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Primitive Ideals in Enveloping Algebras 

1. Introduction 

1.1. A basic problem in the theory of Lie algebras is to determine up to 
equivalence all irreducible representations of a given Lie algebra g. Here 
we shall always assume that g is finite-dimensional over a field Jo which 
is algebraically closed and of characteristic zero. For finite-dimensional 
representations the problem quickly reduces to the semisimple case where 
the results are classical. For infinite-dimensional representations even 
the simplest non-commutative Lie algebras admit an enormously compli-
cated representation theory. Now, the problem is equivalent to determining 
up to isomorphism all simple modules of the enveloping algebra Ï7(g) of g. 
However, this latter viewpoint allows us to define a primitive ideal of 
Î7(g) to be the annihilator of a simple Z7(g) module and then to classify 
the set Prim J7(g) of all primitive ideals of Ï7(g) which is better behaved. 
This procedure turns out to be rather like selecting out only the continuous 
representations of the corresponding Lie group and there is a remarkably 
similar but not quite precise correspondence between these two theories. 

1.2. Dixmier [8] first drew serious attention to the study of Prim Ï7(g) 
and the early work was inspired by Kirillov's orbit method used in classi-
fying unitary representations of real nilpotent (and subsequently solvable) 
Lie groups. Let G denote the algebraic adjoint group acting on the dual g* 
of g. Assume that g is solvable. Then, by an appropriate application of 
Mackey's theory of induced representations and some further ideas from 
ring theory and algebraic geometry, one can construct a map /*-> J(f) of 
g* onto Prim Ï7(g) which factors to a bijection of the orbit space g*/<? onto 
Prim Ï7(g). Por appropriate topologies this map is known to be continuous 
and even a homeomorphism for g nilpotent [6]. The possible bicontinuity 
for g solvable is still unresolved and involves delicate questions pertaining 
to inclusion relations between primitive ideals. The main part of this 
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work was already completed by 1974 and has been fully described in [4, 8]. 
For more recent results see [36]. 

1.3. Already in 1978, Dixmier reported [7] on the considerable progress 
made in the classification of Prim 17 (g) for arbitrary g. We are now in 
a position to describe a complete classification theory at least for g algebraic. 
This consists of two parts : the semisimple case, and the reduction to the, 
semisimple case. I t is convenient to describe the two cases quite separately, 
as they follow a rather different philosophy. The former requires a quite 
new approach, whereas the latter still involves the method of induced 
representations ; but is more subtle than the orbit method, and in parti-
cular, the relationship to g*/(? becomes blurred. For example the intersec-
tion theorem of algebraic geometry carries over by bicontinuity to the nilpo-
tent case, whereas it fails for g semisimple (with respect to Gelfand-Kirillov 
dimension). Again, even disregarding the complication involved with the 
Goldie rank, an orbit in g* may give rise to more than one primitive ideal [20]. 

1.4. Eeturning to the question of describing all simple U(Q) modules we 
let An denote the Weyl algebra of index n. I t is the (non-commutative) 
algebra generated by the differential operators djdx19 djdxz,..., djdxn 
over the polynomial ring Sn =h[x1, x2,..., a?w]. The representation theory 
of An is much simpler than that of an arbitrary enveloping algebra ; but 
even this can be very complicated. Given g nilpotent and J e Prim Z7(g), 
one has U(Q)IJ = An (where 2n = dimGf given J = J(f)). This reduces 
the study of simple ?7(g) modules with annihilator J to the study of simple 
An modules. In particular, 8n is a simple An module in an obvious fashion 
and leads to a simple Z7(g) module with annihilator J. Moreover, this 
module lifts in a suitable sense to a unitary representation of G and this 
construction gives rise to a bijection of Prim 17(9)' onto the unitary dual 
G of G. Though this is only a very simple example, it indicates the existence 
of a general principle, which is beginning to be more precisely formulated. 
Finally, for physicists, we remark that An is just the algebra of canonical 
commutation relations for n degrees of freedom and the above module 
was the one used by Heisenberg in describing the harmonic oscillator. 
There are many further correspondences and thus possibly room for 
application of the classification theory of Prim 27(g) in physics. 

