of Oauchy-Eiemann tangent equations on a 1-concave submanifold of 
the twistor (supertwistor) space. Some of the results of the first part of 
the paper acquire here a "physical" interpretation. 

2.1. The spaces of complex and real zero lines. Let CM0 be a complex 
Minkowski space, i.e., a four-dimensional complex space with spinor coor-
dinates u = {uAB> 9 A = 0 , 1 ; B' = 0', 1'} and with a metric àe>t(duAB,). 
Then a real Minkowski space M0 is formed of those points u e CM0 for 
which the matrix uAW is Hermitian. 

Moreover, let T+ and T_ be two reciprocally dual four-dimensional 
complex spaces (of twistors and dual twistors) with coordinates (zA, zB,) 
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and (wA,wB'), and with the bilinear form (z>w} ^zAwA—zA,wA9m, then 
the coordinates in JP+ and 2L are the homogeneous coordinates of the 
corresponding points in the three-dimensional projective spaces J§?± 

= P(27±). 
The equation <£«w> = 0 distinguishes a five-dimensional hypersurface 

3? on J§?+®JZL. The points of this surface parametrize complex zero-lines 
in the Minkowski space; given a fixed point (z, w) e Sß, there exists a corre-
sponding zero-line in CMQ, given by the equations: 

s*' = UAB'Z*} ™A = UAB'W8'- (2-1) 

Conversely, for a fixed point u e CM0, the equations (2.1) considered 
as conditions for (z, w), generate two reciprocally orthogonal two-dimen-
sional subspaces in T+ and T__, which, on the other hand, determine 
on Se a quadric S£(u) = J2?+(«)®J2?_(W). 

The foregoing correspondence enables us to identify the compactifiable 
(and complexifiable) Minkowski space CM with the manifold of all two-
dimensional subspaces in T+ (or in T_). Corresponding tautological 
two-dimensional fibre bundles over CM, denoted by S±, are called spinor 
fibre bundles. 

In virtue of (2.1), over CM0 there are natural trivializations of these 
fibre bundles; zA are the coordinates in the fibre 8+(u), w4-' are the coor-
dinates in the fibre 8__(u), u e CM0. 

Given a domain U in a compactifiable real Minkowski space Jf, we 
shall denote by L( U), L+ ( U), L_ ( U) the real submanifolds in the complex 
manifolds JS?, <£±, of the form: 

L(U) = \j£(u), L±(U) = {J<?±(u). 

Let us put L = L(M), L± = L±(M). Each of the manifolds L+ and 
L_ "parametrizes the (real) light rays on the real Minkowski space M, 
whereas the manoifold L parametrizes pairs of intersecting world lines 
on M (or, in other words, the complex zero-lines in CM, passing through 
M). We have 

L+ = {z eS£+\ Im(a°z0, +z1zr) = 0},-
L_ = {weS£_\ Im(w0w0' + wxwv) = 0 } , 

L = {(&,w) e££: z eL+,w eL"}. 

The manifolds L± are real hypersurfaces in the spaces S£±, whose 
Levi forms are non-degenerate at any point p eL± and have one positive 
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and one negative eigenvalue on Tp(L±), i.e., L± are strongly 1-concave 
manifolds. 

The manifold L, of co-dimension 2 in the complex manifold :Sf, has 
singularities on a fully real submanifold 

S = {(z, w) eL: (wA,wB') = (zA\ zB)}. 

For all peL\8 we have dim^-L) ==3, and for any AeJB2\{0} 
the Levi form LPtX(L) has on TP(L) one positive, one negative, and one 
zero eigenvalue, i.e., L is a 1-concave and, at the same time, weak 2-con-
cave OB-manifold outside S. 

Further, let E be a trivial ^-dimensional fibre bundle. We shall also 
assume that the domain U c M is such that its intersections with all 
light rays are connected and simply connected. Further, let us also denote 
by E"A{L(U), GL(w, C)) (resp. SQ^(L±(U), Gh(n, C))) * set of all OB-fibre 
bundles Ed topologically equivalent to E and moreover analytically equiv-
alent to E on each quadric L(u), ueU. The last statement means that 
the (0, l)-form indexing the fibre bundle EQ can be represented on each 
quadric L(u) 

6\Liu) =K~l8Kuf (2.2) 

where the function KM with values in GL(w, C) smoothly depends on 
the parameter ueU. 

