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G. M. HENKIN

Tangent Cauchy-Riemann Equations and the
Yang-Mills, Higgs and Dirac Fields

The first part of the paper contains a survey of conditions for the local
and global solvability of the tangent Cauchy—Riemann equations on
g-concave CR-manifolds.

In the second part results are presented concerning the representation
(by the Radon—Penrose type transformation) of the classical Yang—Mills,
Higgs and Dirac fields as solutions of the Cauchy-Riemann equations
on l-concave submanifolds of twistor (or supertwistor) space.

1. Cauchy-Riemann equations on ¢-concave CR-manifolds

1.1. §,-closed forms and their local approximation by §,-exact forms. Let
X be an s-dimensional complex manifold, let # be a holomorphic vector
bundle over X. We denote by d a Cauchy—Riemann operator annihilating
all holomorphic sections of the fibre bundle # over X. Let L be a real,
closed submanifold of X of co-dimension & which can be represented in
each coordinate neighbourhood 2 < X in the form:

LNQ ={ze0: py(2) =... = g,(2) = 0}, (1.1)

where {g,} are smooth real-valued functions in the domain 2 < X satis-
fying the condition go;A ... Adg; %0 on L N Q.

For a fixed point p € L the complex tangent space I’ (L) has a complex
dimension »—7% and in local coordinates z = (24, ..., #,) is determined
by the equations

n
de,
T,(L) = {Ce Cc": :g;-éz%- () =0, »=1,2,..., k}.
Such a manifold is called a (generic) CR-manifold.
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Let us denote by O8)(L, B), 0< g<n—Fk, s> 0, the space of differ-
ential forms of type (0, q) on M with E—valued_ 0"“’-smooth coefficients.

If feCyyi(L, H) and g €0, q(L E) are such that for any compactly
supported form Qe 0‘ ) —i-q(X, B'), where B* i the fibre bundle dual
to H, we have

ng<P~(—1 fan%

then, by definition, we shall write ‘
o.f =g, (1.2)

where 4, is the tangent Cauchy—Riemann operator.

A necessary condition for (1.2) to be locally solvable is, first of all,
the condition 9,9 = 0 on L. The forms (resp. the functions) satisfying
this condition are called OR-forms (resp. CR-functions).’

If the manifold L and the form g are real-analytic then the condition
9.9 = 0 is also sufficient for the local solvability of (1.2). In this case
the dimensions of the domains in M where (1.2) is solvable depend not
only on the manifold L but also on real-analytic propertles of the CR-form
g (seo [43]).

If either the form ¢ or the manifold M is not real-analytic, then,
generally speaking, the condition 0,9 = 0 is no longer sufficient for the
local solvability of (1.2) (Hans Lewy’s effect).

In this case, however, an important general result concerning the
approximate local solvability of equation (1.2) is proved by M. Baouendi
and F. Treves.

TeEOREM 1.1 (F. Treves [45]). Let L be a smooth OR-submanifold (of
co-dimension &) in a complex manifold X. Then for amy point p € L there
ewists a neighbourhood Q,, such that every OR-form g e 0{,“’,’. (L), r = O, 1,

o n—k, can be aﬁprommated on LN, by 0-closed forms from C ) (0 )
as ewactly as desired in 0®-topology. If, moreover, r >0 then these forms
are J.-emact on LNL,.

For hypersurfaces this result was proved earlier (see [1,13]).

1.2. ¢g-concave CR-manifelds and the local exactness of CR-forms of type
(0, 7) for r < g and 7 > n—Fk—gq. The study of conditions for the exact
(and not merely ‘approximate) local and global solvability of the equation
(1.2), initiated by H. Lewy in his classical work, has been carried suffi-
ciently far for the case where L is a hypersurface in X (see J.J. Kohn [25],
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J. Kohn, H. Rossi [26], A. Andreotti, C. D. Hill [1], G. M. Henkin [13],
A. Bogges [6]).

In recent years the results of these works have been generalized to
the case of CR-manifolds of arbitrary-co-dimension. The formulations
of the main results use H. Levi’s form of a manifold L. The last one is
given by the equality

e - 3 3425 0e3),

=1 a,f=1

where p € L, { e T5(L), 4 € R"

The manifold L is said to be g-concave (resp. weak g-concave) a,t the
point p € L, if for all 4 € R*\{0} the form I, ,(L) has on TS(L) at most ¢
negative (resp. g nonpositive) eigenvalues.

The basic theorems on the local solvability of the equation (1.2) result
from the following general proposition on the -closed extension of CR-
forms into a neighbourhood of a generic CR-manifold.

