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We discuss nonlinear Hamiltonian partial differential equations (PDEs) and con-
sider the finite-volume case only. That is, we are concerned with equations for
functions (or vector-functions) u(t, x), where the space-variable x belongs to a
bounded domain and the equations are supplemented by appropriate boundary
conditions. We treat them as ordinary differential equations in infinite-dimensional
function spaces formed by functions of x and assume that they can be written in
the Hamiltonian form:

(1) u̇(t) = J∇H(u(t)).

Here J is an anti self-adjoint operator in the space of square-integrable functions,
H is a hamiltonian of the equation and ∇H is its L2-gradient (if H is a functional
of the calculus of variations, then ∇H equals to its variational derivative). The
equation (1) is Hamiltonian with respect to a symplectic structure, defined in the
function space by the form α2,

α2(ξ(x), η(x)) = ⟨(−J)−1ξ(x), η(x)⟩L2 .

Hamiltonian PDEs are of extreme physical importance since they describe pro-
cesses without dissipation of energy: (usually) the system’s energy equals the
hamiltonian H and preserves due to the same trivial arguments as in the finite-
dimensional case.
Below we discuss three groups of results concerning qualitative behaviour of

Hamiltonian PDEs. We have selected them according to our own taste, the refer-
ences are by no means complete.

1. Nearly integrable PDEs

Some of nonlinear Hamiltonian PDEs with one-dimensional space variable x in
a finite segment, supplemented by appropriate boundary conditions, are known
to be integrable. For example, the Korteweg - de Vries equation (KdV) under
zero-meanvalue periodic boundary conditions:

(KdV) u̇ =
∂

∂x
(−uxx + 3u2), x ∈ S1 = R/2πZ,

∫ 2π

0
u(t, x) dx = 0,
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and the Sine-Gordon equation (SG) under Dirichlet boundary conditions:

(SG) ü = uxx −A sinBu, u(t, 0) = u(t,π) = 0,

where A,B > 0. We view the equations as dynamical systems in appropriate
Sobolev spaces Zs, formed by functions u(x) which respect the boundary condi-
tions. (For the KdV, Zs is the Sobolev space Hs0(S

1), formed by zero-meanvalue
functions on the circle S1. For the SG equation Zs is the Sobolev space formed
by odd 2π-periodic functions – these functions vanish for x = 0 and x = π).
Integrability of the KdV equation manifests itself in the following properties of

a dynamical system which the equation defines in the spaces Zs, discovered twenty
years ago by P.Lax and S.P.Novikov (see [DMN]): For n = 1, 2, . . . the space ∩Zs
contains a smooth 2n-dimensional manifold T 2n, invariant for the KdV-flow, such
that:
a) restriction of the equation to T 2n defines a Liouville-Arnold integrable Hamil-

tonian system,
b) T 2n ⊂ T 2m if m > n,
c) union of all manifolds T 2n is dense in each space Zs.
For the SG equation everything is much the same but the manifolds T 2n have

algebraic singularities and their union is only proven to be dense in the vicinity of
the origin.
The invariant manifolds T 2n are filled with time-quasiperiodic solutions un(t, x)

(so-called n-gap solutions). An n-gap solution un depends on an n-dimensional ac-
tion p ∈ Rn+ and on n-dimensional angle q ∈ Tn: un(t, x; p, q) = Φn(Wpt+q, x, p) .
The function Φn(q, x, p) is analytic and can be explicitly written in terms of theta-
functions (the Its-Matveev formula, see [DMN]); this is another manifestation of
integrability of KdV and SG equations. The n-vector Wp is called the frequency
vector . The union in q and t of the curves un(t, ·; p, q) is a smooth invariant n-torus
in the space ∩Zs, called the n-gap torus.

1.1. The problem of persistence. Since both KdV and SG equations do not
arise in mathematical physics in their exact form (as, for example, Navier - Stokes
equations do), but only present simplified forms of some real physical equations,
then it is important to understand if the finite-gap solutions un have something to
do with “real” equations. Assuming that a “real” equation is Hamiltonian, that
(say) the KdV equation comprises its highest derivatives and that the equation is
local1 (i.e. it does not contain integral terms), we write it as

(2) u̇ =
∂

∂x
(−uxx + 3u2 + ε

∂

∂u
h(u, x)),

where the function h is assumed to be analytic in u.