For one-dimensional topologically trivial fibre bundles for instance, 
the condition (2.2) holds automatically. 

In the sequel we shall put Ed(m,Jc) = E0®G(m,Jc), where 0(m,Jc) 
is a one-dimensional fibre bundle over JS?+®J§?_, the holomorphic sections 
of which are holomorphic functions on T+<8>T__ of homogeneity (m, Jc) 
with respect to variables (z, w) eT+®T__. 

Theorems 1.2, 1.3, 1.5 applied to the OB-manifolds L(U), L+(U), 
L_(U) enable us to state, first, that the spaces of OB-fibre bundles 
SQ>l{L(U), &h(n,C)) and E^{L±(U), Gh(n,C)) are non-trivial (and 
infinitely dimensional) and, secondly, that among spaces of cohomologies 
with coefficients in the fibre bundles Ed(m, Jc) there are in general no 
other non-trivial (infinitely dimensional) spaces but the spaces Hl[L^(U), 
Ed(m)), JŒl{L(U),Ed(m,Jc)) and E2(L(U), EQ(m,Jc)). 

B. Penrose's transformation enables us to identify, in a surprisingly 
natural way, the elements of these spaces as cohomologies, and also the 
fibre bundles Ee as physical fields on Minkowski spaces. 
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2.2. The Penrose transformation and criteria of solvability of the tangent 
Cauchy-Riemann equations on L( U). Let a OB-fibre bundle Ee be indexed 
by the elements 0 eH0tt(L(U), GL(n, C)), and let K = K(u,zA,wB') 
be a function satisfying (2.2). Let dx = zAwB' d\duAB' be an operator of 
differentiation along light lines. (1.2) implies that the, function (dxK)K~l 

is holomorphic on each quadric L(u), u\e U, and therefore can be repre-
sented in the form 

(d^K-1 ^zAwB'aAB,(u), (2.3) 

where {aAB,} are smooth functions of ueU. 
We shall consider a 1-form a = aAB*duAB' in the domain U c M. 

I t is determined by the given construction up to the gauge a ~ a 
— b^db + b^ab, where 6 is a Q~L(n, C)-valued smooth function. Thus 

the form a determines a Qh(n, C)-eonneetion Va in the fibre bundle E 
over U c= M. The correspondence 0H>^0 = Va will be called the Penrose 
transform of the form 0. 

For the elements of cohomology spaces with the coefficients in the 
fibre bundles EQ(m7 k) the definition of the Penrose transforms depends 
rather strongly on the numbers m and k. In the cases which are most 
interesting for us these definitions are the following: If a fixed function 
Ku satisfies (2.2), or, in other words, a form a satisfies (2.3), then, for 
V+eHl{L(U), Ee(-1,0)), cp+eHl[L(U), Ed(-2,0% and Q eEx[L(U), 
End-270(—l, —1)) we shall put 

^ = 0>W+ = f K--—W,AZAdzA, &+=0><p+=: f Kq>AZAdzA, 
J OZA* J 

(2.4) 

£0=^0= f KÌwA'-^Q\K-1AZAdzA. (2.41) 

For F+eH2(L(U), EQ(-3, - 1 ) ) , G+eB}[L(U), EQ(-3, -2)) and 
J e H i ( £ ( Z 7 ) , EndJ£ f l ( -3 , -3)) we shall put 

f+ = 0>F+ = J KzA - — j - AZBdzBAWB'dwB,, 
L{u) 

gA=0>Q+=: ,j zAKG+AZBdzBAWB'dwBf, (2.5) 

j =0>J = j%duAQ,AäuA1' AduAB., (2.51) 

CO 
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where 
j A = Jf KJK~lzAwB'AZBdzBAWA>dwAf. 

The Penrose transforms for cohomologies with coefficients in E0 (0, —1), 
Ed(0, —2), EQ(— 1, —3), EQ(— 2, —3) are defined analogously. Let us 
note that the fields %pA', <p+, etc. are determined by the given construction 
up to the gauges yA' r^{pA' = byA'; cp+ OJ $.H = bq>+ etc., where b is 
a gauge function for the connection a. 