THEOREM 1.2 (G. M. Henkin [16]). If the OR-manifold of the form
(1.1) 48 g-concave then there exisis a neighbourhood -X' of ihe manifold I,
such that for all r satisfying condition 0 <r<qor n—k—g<r<n—Fk,
and for any OR-form fe 0((,"2 L, E), 8> 0, there exisis a (-closed fo1m
F e O *~(X", B) such that F|, =f and FAdon...Ad0, € 0O (2NX")
Jor every coordinate neighbourhood 2 on X.

The method used in the proof of Theorem 1.2 actually gives an explicit
integral formula for I in terms of f.

In the case of CR-functions Theorem 1.2 confirms a conjecture due
to I. Naruki [35], where the respective statement concerning OR-functions
was proved for “standard” OR-manifolds, i.e. for manifolds of the type

L = {(z, w) € C*xC"*; Ime, = F,(w, @), » =1,2,..., k},

where {F,} are Hermitian forms on C"*

For hypersurfaces and s = oo Theorem 1.2 was first obtained in
a paper by A. Andreotti and C.D. Hill [1].

From Theorem 1.2 the following facts can be deduced concerning the
local solvability of the equation (1.2).

THEOREM 1.2a ([16]). Under the conditions of Theorem 1.2 for any
point pel and any sufficienily small neighbourhood 2, of the poini p,
for all r: 1< v < g, and for any OR-form g e O¥}(L, B), there ewisis a form
feOF2=NLNQ,, B) satisfying on LNQ, the equality 5.f = g.
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Theorem 1.2a was regarded in the literature as a plausible conjecture
(see [2,44]). Rarlier similar results had been obtained (for s = o0) in
the work of F. Treves [44] for “tubelike” CR-manifolds, i.e., for mani-
folds of the type ’ -

= {¢ e C": Img, = ¢,(Im2;,,,...,Imz,), v =1,2,..., k},

and also for “standard” manifolds, in the work of H. Rossi, M. Vergne
[40]. Moreover, in the work of M. Sato, T. Kawai, M. Kashivara [41],
the microlocal variant of Theorem 1.2a was established.

THEOREM 1.2b ([16]). Under the conditions of Theorem 1.2, for any
Stein domain 2 < X, for all ry n—k—q < r < n—Fk, and for any OR-form
g € O¥NLNQ, B), there ewists a form fe OGP~ LNQ, B) satisfying on
LnQ the equality 8,f = g.

For s = co Theorem 1.2b was first obtained in a very important
paper by I. Naruki [34].

1.3. A criterien for the local selvability of “‘nonselvable” tangent Cauchy-
Riemann equations in g-concave manifolds. The requirement of g-concavi-
ty of the OR-manifold L in the formulation of Theorem 1.2 would be an
adequate condition provided that the following result explaining H. Lewy’s
effect were true.

THEOREM 1.3 (A. Andreotti, G. Fredricks, M. Nacinovich [2]). If
for a OR-manifold of type (1.1), for some p € L and A € R¥\{0}, the form
Ly 4(L) i8 not degenerate on Ty (L) and has q negative and n—k—q positive

eigenvalues, then for any -sufficiently small neighbourhood U of the point
p there ewists & OR-form f from O (LNT , B) which is not §-exact on LNT.

A microlocal variant of Theorem 1.3 was obtained earlier in a paper
"by M. Sato, T. Kawai, M. Kashivara [41].

For hypersurfaces Theorem 1.3 was obtained earlier in a paper by
A. Andreotti and C. Hill [1].

Theorem 1.3 shows the necessity of complementary conditions for
the solvability of the equation (1.2) when g is a CR-form of type (0, ¢)
on a g-concave CR-manifold. A criterion for the local solvability of
(1.2) in this case was obtained in [16]. This criterion we shall now for-
mulate for real-analytic CR-manifolds only, in the form of a criterion of
extendability of the CR-form ¢ to a g-closed form § in a neighbourhood
of L.
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TueoREM 1.4 ([16]). Let L be a real-analylic g-concave CR-manifold
of type (1.1). A OR-form g € 0, (L, B) can be extended to a d-closed form
g in some neighbourhood of L if and only if, given any p € L, there exists
a neighbourhood 2, such that the (0, q)-form described by:

Ef(e) = [ JOE,(L,#)
teQpnL
is real-analytic on L N Q,, where K, (L, 2) 8 a suitable singular kernel of
the Oauchy—Fantappe type which is a real-analytic CR-form of type (n, n—
—k—q) with respect to the variable { € (2,NL)\ {z}.

For hypersurfaces a corresponding criterion was established earlier
(seo [13]).

Theorem 1.4 is a basis for the proof of the following more subtle solv-
ability criterion, which we shall formulate as the “edge of wedge” theorem
or CR-forms.

THEOREM 1.4a (R. A. Ayrapetian, G. M. Henkin [4]). Let a g-concave
fgeneric OR-manifold L of co-dimension k in X belong to CR-manifolds Ly,
i=12,..., % of co-dimension &t —1 such that for all p € L the tangent spaces
T, (L) belong to the linear hull of the complex tangent spaces {T%(L;)}. Then
the OR-form g from O, ,(L) admits a 9-closed ewiension into a neighbour-
hood of the manifold L if the form g is a trace on L of some CR-form

I/

<0l J3).