1.2. KAM for PDEs. The question we posed in the previous section can be
understood in the following way: Does a finite-gap solution un(t, x) of the KdV
equation persist as a time-quasiperiodic solution for equation (2) (i.e., does (2)

1this assumption is imposed only for simplicity
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have a time-quasiperiodic solution uεn, close to un)? The affirmative answer is
given by the following KAM for PDEs theorem:

For most (in the sense of measure) values of the action p, the n-gap solu-
tion un(t, x; p, q) for the KdV-equation persists as a time-quasiperiodic solution
uεn(t, x; p, q) for equation (2). The solution u

ε
n is linearly stable. Its closure in any

space Zs forms an invariant smooth n-torus.

The persisted solutions uεn have the form u
ε
n(t, x; p, q) = Φεn(W

ε
p t+q, x, p). The

new frequency vectorW ε
p is O(ε)-close toWp and the function Φεn is O(ε

ρ)-close to
Φn for any ρ < 1. In particular, for most p the theta-formula for an n-gap solution
with the corrected frequency vector gives the function Φn(W ε

p t+ q, x, p), which is
forever O(ερ)-close to an exact solution of (2). The corrected frequency vector is
W ε
p = Wp + εW

1
p + o(ε), where W

1
p equals to averaging along the corresponding

n-gap torus of a vector-function, constructed in terms of a hamiltonian of the
perturbation.
A union (in n, p and q) of all persisted solutions, treated as curves in a space

Zs, becomes dense in Zs as ε→ 0.
Similar results hold for the perturbed SG equation:

(3) utt = uxx −A sinBu+ εg(u, x) = 0.

The differences are that, first, large-amplitude solutions both for SG equation and
for (3) are not linearly stable and, second, we do not know if the persisted solutions
jointly are asymptotically dense as ε→ 0.
The KAM-theorem for PDEs is an infinite-dimensional version of the classical

finite-dimensional theorem due to Kolmogorov-Arnold-Moser. Essential difference
is that in the finite-dimensional case persisted time-quasiperiodic solutions fill the
phase-space up to a set of small measure, while in the PDE-case the solutions
which persist due to the theorem jointly have zero measure (for any reasonable
measure in the corresponding function space).
The theorem we discussed in this section applies to quasilinear perturbations

of all “classical” integrable PDEs with one-dimensional space variable, including
all equations from the KdV hierarchy, etc. It is based on an abstract infinite-
dimensional KAM-theorem. For exact statements and proofs see [K1, K3, K4,
P1].

It is unknown what happens to infinite-gap solutions (and the corresponding
infinite-gap tori) under Hamiltonian perturbations of the integrable equations.

1.3. Small oscillations. The persistence problem posed in section 1.1 admits
another understanding: does a small-amplitude finite-gap solution for the KdV or
for SG equation persist after we have perturbed the equation by a higher-order at
zero term? The affirmative answer follows from the same abstract KAM-theorem
which implies the results of the previous section, see [BoK]. In particular, since
sinBu = Bu−B3u3/6+O(u5), then most of small amplitude finite-gap solutions
of the SG equation (with appropriate A and B) persist in the ϕ4-equation:

(ϕ4) utt = uxx −mu+ γu3, m, γ > 0.
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Small solutions for this (and similar) equations can be also constructed treating
(ϕ4) as a perturbation of another integrable infinite-dimensional system, namely
its Birkhoff normal form at zero, see [KP, P2] (also see [W] and the Introduction
to [K2] for related results).

Nothing is known about small time-quasiperiodic solutions for the ϕ4-equation
with m = 0.

1.4. Closely related persistence problem arises when we examine an equation (1)
with a small nonlinearity and with a linear part with pure imaginary spectrum in
order to prove that time-quasiperiodic solutions of the linear equation persist in
the nonlinear equation (1). If the linear equation depends on an additional finite-
dimensional parameter in a non-degenerate way, then any its time-quasiperiodic
solution persists in the nonlinear equation for most values of the parameter, pro-
vided that: 1) the space-variable x belongs to a finite segment and 2) the perturbed
equation is quasi-linear (i.e., the nonlinear term of (1) contains less derivatives than
its linear part). – This follows from the same abstract KAM-theorem as above,
see [K2, P1].
Some years ago J.Bourgain [B1] developed another KAM-approach, originally

proposed by Craig - Wayne in [CW], and successfully used it to study the persis-
tence problem which we discuss in this subsection. The main advantage of this
approach is that it applies to two-dimensional (in space) Schrödinger equation.
A disadvantage is that it applies only to semilinear equations (i.e. to equations
where the nonlinear term contains no derivatives).