2 . The semisimple case, preliminaries 

2 .1 . The semisimple case is far too rich even to just describe all the results 
here. Consequently-we shall concentrate on just one aspect of the classiti-
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cation theory, which was formulated in ([17], 7.4), a conjecture which 
has now been fully resolved. For a broader outlook we refer the reader 
to the review given in [23] and to Jantzen's forthcoming book [15]. 

2.2. Assume g is semisimple. Let g = n+ ®i) ©rt~ be a triangular decomposi-
tion ([8], 1.10.14) with B = B+uB~ being the corresponding decomposition 
of the root system B. Let Q e if denote the half-sum of the positive roots. 
For each a e B set a : = 2 a/(a, a) and let sa e Aut I)* denote the reflection 
X\->saX s= X — (oT, X)a. The group W generated by the sa, a eB, is called 
the Weyl group (for the pair g, Ï)). It plays a fundamental role in the repre-
sentation theory of g. 

2.3. A highest weight module of highest weight X— gel)* is any J7(g) 
module generated by a vector ex (called a highest weight vector) satisfying 
Xex = 0, VX ert+ and JHex = (X—Q,ff)ex, \/M el). For each X elf there 
exists a unique universal highest weight module M(X) of highest weight 
X~Q, and this admits a unique simple quotient L(X). We set J(X) 
= AmiL(X), which is a primitive ideal. 

2.4. Let Z(Q) denote the centre of Z7(g). According to Duflo ([10], II, 
Thm. 1) the map X^J(X) of If into PrimZ7(fl) is surjective% Composing 
this with the map J"H* JC\Z(Q) of Primï7(g) into MaxZ(g) we get, by a result 
of Harish-Ohandra ([8], 7.4) a surjection of I)* onto Max#(g), which factors 
to a bijection fy*/TF^Max#(g). Consequently, Prim U(Q) is sandwiched 
between I)* and IfjW and its classification reduces to describing the fibres 
of these maps. 

2.5. Let P(B): = {X elf\(a", X) eZ, Va eB} denote the lattice of inte-
gral weights. For expository purposes it is convenient to limit attention 
to this portion of I)*. In general similar results hold under appropriate 
modifications; but this is a subtle phenomenon and it is a good test of 
a proof if it works without this restriction. Set P(B)+ = {X eP(B)\(a, X) 
> 0, Va e B+}. It is a fundamental domain for the action of W on P(B). 
Set P(.K)++ = {XeP(B)+\(a,X) ^ 0, VaeB}9 which forms the set of 
so-called regular elements of P(B)+. 

2.6. Fix X eP(B)+ and let X denote its image in ifjW. Then Annz(fl)ilf (wX) 
is a maximal ideal Z% of Z(Q) independent of the choice of w e W. From 
this it is relatively easy to show that M(wX) has finite length with composi-
tion factors amongst the L(yX): y e W. Let b(w,y): = [M(wX): L(yX)] 
denote the number of times L(yX) occurs in the composition series for 
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M(wX). These numbers are independent of the choice of X eP(B)++ (with 
some well-defined degeneration for X eP(B)+). They play a fundamental 
role in the representatiok theory of g, and in particular in the description 
of Prim Z7(g). Moreover, it was partly in an attempt to understand this 
role that led Kazhdan and Lusztig to formulate [27] their famous con-
jecture about these coefficients and which eventually led to their descrip-
tion in purely combinatorial terms. This work was reviewed by Jantzen 
in his talk at this congress [14]. It suffices to say that the b(iv, y) may be 
considered as known and, with respect to the Bruhat order, they form 
a matrix which is upper triangular with ones on the diagonal. It hence 
admits an inverse with integer coefficients which we denote by a(w9 y). 
Set 

aiw) = y!a(wiy)yli wew. 
yeW 

These form a basis for the group ring ZW. 