For ¢ =0 Theorem 1.4a is a generalization of a number of results
extending the classical theorems of 8. N. Bernstein on separate analyticity
and of N. N. Bogolubov on the “edge of wedge” (see [5], [46]).

It is also Theorem 1.4 on which is based the proof of the following
result concerning the solvability of the equation (1.2) on a g-concave
manifold for (0, g)-forms with a (sufficiently) compaet support.

THEOREM 1.4b (G. M. Henkin [19]). Given a g-concave CR-manifold
L with ¢>1, for any point p € L, any sufficiently small pseudoconvexr
neighbourhood 2, of this point, any r: L<r<gq, and any CR-form
g € C¥)(L, B) with a support in 2,NL, there ewists a form fe OF*~ (L, H)
with a support in 2,NL satisfying on L the equation d.f = g.

For r < g (and for s = oo) Theorem 1.4b was obtained by I. Naruki [34].
Theorem 1.4b seems to be a new one even for hypersurfaces. In particular
it implies that for a OR-function on any l-concave CR-manifold L the
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Hartoggs—Bochner effect holds. This generalizes N. Sibony’s earlier state-
ment [42] concerning the validity of the local maximum principle for
CR-functions on a 1l-concave CR-manifold.

1.4. Conditions for a global solvablllty of the tangent Cauchy-Riemann
equatmns. Let us denote by A (L, E) the subspace in G(S) (L, H) composed
of 7.-closed forms, and by B ?s (L F) the subspace in Cf)(L, H) com-
posed of forms §,f, where f e Go %) _1(L, B). We shall consider the space of
0,-cohomologies .

H{(L, B) = A§)(L, B)|Bf)(L, B).

Theorems 1.2 and 1.4 enable us to establish a criterion for the global
solvability of equation (1.2) together with a criterion for the finitely di-
mensionality of the cohomology space H{Y(L, H).

THEOREM 1.5 ([16]). Under the conditions of Theorem 1.2 for any v: 1
<r<q(resp. n—k—q<r<n—=k) and any pseudo-concave (resp. pseudo-
convex) domain Q € X, a necessary and sufficient condition for a CR-form
f from Af;*}(Ln.Q E) to be §,-exact on LNQ, and to belong to the space

)(LnQ B) is that f fap =0 for any form ¢ e A . (X, E*) with

a support in the domam Q. Furthermore, for all r < q (resp. r >n—Fk—q),
the spaces Hiy (LN, H) are finitely dimensional.

In the case where L is a compact hypersurface in X, the statement
of Theorem 1.5 has been well known (see J. Kohn, H. Rossi [25], [26]).

With regard to the subjects considered in the second part of the paper
we shall now take into consideration smooth (0,1)-forms 6 on L with
values in End H. Such a form we shall call §,-exact if

B K'9.K =0 on L, (1.3)

where K is a smooth function with values in non-degenerate endomorph-
isms Z.
A necessary condition for the local solvability of (1.3) is now the
equality:
9.0+0A0 =0. (1.4)

The space of the smooth (of the class (%) forms 0 satisfying (1. 4) and
considered up to the transformation of the form

0 ~0 = K‘la K+K"10K
we shall further denote by- H* 1(1} GL(H)).
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Any eclement 0 from H*'(L, GL(E)) defines a OR-fibre bundle %,
over L which is topologically equivalent to the fibre bundle Z. Namely,
those smooth sections % of the fibre bundle # which are annihilated by
the operator 9, 0,

3.h+0h =0,

we shall call OR-gections of the fibre bundle H,.

In contradistinetion to holomorphic fibre bundles over X, a OR-fibre
bundle over I cannot always be given by transition matrix-functions.
For instance, from Theorem 1.2 it follows that on a 1-concave OR-mani-
fold the CR-fibre bundle K can be given by means of OR-matrix-functions
of pass on some cover if and only if #,'is a trace on L of some holomorphic
fibre bundle in a neighbourhood of L. As above, using the Cauchy-Rie-
mann operator §,--0, cohomology spaces H{,(L, H,) are introduced.
For a g-concave CR-manifold I, for any 0 e H{)(L, GL(H)) and any
r:1gr<gqg or r >n—k—gq, the local results of Theorems 1.2b and
1.4b and the global result of Theorem 1.5 are still valid.

2, Yang-Mills, Higgs and Dirac fields as solutions of Cauchy-Riemann
equations

R. Penrose ([36], [37]) has proposed a promising program of a reconstruc-
tion of the foundations of relativistic physics, which would result in
a transformation of relativistic physics into a part of analytic geometry
in the space of complex light lines (the theory of twistors).