We do not know what happens to invariant tori of an n-dimensional (in space)
linear Schrödinger equation with n ≥ 3 and of a linear wave equation with n ≥ 2
under Hamiltonian perturbations.

1.5. Averaging theorems. Due to the KAM-results presented in section 1.2,
the perturbed KdV equation (2) contains invariant finite-dimensional tori, filled
with linearly stable time-quasiperiodic solutions, and union of these tori is asymp-
totically dense in any space Zs as ε → 0. Hence, any solution of equation (2)
with sufficiently small ε for long time stays close to some n-gap torus. This result
does not specify the persistence time. For a finite-dimensional nearly-integrable
system this time is known to grow at least as exp ε−a, a > 0 (Nekhoroshev’s the-
orem). To obtain an analogy of this result for equation (2) is an intriguing open
problem. What is known is a local theorem which applies to a class of nearly inte-
grable PDEs and states that for solutions of these equations with small analytical
initial data the persistence time is bigger than CMε−M for each M , see [Bam]
(also see there references for related results concerning some parameter-depending
equations with small nonlinearities).

2. Symplectic invariants and Gromov’s non-squeezing property.

2.1. Gibbs measure. Flow-maps {St} of any Hamiltonian PDE (1) preserve the
symplectic form α2 (see the introduction), provided that they are C1-smooth. For
a finite-dimensional Hamiltonian system in the space (R2Np,q , dp ∧ dq) symplectic-
ity of the flow-maps of a Hamiltonian vector-field yields that they preserve the
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Lebesgue measure dpdq as well as the Gibbs measure exp(−H(p, q))dpdq, where
H is the hamiltonian. In an infinite-dimensional function space {u(x)} a Lebesgue
measure du(·) does not exist, but the Gibbs measure µH = exp(−H(u(·))) du(·),
where H is a hamiltonian of the PDE, often is well defined if dimx = 1 or 2. Its
construction is well known from the quantum field theory (see [GJ]). A difficulty
is that the measure µH is supported by a space of functions of low smoothness. To
prove invariance of µH , a flow of the equation (1) has to be proven to exist in the
corresponding low-smoothness space and to possess some regular properties. This
can be done for many one-dimensional and for some two-dimensional equations,
see [B2, B5, MV] and references therein.

It is an open problem whether a non-integrable Hamiltonian PDE has an in-
variant measure, supported by smooth functions (this measure should not be sup-
ported by a trivial invariant set like a periodic trajectory of the equation). This
problem is closely related to the following question: is it true that high Sobolev
norms of typical solutions for a non-integrable Hamiltonian PDE grow with time
unboundedly, see [B3, B4].

2.2. Symplectic capacity. The Gibbs measure µH corresponds to a subset of
the function phase-space of a Hamiltonian PDE a flow-invariant quantity, namely
its measure. This is not a unique invariant characteristic of subsets. Existence
of another symplectic invariant for finite-dimensional Hamiltonian systems, called
symplectic capacity, follows from Gromov’s non-squeezing theorem (or can be con-
structed independently to prove the theorem), see in [HZ]. To discuss a version of
this invariant applicable to (1), we need a notion of a Darboux phase-space ZD for
this equation2 : ZD is a Hilbert space which admits an orthonormal Hilbert basis
{ϕj | j ∈ Z0} (Z0 is the set of non-zero integers), which is a Darboux basis for the
equation’s symplectic structure, i.e., α2[ϕj ,ϕ−k] = δj,k for any j ∈ N and for all
k.