2.7. Take J ePrimZ7(g). By Goldie*s theorem, Z7(g)/J embeds in its 
ring of fractions, which is isomorphic to a matrix ring over a division 
algebra. The Goldie rank rk(ür(g)/J) of 17(g)/J is defined to be the rank 
of this matrix ring. It is an important invariant of J. For example if J 
= AnnJf for some simple finite-dimensional module M, then rk?7(g)/J 
= dim-M" and yet rk Ï7(g) /J is finite even when dimJkf is infinite. In view of 
Duflo's parametrization of Prim 17(g) discussed in 2.4 it is natural to define 
for each w e W the function pw on P(B)+ by 

pw(X)=^iiU(Q)IJ(wX)). 
We shall see that each pw extends to a polynomial on If. These poly-

nomials not only lead to a classification of Prim Ï7(g), but also to a remark-
able connection with W. 

2.8. By the Poincaré-Birkhoff-Witt theorem, U(Q) admits a filtration 
whose associated graded algebra identifies with the algebra of polynomial 
functions on g*. Then tot each J e Prim Z7(g) we can consider the variety 
93 (gr J) c g* of zeros of gr J. We shall see that this variety is always irre-
ducible and we describe it explicitly. (Irreducibility fails for g solvable; 
but by a general result of Gabber [28] one always has equidimensionality). 
For this, let us identify g* with g through the Killing form and call X e g 
nilpotent if adgJST is a nilpotent endomorphism of g. The set 5ft of all nilpotent 
elements of g is, of course, ff-stable and forms a finite union of G orbits 
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called nilpotent orbits. Through étale cohomology Springer [35] defined 
an injective map ß: 9t/#->lT. We shall see that this leads to a link with 
the correspondence described in 2.7, a totally unexpected and remarkable 
fact, which in its turn inspired a simpler version [21] of Springer's con-
struction. 

3 . Semisimple case, results 

3.1. Fix w e W. The primitive ideals J(wX), X eP(B)+, are pairwise distinct 
because their intersections with Z(Q) are distinct maximal ideals (2.4). 
By the Borho-Jantzen translation principle ([5], 2.12) the inclusion rela-
tions in the fibre Xx: = {J(wX): w e W} over Z% are independent of the 
choice of X eP(J5)+ + (with some well-defined degeneration for X eP(JB)+). 
We might therefore guess that these relations can be described purely 
combinatorially in terms of W. Indeed, for any subset 8 <= ZW let [8] 
denote the subset of {a(y): y e W} which occur with non-zero coefficient 
in the expansion of some s e 8 as a linear combination of the a(y) : y e W. 

PROPOSITION. Assume XeP(B)++. Por each pair w,yeW one has 

J(wX) => J(yX)oa(w) e [a(y)W]. 

This question was formulated and the implication <= was established 
in [18]. The conjectured reverse implication was established by Vogan 
[37]. I t shows that the a(w) completely determine the inclusion relations 
between primitive ideals, which in view of Kazhdan-Lusztig's theorem 
can be described purely combinatorially. Lusztig [29] used this result to 
establish an isomorphism between a Hecke algebra derived from W and 
the group ring Q(t)W. This was a purely combinatorial question which 
needed Prim Z7(g) for its solution! 

3.2. Fix w e W. Since Q is regular, one easily checks that a(w)Qm cannot 
vanish for all m eN. Let n denote the least non-negative integer with 
this property. Define pw as in 2.7. Then ([19], I I , 5.1, 5.5) 

THEOREM. For each w,y e W, one has 
(i) pw = a(w)qn, up to a scalar. 

(ii) Suppose XeP(B)++. Then pw(X) =py(X)<*J(wX) -=J(yX). 

The determination of the scalars in (i) has not yet been fully completed. 
I t is a delicate question which involves in part the construction of suffi-
ciently many completely prime, primitive ideals (i.e. for which the quotient 
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algebra has Goldie rank one). Apart from this, we see that the a(w) deter-
mine the Goldie ranks of the primitive quotients, which by (ii) separate 
the elements of Xx> This separation is better than that given in 3.1, which 
is highly implicit; for example, it allows one to calculate card Xx (see 3.3). 
One can have#w(A) = 0 if X eP(B)+ and this exactly describes the degen-
eration of the fibre Xx alluded to in 3.1. 

3.3. A deep consequence of 3.1 and 3.2 is that QWpw is a simple W module 
Px say of type r e W. Set (%x)t = {J(wX)\pw ePT}. ïTote that this is actually 
a partition of W into so-called double cells. Then ([19], I I , 5.5) 

THEOREM. The distinct py: J(yX) e (X%)rform a basis for PT. Inparticular 
if X eP(JB)++ then c a r d ^ ) , = degr. 