We shall present a number of results developing Penrose’s program.
These results prove that the theory of the classical Yang-Mills, Higgs and
Dirac fields on Minkowski spaces can be transformed into the theory
of Oauchy-Riemann tangent equations on a 1l-concave submanifold of
the twistor (supertwistor) space. Some of the results of the first part of
the paper acquire here a “physical” interpretation.

2.1. The spaces of complex and real zero lines. Let CM, be a complex
Minkowski space, i.e., @ four-dimensional complex space with spinor coor-
dinates » = {u, gz, 4 =0,1; B’ = 0,1} and with a metric det(du,p).
Then a real Minkowski space M, is formed of those points 4 € CI{, for
which the matrix u#,p is Hermitian.

Moreover, let 7', and T_ be two reciprocally dual four-dimensional
complex spaces (of twistors and dual twistors) with coordinates (24, 25)
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and (w,,w"), and with the bilinear form {2z w) = 24w, —z,w4'; then
the coordinates in 7', and T_ are the homogeneous coordinates of the
corresponding points in the three-dimensional projective spaces &,
= P(T,).

The equation (z:-w) = 0 distinguishes a five-dimensional hypersurface
Z on £, Q.. The points of this surface parametrize complex zero-lines
in the Minkowski space; given a fixed point (2, w) € &, there exists a corre-
sponding zero-line in CM,, given by the equations:

Zp = laptt, Wy = Uspw”. (2.1)

Conversely, for a fixed point 4 € CM,, the equations (2.1) considered
as conditions for (2, w), generate two reciprocally orthogonal two-dimen-
sional subspaces in T, and T_, which, on the other hand, determme
on % a quadric Z(u) L, (0)QL _ (u).

The foregoing correspondence enables us to identify the compactifiable
(and complexifiable) Minkowski space CIM with the manifold of all two-
dimensional subspaces in 7, (or in Z7'_). Corresponding tautological
two-dimensional fibre bundles over CM, denoted by 8., are called spinor
fibre bundles.

In virtue of (2.1), over CM, there are natural trivializations of these
fibre bundles; 24 are the coordinates in the fibre 8, (u), w* are the coor-
dinates in the fibre 8_(u), u € CM,.

Given a domain U in a compactifiable real Minkowski space M, we
shall denote by L(U), L, (U), L_(U) the real submanifolds in the complex
manifolds &, &, , of the form:

= U2w), L. (0)=U2Z.(v).

ueU ueU

Let us put L = L(M), L, =L, (M). Each of the manifolds L, and
L_parametrizes the (real) light rays on the real Minkowski space M,
whereas the manoifold L parametrizes pairs of intersecting world lines
on M (or, in other words, the complex zero-lines in CM, passing through
M). We have

L, ={geZ,: Im(2°%, +2'2,) = 0},.
_ ={weZ_: Im(w,@” +w, ") = 0},
L={zweL: zel,,wel}.

The manifolds L, are real hypersurfaces in the spaces #,, whose
Levi- forms are non-degenerate at any point p € L, and have one positive
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and one negative eigenvalue on Tj(L,), i.e., L, are strongly 1-concave
manifolds.

The manifold L, of co-dimension 2 in the complex manifold %, has
singularities on a fully real submanifold

8 = {(z, w) e L: (w4, w®) = (74, 25)}.

For all p e L\S we have dim T} (L) =3, and for any e R\ {0}
the Levi form L, ,(L) has on T7 (L) one positive, one negative, and one
zero eigenvalue, i.e., L is a 1-concave and, at the same time, weak 2-con-
cave OR-manifold outside 8.

Further, let Z be a trivial n-dimensional fibre bundle. We shall also
assume that the domain U < M is such that its intersections with all
light rays are connected and simply eonnected. Further, let us also denote
by H*)(L(TU), GL(n, C)) (resp. H*(L,(U), GL(n, C))) a set of all OR-fibre
bundles H, topologically equivalent to B and moreover analytically equiv-
alent to B on each quadric L(u), w € U. The last statement means that
the (0, 1)-form indexing the fibre bundle B, can be represented on cach
quadric L(u)

Olo) = Ky 0Ky, (2.2)

where the function K, with values in GL(n, C) smoothly depends on
the parameter u e U. .

For one-dimensional topologically trivial fibre bundles for instance,
the condition (2.2) holds automatically.

In the sequel we shall put Hy(m, k) = E,Q 0(m, k), where 0(m, k)
is & one-dimensional fibre bundle over £, ®.%_, the holomorphie sections
of which are holomorphic functions on 7', QT_ of homogeneity (m, k)
with respect to variables (2, w)eT, QT_.