The following result sums up (and to a certain extent generalizes) 
a number of statements given in [47], [9], [12], [49], [24], [30], [14], 
[20], [21], [7]. 

THEOREM 2.1. TJie Penrose transformation of tJie form (2.3) establisJies 
a canonical isomorpJiism between tJie space of tJie OB-fibre bundles 
OeE°A(L(U), QL(n, C)) and the space of all smooth connections Va = &Q 
in the fibre bundle E over U. Moreover, the OB-fibre bundles from 
E0tl[L±(U), GtL(n, C)) are transformed into self-dual (resp. anti-self-dual) 
connections. 

Subsequently, for fixed 6 e E0tl(L(U), Q~L(n,C)), the Penrose trans-
formations of the form (2.4), (2.5) establish an isomorphism of the cohomo-
logy spaces El[L(U), Ee(-1, 0)), El[L(U), Ed(~2, 0)), E2(L(U), 
•®e(—3> —2)), E2[L(U), EQ(—3, —1)) with the spaces of smooth sections 
over U of the fibre bundles E®S_®A2S+; E®A28+\ E®B+®A2B+®A28^, 
E®(A2B+f®A2B_, respectively. If, moreover, 0 eE°A[L+(U), GtJj(n, C)) 
then the elements of the spaces El(L+(U), E0(—1,0)) and El[L+(U), 
E0(—2, 0)) are transformed into the solutions ipA. and <p+ of the Weil-Pirac 
equation ^iA'y)A* = 0 and the d9Alembert equation na<P+ — 0, respectively, 
in the self-dual field a = 0>6. 

Finally, the correspondence of (2.41) and (2.51) realizes the isomorpJiisms 
of the spaces EX[L(U), EndJ570(-l, -1)) and E2[L(U), End.EJö(-3, -3)) 
with, respectively, the space of smooth sections of the fibre bundle 
'EiiäE®A28+®A28^ and the space of smootJi 3-forms j on Ü witJi values 
in EndJGJ, satisfying the equation dj + [a, j ] = 0. -

From Theorems 2.1 and 1.2, as a simple corollary, follows 

THEOREM: 2.1a. Let tJie (0, l)-forms 0, &±, W± represent elements of the 
respective spaces of one-dimensional coJwmologies on L(U) (or 2J±(17)). 
Then a necessary and sufficient condition for the Gauchy-Biemann equations 
of the forms a"1 dra = 0; drß± + 0ß± = ®± ; dry± + 6y± = W± to be solvable 
(resp. locally solvable in a neighbourhood of any point) is that the Penrose 

56 — Proceedings... 
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transforms &d, 0t<J>±, ^ ^ ± of these forms be equal to zero (resp. real-ana-
lytic) on U. 

Let us note that a following criterion for the ^-exactness of the forms 
0±, W± in a neighbourhood of a fixed point p eL±(U) was formulated 
in [17] as a development of Penrose's ideas [38]: the singular spectrum of 
the forms ^3>±, 9T± must not contain zero-bi-characteristics correspond-
ing to light rays l±(r). 

2.3. The Max well-Yang-Mills, Weil-Dirac and Klein-Cordon equations 
as the Cauchy-Riemann equations. Let L®(U) denote the j - th infini-
tesimal neighbourhood of the manifold L(U) c L+(U) xL_(U). We 
shaU denote by E0*1 (L®(U), Gch(n, C)) the subspace of OB-fibre bundles 
in H°>l(L{U), &L(n, C)) indexed by smooth (0,l)-forms 0 on L+(U)x 
xL_(U) which, first, satisfy on L{j)(U) the Cauchy-Biemann-Cartan 

equation of the form #0 + 0 A 0 = Xj+1<z-wyj+1- where Xj+1 is a smooth 
(0,2)-form on L(U) representing some element of the space E2[L(U), 
EndJE/e(—j— 1, —j—1)), and, secondly, are considered up to the g-gauge 
of the form 

0 ~ 0 = K-1dK+K~10K + O(<z-wy+1). 

We shaU denote by E«(L®(U), Ed), where 0 eE°'l[L^(U), GL(n, C)), 
a subspace in Ea[L(U), EQ) given by smooth U-valued (0,g)-forms 
co on L+xL_ satisfying on L®(U) the Cauchy-Biemann equation 
8XCO + 6ACO = Y3-+1(Z'w}j+1 and considered up to the g-gauge œ ~ ä> 
= o) + dxa+dAcx+0«z-wyj+1). 