This result may be restated by saying that basis vectors for certain 
irreducible representations of W classify Xx and hence Prim ?7(g). These 
bases are implicitly determined by 3.2(i); but their explicit description 
is still an interesting open question. Except for type An9 not all irreducible 
représentations of W occur as a PT. Those that do occur are again implicitly 
determined by 3.2. From this and by some case by case analysis, Barbasch 
and Vogan [1, 2] showed that these representations are just the special 
representations in the sense of Lusztig, whose definition is given in terms 
of the classification of irreducible representations of finite Chevalley 
groups. This remarkable coincidence is not yet fully understood. 

3.4. Eecall the definition of the map ß (2.8). 

THEOREM. Take % eW occurring as a Pt. Then r e Im/? and for each 
J e (Xx)x, 93(gr J) is the Zarishi closure of / ^ ( T ) . 

In particular, S3(gr J) is independent of X eP(B)'h and J G (XX)Z> This 
was proved in ([16], 2.6). From this, by the result for induced ideals and 
some case by case manipulations, the above theorem was established in 
the present so-called integral case by Borho and Brylinski [3]. A general 
proof was given in [24]. I t was based on Gabber's equidimensionality 
theorem (2.8) and a reinterpretation of Springer's construction formulated 
in [21] and established by Hotta [13]. The proof uses a deep separation 
theorem of Gabber ([25], Sect. 7). I t is worth noting that not all nilpotent 
orbits occur in the integral fibres Xx > X eP(B)+. However if one takes the 
union over all possible fibres X%, Xeif, then one expects to find all the 
nilpotent orbits. This does not seem to have yet been checked but in any 
case has no elegant proof. 
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3.5. A more delicate question than the above is to be able to associate 
a completely prime primitive ideal to each nilpotent orbit. This is an 
open problem; but it is known that one can sometimes have two ([20], 
Sect. 4). A further open problem is to determine the composition factors 
of primitive quotients considered as t7(g) — U(Q) bimodules. One expects 
the answer to be determined by the a(w), see [22]. 

3.6. Returning to the question raised in 1.4 we remark that the Oonze 
cmbeddnig [26] of Z7(g)/Annlf(X) into An with n = cardB+ makes An 
flat left i7(g)/AnnJf (X) module for X regular. Combined with work of Hodges 
and Smith this eventually ,gives gldimZ7(g)/AnnJf (A)< cardiï for X 
regular. Yet gldimï7(g)/Ann.M"(A) = oo for X non-regular. 

4. Reduction to the semisimple case 

4 .1 . I t is assumed that g = Lie(ö) where G is a connected linear algebraic 
group. This is a slight restriction, which can probably be overcome without 
much extra difficulty. Note that G acts by automorphisms in Ï7(g) and 
because 6? is connected, any ideal of #(g) or any two-sided ideal of Z7(g) is G 
stable ([4], 12.3). 

4.2. Let u be an ideal of g. If J G Prim £7(g), then Jn U(u) is prime ([8], 
3.3.4) but it need not be primitive. I t is therefore useful to be able to 
recognize, which prime ideals are primitive. This is provided by the fol- ' 
lowing result established by Dixmier ([9], Thm. 0) for Jc = C and by 
Moeglin ([30], Sec. 4) in general. 

THEOREM. The following two conditions are equivalent 
(i) JrGPrimDr(g). 

(ii) Je Spec U(Q) and (Fract TJ(§)jJ)° is reduced to scalars. 

4.3. Let ii be an ideal of g and take J e Prim Ï7(g). By 4.2 it easily follows 
that (Fract U[u)IU(vL)riJ)& = ft. In the commutative case this would, 
imply the existence of a unique dense G orbit in the subvariety of u* of 
zeros of Jnï7(u). The non-commutative case was first studied by Dixmier 
[9] and later completely analysed by Moeglin and Eentschler [32]. One 
has the following 
1 THEOREM. Talee J e Prim Ï7(g). 

(i) ([32], (2)). There exists K e Prim U(u) such that JnU(u) = O ^ -
geQ 
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(ii) ([32], (1) bis). Any two primitive ideals of TJ(u) satisfying (i) are 
conjugate under G. 