Theorems 1.2, 1.3, 1.5 applied to the OR-manifolds L(U), L,(U),
L_(U) enable us to state, first, that the spaces of CR-fibre bundles
H"'(L(U), GL(n, C)) and H*'(L,(U), GL(n, C)) are non-trivial (and
infinitely dimensional) and, secondly, that among spaces of cohomologies
with coefficients in the fibre bundles H,(m, k) there are in general no
other non-trivial (infinitely dimensional) spaces but the spaces H* (Li (U),
Hy(m)), H'(L(U), By(m, ¥)) and H*(L(U), Hy(m, k).

R. Penrose’s transformation enables us to identify, in a surprisingly
natural way, the elements of these spaces as cohomologies, and also the
fibre bundles #, as physical fields on Minkowski spaces.
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2.2. The Penrose transformation and criteria of solvability of the tangent
Cauchy-Riemann equations on L(U). Let a OR-fibre bundle F, be indexed
by the elements 0 e H"'(L(U), GL(n, C)), and let K = K (u, 24, w?)
be a function satisfying (2.2). Let d, = z2w® 8/0u?® be an operator of
differentiation along light lines. (1.2) implies that the function (d,K)K™!
is holomorphic on éach quadric L(u), u:€ U, and therefore can be repre-
sented in the form

(LK) K™ = 24w? a p(u), (2.3)

where {a,z} are smooth functions of u e U.

We shall consider a 1-form a = a gz du?® in the domain U < M.
It is determined by the given construction up to the gauge a ~a
=b"'db+b"'ab, where b is a GL(n, C)-valued smooth function. Thus
the form a determines a GL(n, C)-connection V, in the fibre bundle #
over U c M. The correspondence 620 = V, will be called the Penrose
transform of the form 0.

For the elements of cohomology spaces with the coefficients in the
fibre bundles Fy(m, k) the definition of the Penrose transforms depends
rather strongly on the numbers m and k. 'In the cases which are most
interesting for us these definitions are the following: If a fixed function
X, satisfies (2.2), or, in other words, a form a satisfies (2.3), then, for
¥, e H(L(U), By(—1,0)), ¢, c H(L(T), By(—2, 0)), and 2 e H'(L(T),
End H,(—1, —1)) we shall put

=Y, = fK Y, nehdey, O, =Pp, = fKtpAz“dzA,
FA) Zar Lo
+ +
(2.4)
2 a '
0w =20 = f .K(WA'—a—z—z,—Q) K-IAZAdZA. B (2.4Y)

L4 (u)

For F, e H*(L(U), By(—3, —1)), @, e B*(L(T), By(—3, —2)) and
- J e H*(L(U), End H,(—3, —3)) we shall put

f, =oF, f Ko
L(u)

gA =gG+ = f ZAKG+AzdeB/\wB'de" (2.5)
L(u) .

§ =PJ =B dut” A dutY Adu gz, (2.5Y)
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where
§B = ff KEJE 2w Asf depnwd’ dw .
L(u)

The Penrose transforms for cohomologies with coefficients in #,(0, —1),
L,(0, —2), Hy(—1, —3), Hy(—2, —3) are defined analogously. Let us
note that the fields 1/;“ FLZ 41 € etc are determlned by the given construction
up to the gauges 4 ~ ¢4 = by?’; @, ~ p, = bp, etc., where b is

a gauge function for the connection a.
The following result sums up (and to a certain extent generalizes)

a number of statements given in [47], [9], [12], [49], [24], [30], [14],
[20], [21], [7].

THEOREM 2.1. The Penrose transformation of the form (2.3) establishes
a canonical isomorphism between the space of the COR-fibre bundles
6e H*'(L(U), GL(n, C)) and the space of all smooth connections V, = 20
in the fibre bundle I over U. Moreover, the OR-fibre bundles from
H"' (L, (U), GL(n, C)) are iransformed into solf-dual (resp. amti-self-dual)
conmections.

Subsequenily, for fived 0 ¢ H"'(L(U), GL(n, C)), the Penrose trans-
Jormations of the form (2.4), (2.5) estabhsh an isomorphism of the cohomo-
logy spaces H'(L(U), B,( —1 0), H'(L(U), By(—2,0)), H(L(T),
By (-3, —2 ), Hz( (U), By(— —1)) with the spaces of smooth seclions
over U of the fibre bundles E®S_®A2/S+; BEQA8,; BEQS, Q4’8 . @A°8_;
B (A8, )QA8_, respectively. If, moreover, 0 e H*'(L,(U), GL(n, C))
then the elements of the spaces H'(L,(U), H,(—1,0)) and H'(L (U),
Ey(—2, O)) are tramsformed into the solutions vy and ¢, of the Weil-Dirac
equation Vi4'y,, = 0 and the @’ Alembert equation [,9, = 0, respectively,
in the self-dual field a = 20.