I t was proved in [14], [20] that any element of the space E°*l(L(U), 
Gli(n, C)) can be extended (in only one way) to an element of the space 
jgro,i |2;W (U), GL (n, C)) and can be represented by the form 0 on L+ ( U) x 
xL_(U) satisfying the relation 

0T0 + 0 A 0 = J<z-w}\ (2.6) 

Moreover, the elements of the space S0,1(i(1)(l7), GL(w, C)) can be 
indexed by the forms 0 

0 = d+D(z-w), (2.7) 

where 0 satisfies (2.6) and QeEl[L(U), EndJ57fl(-l, -1 ) ) . 
Furthermore (see [20], [21]), for fixed 0 satisfying (2.6), the elements 

W+,0+,Q of the spaces El{L(U), EQ(-1, 0)), EX[L(U), EQ(-2, 0)) and 
El[L(U), Endl£0(—1, —1)) with a suitable gauge satisfy the relations 
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of the form 
d¥+ + 0A¥+ ~G+<z-wy, 

(2.8) 
00 + + 0A<2>+ ^F+(z-w}. 

The Oauchy-Biemann equations of the forms (2.6), (2.8) proved to 
be equivalent (on a twistor space) to the Maxwell-Yang-Mills, Weil-Dirac 
and Klein-Gordon equations, respectively. 

THEOREM 2.2 (G. M. Henkin, Tu. Manin [14], [20], [30], [32]). In 
order that the forms 0 and J ; F + and G+; <P+ and F+ satisfy the equa-
tions (2.6) and (2.8) it is necessary and sufficient that their Penrose transforms 
of the forms (2.3)-(2.5) satisfy the equations 

d*f+[a,*f]=~j, (2.61) 

respectively, where f — da + aAa is the curvature form of the connection a, 
and * is the Modge operator corresponding to the MinlcowsJci metric, 

d 

8Ü2 VAA> = ^üF+<*AA', D = V ^ ' V ^ , 

From Theorems 2.2 and 2.1, as a corollary, we obtain the following 
result. 

THEOREM 2.3 (E. Witten [50], T. Isenberg, Ph. Tasskin, P . Green 
[24], G. M. Henkin, Yu. I. Manin [14], [20], [32]). The Penrose transform-
ation establishes a canonical isomorphism between: 

(a) the space of fibre bundles E0,1(L^(U), &L(n,C)) and the space 
of all smooth GL(w, C)-connections in E satisfying the Yang-Mills equation 

d*f+[a, */] = 0 , 
(b) the space El(L^(U), E0), where 0 GE»>l(L^(U), GL(w, C)) and 

the space of the smooth solutions on U of the Weil-Dirac equation: 

VAA>V>A'~0, 

(c) the space E'fò^U), E~0), where 0 = (fl+û<*-w>) e H0*1 (Ift(U)9 
GtL(n, C)) and the space of solutions of the Klein-Gordon equation 

nq*+ + co<p+ = o , 
where co = SPQ. 
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Theorem 2.4a (for analytic connections a) was obtained by E. Witten 
[50] and by J. Isenberg and P. Green [24]. Theorems 2.4b and 2.4c (also 
for analytic fields a, ipA,, <p+) were obtained by Yu. I. Manin and the 
present author [20], [32]. À generalization to the case of non-analytic 
fields a, ipA, and <p+ was obtained in [14], [15]. 

2.4. Super-symmetrical Yang-Mills equations and the tangent Cauchy-
Riemann equations on the space of super-flight rays. Physicists deal mostly 
with interacting Yang-Mills, Dirac or Klein-Gordon (Higgs) fields, and 
not with free ones. Super-symmetrical interactions of these fields (so 
called j^-super-symmetrical Yang-Mills fields, JV" = 1, 2, 3, 4) are espe-
cially popular at present. Hot entering into details, let us note that besides 
the connection field a (the Yang-Mills field) these equations contain: 
for JV = 1, two spinor fields %pA and yA, (the Dirac fields) ; for N = 2, 
two scalar fields y+ and cp_ (the Higgs fields) and four spinor fields 
V>A> WA'I XAI %A'\ f°r -3T = 3, 4, six scalar fields and eight spinor fields. 
Moreover, the spinor fields take values in HiiciE®8^<®A28±®A1 and 
the scalar fields take values in EndJEJ<g)/l2#± ®AQ, where A'Q, Ax are the 
subspaces of respectively, even and odd elements of the Grassmann al-
gebra A. The equations of motion in the 2-super-symmetrical Yang-Mills 
theory take the form 