4.4. Preserve the notation and hypotheses of 4.3. Set B = {b e G\bE = X}. 
This is an algebraic subgroup of G which need not be connected. Set 
6 == Lie(B) = { Z e g | [ X , K \ c K}. If I is a two-sided ideal of 17(5) we 
set Ind ( I , bfg) = f)g(U(Q)I)- Again by Moeglin and Eentschler [32, 33] 

geG 
we have the following 

THEOREM, (i) ([32], (3)) There exists I e Prim 17(b) such that I n U(u) = K 
and J = Ind(Z, bfg). 

(ii) ([33]) Any two primitive ideals of U(b) satisfying (i) are conjugate 
wider B. In particular there are only finitely many of them. 

4.5. From now on we take u to be the unipotent radical of g. Since K 
ePrim?7(u), we can write K =J(u) for some weu* (see 1.2). As a con-
sequence of 4.3 (ii), the G orbit of u in ut is completely determined by J. 
Set I) = Stabfl(w) : = {X e §\Xu = 0 } = { l e Q\u([X, U]) = 0}. One has 
& =^-|-U? and obviously I contains the two-sided ideal TJ(b)J(u). Set 

A.= E u®)(x-u{X)) 
XefynU 

which is again a two-sided ideal of Z7(Ij). According to Duflo ([8], 10.1.4,) 
we have 

PROPOSITION. There is a canonical algebra isomorphism 

-D« of U(b)IU(î))J{u) onto U(l))ILu®kU(u)IJ(u). 

4.6. Apart from a cohomology obstruction (here it is needed that u([l), u]) 
= 0), the existence statement in 4.5 results from thefactthat Ï) acts by deri-
vations on U(v\)[J(u), which, (1.4) being a Weyl algebra An, admits only 
inner derivations ([8], 4.6.8). Again An is central simple, and so Du sets 
up a bijection (which we shall also denote by D J from the set of two-
sided ideals of U(h) containing U(h)J(u) onto the set Prirowï7(5) of two-
sided ideals of U(l)) containing Lu. This takes primes to primes and so, 
by 4.1, primitives to primitives. Furthermore, Blattner's criterion ([8], 
5.3.6) gives 

THEOREM. If JxePTimuU(l)), then JQ: = IndfJD"1 (Jx), bfg) 
e Prim Z7(g). 
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4.7. In the above manner the classification of Prim ?7(g) is reduced to 
that of Primï7(J)) for some, usually smaller, subalgebras I). Indeed, for 
a given J e Prim 17(g) this process gives a sequence 14 j =u,u2>..-? of 
unipotent Lie algebras, of linear forms ux = u, u8, ..., % e u*, of algebraic 
groups 2?! = B, J?2, ..., of algebraic groups JBTQ = G, ffx, ... , of primitive 
ideals J0 = J, Jx, ..., Ji e Prim U(fy) and of primitive ideals Ix =1,1%, ... 
..., If ePriml7(b<), where J5̂  = Stab^.__l(J(%)), b4- = Lie(JBt-)> S* îs thö 
identity component of StabH< (#<), l)i =Lie(fl"i), ui+1 is the unipotent 
radical of 1 ,̂ ui+1 et£+1 is in the unique fl^ orbit determined by J{ (recall 
4.5), I{ is in the unique 2^-orbit (4.4) determined by the pair [J^19 J(u{)) 
and Ji = Du.(Ii). The process stops when ^ n ^ is complemented in l)t 
by a reductive Lie algebra r (Levi factor). Set rt = 2X> \ = l)t, p = I+n. 
Observe that rt is the unipotent radical of p. From the above construction 
it follows that there exists nerf such that w|^—ty. Then the above 
process may be collapsed to give J = Ind(D~1(JJ, pfg) ([12], Ohap. IV, 
Sec. 9). Here Jt differs very slightly from Jt (just with respect to the centre 
of r). This difficulty may be overcome by replacing Ind everywhere by 
Ind~ (see [11] for definition and subtleties involved). 