Finally, the correspondence of (2.4) and (2.5) realizes the isomorphisms
of the spaces H'(L(U), End By(—1, —1)) and H*(L(U), End Hy(—~3, —3))
with, respectively, the space of smooth sections of the fibre bundle
End B® A*8, ® A*8_ and the space of smooth 3-forms j on U with values
in End H, satisfying the equation dj-[a,j] = 0. -

From Theorems 2.1 and 1.2, as a simple corollary, follows

THmoREM 2.1a. Let the (0, 1)-forms 0, @, ¥, represent elements of the

respective spaces of ome-dimensional cohomologies on L(U) (or L, (U)).
Then a necessary and sufficient condition for the Cauchy—Riemann equations

of the forms a7 9,0 = 0; 9,8, + 0, = D.; 0,7y + 0y, =¥, to be solvable
(resp. locally solvable in a neighbourhood of any point) is that the Penrose

56 — Proceedings...
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transforms 26, 9, P¥,. of these forms be equal to zero (resp. real-ana-
lytie) on U.

Let us note that a following criterion for the §,-exactness of the forms
&, , ¥, in a neighbourhood of a fixed point p e L, (U) was formulated
in [17] as a development of Penrose’s ideas [38]: the singular spectrum of
the forms 29, , ¥, must not contain zero-bi-characteristics correspond-
ing to light rays 1,(v).

2.3. The Maxwell-Yang-Mills, Weil-Dirac and Klein-Gordon equations
as the Cauchy-Riemann equations. Let L) (U) denote the j-th infini-
tesimal neighbourhood of the manifold L(U) < L,(U)XL_(U). We
shall denote by H*'(LY(U), GL(n, C)) the subspace of OR-fibre bundles
in H*(L(U), GL(n, C)) indexed by smooth (0,1)-forms 6 on L, (U)x
x L_(U) which, first, satisfy on LY (U) the Cauchy—Riemann—Cartan
equation of the form §0+0A0 = X, <z w)’*. where X, , is a smooth
(0, 2)-form on L(U) representing some element of the space H?(L(T),
End Ey(—j—1, —j ——1)), and, secondly, are considered up to the g-gauge
of the form

- 0 ~0 =K 5K ++K 0K +0({z-w)ith).
We shall denote by H?(LY(T), H,), where § € H!(LY(T), GL(n, C)),
a subspace in HY (L( U), E’o) given by smooth H-valued (0, ¢)-forms
o on L, xXL_ satisfying on L9 (U) the Cauchy-Riemann equation
.o+ 0Aw = Y;,{z-w)™ and considered up to the 7-gauge w ~ &
= w+g,a+0Aa+0({e-wdth). : _

It was proved in [14], [20] that any element of the space H*'(L(T),
GL(n, C’)) can be extended (in only one way) to an element of the space
H"Y(I®(T), GL(n, C)) and can be represented by the form 6 on L, (T) x

xL_(U) satistying the relation

0:0+0A0 = dJ{z-wdd, (2.6)

Moreover, the elements of the space H™' (LW (T), GL(n, C)) can be
indexed by the forms 0

0 =0+2¢ w, (2.7)

where 0 satisfies (2.6) and 2 e H'(L(U), EndBy(—1, —1)).
Furthermore (see [20], [21]), for fixed 6 satisfying (2.6), the elements

v,,9,, 2 of the spaces H'(L(U), H,(—1,0)), H'(L(U), Hy(—2, 0)) and

H'(L(U), End B,(—1, —1)) with a suitable gaunge satisfy the relations
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of the form
OV, +O0AY, =G, {zw),

— (2.8)
0D, +0AD, =T, {z-w).

The Cauchy-Riemann equations of the forms (2.6), (2.8) proved to
be equivalent (on a twistor space) to the Maxwell-Yang-Mills, Weil-Dirac
and Klein—Gordon equations, respectively.

THEOREM 2.2 (G. M. Henkin, Yu. Manin [14], [20], [30], [32]). In
order that the forms 0 and J; ¥, and G ; O, and F, salisfy the equa-
tions (2.6) and (2.8) it is necessary and sufficient that their Penrose transforms
of the forms (2.3)—(2.D) satisfy the equations

3
asf+1a, +f] =— j, (269
.1 1
Vaa¥® = 5594, Oow =—Fi (2.81)

respectively, where f = da+-ana 18 the curvaiure form of the connection a,
and * 48 the Hodge operator corresponding to the Minkowski metric,

a ’ 7
Viw = sz T4, O = V4TV,

From Theorems 2.2 and 2.1, as a corollary, we obtain the following
result.