ïï9± + {VA±>%A±}±î[\SP+I<P-ÎI <P±] = ° * 

^A-A+XA±±ÌI^XATÌ =0, (2.9) 

+ { ^ , ^ + } + i ( [ V ^ + , ^ ] - [ y + , V»tV-l) = 0 , 

where the symbol A* denotes A' and A, respectively; VAA, = — z F + 

+ \aAA', • ] ; [•, •] and {•, •} are the symbols of the commutator and 
the anti-commutator. 

On the basis of Theorem 2.1, for any smooth fields a, y>+,ipA', %A, 
%A'9<P± defined on U c M, one can fin$ uniquely determined (up to 
#T-exact forms) smooth forms 0, ÌP±,X±,<I>±, Q, defined on L(U) with 
values, respectively, in End E<g>@(Jc, I) ®Ai, where i = 0 ,1; (Jc, I) = (0, 0), 
( - 1 , 0), (0, -1) , ( - 2 , 0), (0, -2) , ( - 1 , -1) , such that, first, the Cau-
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chy-Biemann relations of the form 
dt0 + 0A0 = 0 on LW(U), 

ôrîF± + [ 0 , F ± ] = O , ' ^ + [ 8 , ^ = 0 on J « (17), (2.10) 
dt®± + ie,0±]={y±,x±}, 

89Q + [0,Q] =2{y+,XL} + 2{X!.,!PL} on L(U) 
are satisfied and, secondly, we have 

m = a, &>W± = VA± , 0>X± - %A±, (2.11) 

= <p±, 0>Q = {cp+,cpj\, 

where 0> is the suitable modification of 0>, accounting non-closeness of 
forms 0± and Q. 

On the basis of [15], [32] the following result was obtained in [18]. 
THEOREM 2.4a ([18]). In order that the fields a, y)A± %A±, cp± on U satisfy 

the super-symmetric Tang-Mills equations (2.9) it is necessary and suffi-
cient that the fields 0, W±, X±,@±, Q corresponding to them in virtue of 
the relations (2.10), (2.11), satisfy the Oauchy-Riemann equations of the 
form: 

dQ + ie, 0] + 2{¥+, X_} + 2{X+, W_} + 
+ [0+,0__]<*-w> = 0 on L^(U), 

dX± + iQ,x±} + %l®±,x*K*-w>==o,i {' } 

on L^(U), 
dQ + 9A6+l(dQ + [0,Q])<:z-wy+U{V+,X_} + 

on L^(U). 
At first sight the relations (2.12) seem to be as complicated as the 

equations (2.9). However, the equations (2.12), and not (2.9), are the 
ones which have a clear geometrical meaning. 

In fact, following A. Ferber [10] and E. Witten [50], let us consider 
first the projective spaces of super-twistors «5?+ (resp. dual super-twistors 
SP^.) with four even coordinates zA, zB. (resp. wA, w3') and N odd coor-
dinates C7c (resp. if), and secondly a super-manifold &N(U) = {(z, £; 
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w, rj) e J ^ X J S ^ : <Z-W} — £*%> (s, w) el^ïT)}, parametrizing the ana-
logues of light rays on the Minkowski super-space. 

We shall examine the GE-submanifolds of the form 

L» = {(*, f) e^:-Im(z^+z^zv) = £»&}, 

l £ = {(w, 9j) 6 Ä I m ^ o ^ ' + Wi^1') = rç*îfo}, 

i i V ( î7 )=(X^x^)n^(Z7) 

on these super-manifolds. 
We shall denote by L$(U) the j - th infinitesimal neighbourhood of 

the manifold LN(U) c L+ xL^. How, we shall examine on the CE-mani-
fold L\ xL2_ the (0, l)-form 0 given by 

+0+C1Ci+0-W2 + Q{t1ri1 + C%ri2), (2.13) 

where the forms 0, ¥±9X±9@± and ß satisfy the relations (2.10). In 
virtue of (2.10) we have dz0+0A0 = 0 on L(U), i.e., the form 6 defines 
a OB-fibre bundle over L2(U) which is trivial over any quadric L(u), 
u e U. 