Examples. 1) For the KdV equation (and its perturbation (2)), ZD is the Sobolev

space H−1/20 (S1). 2) A nonlinear wave equation

ü− δ△u+mu+ f(u, x) = 0, u = u(t, x), x ∈ Tn,

where m > 0 and f is a smooth function, can be written in the following Hamil-
tonian form:

(4) u̇ = −Lw, ẇ = Lu+ L−1f(u, x),

where L = (−δ△+m)1/2. For this equation ZD = Z1/2 = H1/2(Tn)×H1/2(Tn)
(see [K5, K6]). 3) If f = 0 (so the equation (4) is linear), then any space Zs is a
Darboux space. (On the contrary, for a typical nonlinear equation (4) a space Zs

with s ≥ 5 is not Darboux. It is plausible that Z1/2 is the unique Darboux space).
Let ZD be a Darboux space for a symplectic form α2 and {ϕj | j ∈ Z0} be its

basis as above. A map c which corresponds to an open subset O ⊂ ZD a number
c(O) ∈ [0,∞] is called a (symplectic) capacity if

2in fact, for its symplectic structure.
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α) c is translationary invariant, i.e., c(O) = c(O + ξ) for ξ ∈ ZD; β) c is
monotonic, i.e. a bigger set has a bigger capacity; γ) c is 2-homogeneous, i.e.

c(τO) = τ2c(O); δ) c(Br) = c(Π
(k)
r ) = πr2, where Br is the r-ball in ZD, centered

at the origin, and Π(k)r is the cylinder formed by all vectors
∑
zlϕl such that

z2k + z
2
−k ≤ r2.

A finite-dimensional symplectic space (R2np,q, dp ∧ dq) admits a symplectic ca-
pacity, invariant for symplectomorphisms [HZ]. A Darboux space ZD also admits
one. This capacity is invariant for flow-maps {St} of a Hamiltonian equation (1),
provided that

(5) St = linear operator + compact smooth operator,

where the linear operator is a direct sum of rotations in the planes, spanned by
the vectors ϕj and ϕ−j , j = 1, 2, . . . (see [K5]).
The assumption (5) is met by the nonlinear wave equation (4) if n = 1 and

f(u, x) has a polynomial growth in u, or n = 2, 3 and f as a function of u is a
polynomial of a sufficiently low degree, see [K5,K6] and [B4].
The symplectic capacity is an invariant of the flow of a Hamiltonian PDE in

a function space of low smoothness, as well as the Gibbs measure. An essential
difference between these two invariants is that the former is constructed in terms
of the equation’s symplectic structure, while the latter – in terms of its hamilton-
ian (the same is true for the corresponding function spaces, so usually they are
different).
An immediate consequence of existence of a symplectic capacity is that the

flow-maps {St}, satisfying (5), can not squeeze a ball in a Darboux space ZD to
a cylinder of a smaller radius3; cf. the properties α), β) and δ). This is Gromov’s
non-squeezing property.
On the contrary, the squeezing (and a closely related pulling-through phenom-

enon, see below) both are possible (and are typical under some circumstances) if
we consider the equation in a function space of high smoothness, i.e. study its
classical solutions rather than generalised ones. In particular, the flow {St} of
equation (4) in a Sobolev space Zs, s ≥ 5, squeezes a typical ball of a radius of
order one to a cylinder Π(k)ρ with ρ ∼ (ln δ−1)−1, provided that the nonlinearity f
is also typical,4 see [K6].

3. Small-dispersion/dissipation equations

Let us consider the following class of PDEs:

⟨non-linear homogeneous Hamiltonian equation⟩+ ⟨δ1-small linear damping⟩
+ ⟨δ2-small linear dispertion⟩ = ζ(t, x),(6)

where δ1 ≥ 0, δ2 ≥ 0 and δ :=
√
δ21 + δ

2
2 > 0. If δ1 = 0, then this equation

is Hamiltonian. Still, the most important are equations with δ1 > 0 since they
describe turbulence in different physical media.