TeEOREM 2.3 (B. Witten [60], T. Isenberg, Ph. Yasskin, P. Green
[24], G. M. Henkin, Yu. I. Manin [14], [20], [32]). The Penrose transform-
ation establishes a canonical isomorphism belween :

(a) the space of fibre bundles H™'(L®(U), GL(n, C)) and the space
of all smooth GL(n, C)-connections in H satisfying the Yang—Mills equation

axf+[a, /1 =0,
(b) the space H'(L®N(U), H,), where 0 € H*'(L®(T), GL(n, C)) and
the space of the smooth solutions on U of the Weil-Dirac equation:
Vaiayp? =0,
(c) the space H'(L™(U), Hy), where 6 = (604242 -w)) e H*(LN(T),
GL(n, C)) and the space of solutions of the Klein—Gordon equation

O, +wp, =0,
where o = PLO.
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Theorem 2.4a (for analytic connections @) was obtained by E. Witten
[60] and by J. Isenberg and P. Green [24]. Theorems 2.4b and 2.4¢ (also
for analytic fields a, v, ,) were obtained by Yu. I. Manin and the
present author [20], [32]. A generalization to the case of non-analytic
fields @, y, and ¢, was obtained in [14], [15].

2.4. Super-symmetrical Yang-Mills equations and the tangent Cauchy-
Riemann equations on the space of super-light rays. Physicists deal mostly
with interacting Yang-Mills, Dirac or Klein—Gordon (Higgs) fields, and
not with free ones. Super-symmetrical interactions of these fields (so
called N-super-symmetrical Yang-Mills fields, & =1, 2, 3, 4) are espe-
cially popular at present. Not entering into details, let us note that besides
the connection field @ (the Yang-Mills field) these equations contain:
for N =1, two spinor fields ¢y, and y, (the Dirac fields); for N =2,
two scalar fields ¢, and ¢_ (the Higgs fields) and four spinor fields
Vs Yary Xay Xar3 for N = 3, 4, six scalar fields and eight spinor fields.
Moreover, the spinor fields take values in EndH® S @48, ® 4, and
the scalar fields take values in End F 4’8, ®4,, where 4;, 4, are the
subspaces of respectively, even and odd elements of the Grassmann al-
gebra /. The equations of motion in the 2-super-symmetrical Yang—Mills
theory take the form

O s+ {w,. 245 £ 3 [l 0.1 2] =0,
V¥ 3oy, var] =0,
V- e 245 30y, 2471 =0, (2.9)
2V P A {y s 2T
+{t - v IV pss 91— 94, ViZe D) =0,

where the symbol A* denotes A’ and A, respectively; V. = '@%Z’ +
+[e*4,-1; [+, ] and {-,-} are the symbols of the commutator and
the anti-commutator.

On the basis of Theorem 2.1, for any smooth fields a, v, , v4, x4,
%43 @5 defined on U < M, one can find uniquely determined (up to
d.-exact forms) smooth forms 0, ¥, X, , D, , 2, defined on L(U) with
values, respectively, in End EQ0(k, l) ®4;, where ¢ = 0, 1; (k,1) = (0, 0),
(-1,0), (0, —-1), (—2,0), (0, —2), (—1, —1), such that, first, the Cau-
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chy-Riemann relations of the form
0¢04+-0A0 =0 on L¥(T),
AW, +0, .1 =0, GX,+[0,X.]1=0 onLO(D), (210)
0,0, +10,0,] = {¥,, X.},
0y 2410, 0] =2{¥,, X }+2{X,, ¥} on L(D)
are gatisfied and, secondly, we have

PD, =gy, é9=[9’+79’—]’

where £ is the suitable modification of &, accounting non-closeness of
forms @, and Q.
On the basis of [15], [32] the following result was obtained in [18].

THEOREM 2.4 ([18]). In order that the fields a, ;. % .1, Py on U satisfy
the super-symmetric Yang—Mills equations (2.9) it is necessary and suffi-
cient that the fields 0, ¥, , X, , D, , Q corresponding o them in virtue of
the relations (2.10), (2.11), satisfy the Cauchy—Riemann equations of the
Jorm:

5¢¢+[07 D14+ {¥,, Xi}—%[.(), o, 1<z wy =0,
02+[0, Q14+-2{¥,, X }+2{X,, V_}+
+[D,, P 1wy =0 on LO(T),

O, +10, Pul+3 [Py, Prl(z-w) = 0’} '(2 12)

0X, +10, X, 1+ 3[P,, Xz1<z w) =0, '

on L®(T),

00+ 0A0+3(@R2+10, 2]) (- w)+3({¥,, X_}+{X,, P} <z wd+

+%[¢+: D_1<z-w)?

on LO(T).

At firgt sight the relations (2.12) seem to be as complicated as the
equations (2.9). However, the equations (2.12), and not (2.9), are the
ones which have a clear geometrical meaning.