4.8. We now describe the parametrization of Prim Ï7(g) which results 
from the above reduction. Take g e g* extending n e n*. Observe that 
we can recover the sequence ï)0 = g, l)191)2,..., by setting fy = Stabr)._ (g\u.) 
where ut- is the unipotent radical of I ) ^ . Then, with p, rt, I, r as above 
we note that g ([I, rt]) = 0. Furthermore, one checks, with respect to the 
form (X, Y)i-*g([X, ¥]) defined by g, that p 1 c l)x-9 continuing inductively 
we obtain p i c l ; so, in particular, p is co-isotropic. Let Q(g) denote the 
kernel of this form and define I) (h) (h : = g |$) and u (u) similarly. An elementary 
calculation gives l)(h) = Q(g)+u(u), which applied inductively gives 
1(Z) c â(âO + tt (where I = g\x). Finally, assume that we have taken the 
extension g of n to satisfy g(x) = 0. One easily checks that t c 1(1) and 
so p = ß(flf)+n. 
4.9. Given g e of, we define (following Duflo [12], I. 8) a subalgebra peg 
to be of strongly unipotent type with respect to g if p is algebraic, co-
isotropic with respect to g and p =g(gr) + n where rt is the unipotent 
radical of p. We define g e g* to be of Duflo type if 

(i) There exists a Levi factor r of Q(g) satisfying g(t) = 0. (If this 
holds for one factor, it holds for all of them since they are conjugated 
under G(f): = Stab^ff).) 

(ii) There exists a subalgebra p of g of strongly unipotent type with 
respect to g. 
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We have seen that g in 4.8 is of Duflo type. Again if g e g* is of Duflo 
type then g\^ is of Duflo type ([12], Lemme 17). This is used to show that 
if g e g* is of Duflo type then the p constructed canonically in 4.8 is of 
strongly unipotent type with respect to g. Finally, Duflo ([12], Prop. 26 (i)) 
showed that if g e g* is of Duflo type and p is of strongly unipotent type 
with respect to g, then g is determined up to conjugation under G by its 
restriction to p. 

4.10. Let gj denote the subset of linear forms on g of Duflo type. Let 
p, rt, I, n be as defined in 4.8. Let xg be a Levi factor of g(#) (we remind that 
they are all conjugate under G(g))\ it is also a Levi factor of I. Given 
P G Prim U(x), let Q be the unique primitive ideal of Z7(I) containing 

K- S V(l)[X-n(X)) 
Xelnn 

such that QnU(x) = P . Set J(g,P) = I n d ^ D ^ ^ p t g ) . Then 
THEOREM, (i) Every J e Prim U(Q) talces the form J = J(g,P) for some 

g e çfD, PePvimU(xg). 
(ii) Given J(g9P) = J(g'9P')9 there exists seG such that sg=g'9 

SX g === Xg'f SJu =2 Jr • 

This means that the map (g,P)*->J(giP) factors to a bijection of 
U {P e Prim U(xg)}/(? onto Primür(g). Surjectivity is due to Duflo 

([12], IV, Thm. 7) and injectivity to Moeglin and Eentschler [33]. For 
injectivity the crucial part was 4.4 (ii). 

4.11. Eetain the notation of 4.10. It is easy to see that ik(U(xg)IP) 
>rk ( 17(g)/J(gr,P)), \fg eQ#,P ePrimU(xg)',but it is not quite obvious 
if equality holds. Again for each geQp the map P\-*J(g,P) factorizes 
to an order isomorphism of (G(g)PnmU(xg))lG(g) onto its image in 
Prim Z7(g). Here the order is defined by inclusion. It is not yet clear what 
might be the order relations with respect to the different g eQp, though 
one should expect these to be expressible, at least partly, in terms of the 
inclusion relations of the Zariski closures of the orbits Gg. For g solvable 
such a result would be equivalent to the bicontinuity of the map 
çf/G-r Prim U(Q) (recall 1.2) and this is still an open question. 

Section 4 is based on a talk of Eentschler given at Oberwolfach [34] 
in January 1983. I should like to thank Eentschler for explaining the 
results he obtained in collaboration with Moeglin [32, 33] and the work 
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of Duflo [12]. Eentschler has recently reported that the restriction on 
g being algebraic can be removed and has described the modifications 
that ensue. 
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