THEOREM 2.4b ([18]). In order that the form 0 given by (2.13) be gauge-
equivalent to a form satisfying the equation 

-dr0+0A0 = 0((<*-ii?>-£*%)») (2.14) 

it is necessary and sîifficient that the components (0, W±, X±, 0±, Û) of 
the form 0 satisfy the Gauchy-Riemann equations of the form (2.12). 

The equality (2.14) means that the form 0 defines a OE-fibre bundle 
overi(

2
1)(Z7). 

From Theorems 2.4a and 2.4b and their analogues for other super-sym-
metrical Yang-Mills theories results the following 

THEOREM 2.4 (E. Witten [50], G. M. Henkin [18]). The Penrose trans-
formation establishes an isomorphism of the space of OB-fibre bundles 
over L§~N\ If =1,2, 3, trivial on all quadrics L(u), u e U, with the space 
of (smooth) solutions of the JV'-symmetrical system of Yang-Mills equations. 

For N = 3 (and for holomorphic fields and fibre bundles) this result 
was obtained in a paper by E. Witten [50]. More exactly, in [50] the 
equations of motion.of the 3-supersymmetrical Yang-Mills system were 
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reinterpreted as the conditions for the integrability of a connection along 
super-light rays in the Minkowski super-space. An extension of Witten's 
result to the case of the remaining JST = 1, 2, 4 was obtained in [18]. 

For the formulation of this result in the case of N = 4 it is necessary 
to employ a natural extension of the well-known twistor transformation 
(see [8]) f establishing a canonical isomorphism between the spaces 
S1(L^(U)} @(2s-2,0))B,ndEl(L_(U), 0(0, - 2* -2 ) ) , s = 0 , 1 , 1 , onto 
the OB-fibre bundles over LA(U). 

THEOREM 2.5 ([18]). The Penrose transformation establishes an isomor-
phism between the space of OB-fibre bundles over L4(U) invariant with 
respect to the twistor transformation 9* and trivial on all quadrics L(u), 
u e U, and the space of all (smooth) solutions on U of the k-supersymmetrical 
Yang-Mills system. 

For N = 3, 4, recently, A. A. Eosly [39] has discovered another in-
terpretation of the Yang-Mills relations as integrability conditions 
along some tangent subspaces (of purely odd dimension) of the Min-
kowski super-space. 

In comparison with Theorem 2.4, Theorems 2.4a and 2.4b from [18] 
contain additional information — a twistor interpretation of all fields 
and equations entering into the super-symmetrical Yang-Mills system. 
Let us note that these results give development of a paper by Yu. I. Manin 
[31], where the cohomological component analysis is given on &i(U) 
of the 3-silper-symmetrical Yang-Mills equations on U. 

Interpretations in terms of Oauchy-Eiemann equations over twistors 
of some other classical (not super-symmetrical) interactions between the 
Yang-Mills-Higgs and Dirac fields are obtained in papers [15], [18], [29]. 

We have touched here only part of the works dealing with a twistor 
interpretation of gauge fields on a plane Minkowski space. The problem 
of establishing the twistor theory for non-plane Minkowski spaces was 
discussed in a very impressive paper by E. Penrose [36]. Further devel-
opments of this work were obtained by 0. Le Brun [27], [28], T. Isenberg, 
Ph. Yasskin [24], Yu. I. Manin, I. Penkov [33]. 

The twistor theory yields, as we know great results in establishing 
exact (and physically interesting) solutions of the self-dual Einstein and 
the Yang-Mills equations (see M. F. Atiyah [3], E. Penrose [36], E. Ward 
[48] and others). One can hope that the twistor interpretation of non-
self-dual equations can also lead, to some new interesting solutions. 
The first non-trivial investigations of this kind are contained in papers 
by P. Forgacs, Z. Horvath, L. Palla [11] and Yu. I. Manin [31]. 
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