In fact, following A. Ferber [10] and E. Witten [50], let us consider
first the projective spaces of super-twistors #% (resp. dual super-twistors
£7) with four even coordinates 24, 2z (rvesp. w,,w®) and N odd coor-
dinates £* (resp. #*), and secondly a super-manifold Zy(U) = {(2, ¢;
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w,n) € LY xZN: (g-w)y =y, (2, w) € L(U)}, parametrizing the ana-
logues of light rays on the Minkowski super-space.
We shall examine the OR-submanifolds of the form

LZ-IY = {(Z, C) Egﬁ.’:-]ﬁm(zﬂzo,_}.zlzl,) —_ Clcfk}’
IN — {(, 1) .2 Tm (o ) = 73,
Ly(U) = (I xIL¥)nZy ()

on these super-manifolds.

We shall denote by L{)(U) the j-th infinitesimal neighbourhood of
the manifold Ly (U) < LY X LY. Now, we shall examine on the CR-mani-
fold L% xI* the (0,1)-form @ given by

@ = 0+!‘F+ C1+X+ Ca‘i‘l]j_ﬂz‘f‘X-’?l‘l'
+@, 818+ Dy e +2(81m1+ Cama), (2.13)

where the forms 0, ¥, , X, ,®d, and £ satisfy the relations (2.10). In
virtue of (2.10) we have 9,0 +@A0 = 0 on L(U), i.e., the form @ defines
a OR-fibre bundle over L,(U) which is trivial over any quadric L(u),
wel.

THEOREM 2.4b ([181). In order that the form O given by (2.13) be gauge-
equivalent to a form satisfying the equation

3.0+0A0 = 0((<e-w) — L*1)?) (2.14)

it 4s mecessary amd sufficient that the components (0, ¥, X, , D, , Q) of
the form © satisfy the Cauchy—Riemann equations of the form (2.12).

The equality (2.14) means that the form @ defines a CR-fibre bundle
over IZ{(T). ;

From Theorems 2.4a and 2.4b and their analogues for other super-sym-
metrical Yang-Mills theories results the following

TaEOREM 2.4 (E. Witten [60], G. M. Henkin [18]). The Penrose trans-
Sformation establishes an isomorphism of the space of CR-fibre bundles
over L&), N =1, 2, 3, trivial on all quadrics L(w), w € U, with the space
of (smooth) solutions of the N-symmeirical system of Yang-Mills equations.

For N = 3 (and for holomorphic fields and fibre bundles) this result
was obtained in a paper by E. Witten [60]. More exactly, in [50] the
equations of motion .of the 3-supersymmetrical Yang—Mills system were
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reinterpreted as the conditions for the integrability of a connection along
super-light rays in the Minkowski super-space. An extension of Witten’s
result to the case of the remaining N =1, 2, 4 was obtained in [18].

For the formulation of this result in the case of N = 4 it is necessary
to employ a natural extension of the well-known twistor transformation
(see [8]) J establishing a canonical isomorphism between the spaces
HL,(U), 0(2s—2,0)) and H(L_(U), 0(0, —2s—2)), s =0, }, 1, onto
the OR-fibre bundles over L,(U).

THEOREM 2.5 ([18]). The Penrose lransformaiion establishes an isomor-
phism between the space of OR-fibre bundles over L,(U) invariant with
respect lo the twistor tramsformation I~ and trivial on all quadrics L(u),
u € U, and the space of all (smooth) solutions on U of the 4-supersymmetrical
Yang—Mills system.

For N = 3, 4, recently, A. A. Rosly [39] has discovered another in-
terpretation of the Yang-Mills relations as integrability conditions
along some tangent subspaces (of purely odd dimension) of the Min-
kowski super-space.

In comparison with Theorem 2.4, Theorems 2.4a and 2.4b from [18]
contain additional information — a twistor interpretation of all fields
and equations entering into the super-symmetrical Yang-Mills system.
Let us note that these results give development of a paper by Yu. I. Manin
[31], where the cohomological component analysis is given on Z,(U)
of the 3-super-symmetrical Yang-Mills equations on U.

Interpretations in terms of Cauchy—Riemann equations over twistors
of some other classical (not super-symmetrical) interactions between the
Yang-Mills-Higgs and Dirac fields are obtained in papers [15], [18], [29].

‘We have touched here only part of the works dealing with a twistor
interpretation of gauge fields on a plane Minkowski space. The problem
of establishing the twistor theory for non-plane Minkowski spaces was
discussed in a very impressive paper by R. Penrose [36]. Further devel-
opments of this work were obtained by C. Le Brun [27], [28], T. Isenberg,
Ph. Yasskin [24], Yu. I. Manin, I. Penkov [33].

The twistor theory yields, as we know great results in establishing
exact (and physically interesting) solutions of the self-dual Einstein and
the Yang-Mills equations (see M. F. Atiyah [3], R. Penrose [36], R. Ward
[48] and others). One can hope that the twistor interpretation of non-
self-dual equations can also lead, to some new interesting solutions.
The first non-trivial investigations of this kind are contained in papers
by P. Forgacs, Z. Horvath, L, Palla [11] and Yu. I. Manin [31].
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