3It is unknown if the assumption (5) is superfluous and can be dropped.
4Clearly, ρ≪ 1 if δ ≪ 1. So Gromov’s property fails in this space.
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The Navier-Stokes (NS) equations have the form (6) with the Euler equations
for the homogeneous Hamiltonian equation and with δ1 > 0, δ2 = 0. Another
good example of equation (6) is given by the damped/driven nonlinear Schrödinger
equation:

(7) u̇− δ1△u+ iδ2△u− i|u|2pu = ζ(t, x), p ∈ N, δ1, δ2 ≥ 0,

which we shall consider for x ∈ Rn, n ≤ 3, under the odd periodic boundary
conditions:

u(t, x) = u(t, x1, . . . , xj + 2, . . . ) = −u(t, x1, . . . ,−xj , . . . ) ∀j

(they imply that u(t, x) vanishes at the boundary of the cube of half-periods {0 ≤
xj ≤ 1}). It is known that (7) has a unique smooth in x solution for any smooth
odd periodic initial data u(0, x) = u0(x) (and for any continuous in t, smooth
odd periodic in x function ζ). We shall discuss qualitative behaviour of solutions
for equation (7) in the turbulent limit, i.e. when δ ≪ 1. We shall state results
for equation (7), using some terminology which comes from the hydrodynamical
turbulence, i.e. from the NS equations.

3.1. Essential part of a phase-space. Let us first consider equation (7) with
ζ = 0, supplemented by an order-one initial condition

(8) u|t=0 = u0(x) ∈ C∞, |u0|L∞ = U,

U ∼ 1. Due to a trivial a priori estimate, L2-norm in x of a solution u decays with
t at least as exp− δ1t. Hence, the solution practically vanishes by a time ≫ δ−11 .
We are interested in its behaviour for 0 ≤ t ≤ δ−a with 0 < a ≤ 1.
Denoting by |u|m the Cm-norm of a function u(x), we define the essential part of

the smooth phase-space of equation (7)|ζ=0 (with respect to the Cm-norm,m ≥ 2)
as

Am = {u(x) ∈ C∞ | u is odd periodic and |u|2mκ+10 < Kmδ
mκ|u|m}.

Here κ is any fixed number < 1/3 and Km = Km(κ) is some specific constant.
This set is formed by fast oscillating functions since |u|m ≫ |u|0 for any u ∈ Am
if ∥u∥0 ! 1 (when δ ≪ 1). The set looks like a narrow tube with respect to the
Cm-norm since its intersection with a ball {|u|m ≤ R} is contained in the narrow
cylinder Π(k)ρ , formed by complex functions u =

∑
useπis·x such that |uk| < ρ,

where ρ = Cmδ1/2+O(m
−1)RO(m

−1).
The set Am is important to understand dynamics of the equation (7) since: by

the time Cmδ−1 the flow of equation (7)|ζ=0 will pull the whole space of smooth odd
periodic functions through Am. This pull-through phenomenon can be specified:
a solution u for (7)ζ=0, (8) will visit the set Am by the time δ−1/3U−4/3. By the
moment of a first entry to Am the solution will change its supremum-norm no
more than twice.
Hence, by the time δ−1/3 any solution u(t, x) for (7)ζ=0, (8)U=1 will make its

Cm-norm as big as Cmδ−mκ.
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Equation (7) with ζ = 0, δ1 = 0 takes the Hamiltonian form

(7′) u̇+ iδ△u− i|u|2pu = 0.
It has two integrals of motion: the hamiltonian and the L2-norm |u(t, ·)|L2 . Since
|u(t, ·)|L∞ ≥ |u(t, ·)|L2 =const, then any non-zero solution for (7′) will visit Am
during any time-interval longer than δ−1/3|u|−4/3L2

. I.e., Am is a recursion subset
for this Hamiltonian PDE.

3.2. Bounds for averaged high norms. It turns out that since Cm-norms
of a solution for (7)ζ=0, (8)U=1 become big at least once, then they are big at the
average; hence, its Sobolev norms are big at the average as well:

(9) δa
∫ δ−a

0
∥u(t, ·)∥2mdt ≥ Cmδ−2mκm.

Here a ≥ 1/3, κm = κm(a) ↗ 1/3 and ∥ · ∥m stands for the norm in the Sobolev
space of odd periodic functions. This estimate is essentially nonlinear since it
obviously fails if p = 0.
The norms of the solution u satisfy usual upper estimates: if δ2 = 0 and ζ = 0,

then

(10) δa

∫ δ−a

0
∥u(t, ·)∥2mdt ≤ C′mδ−m,

where the constants C′m depend on C
m-norms of the initial condition u0. We

stress that the exponents for δ in the r.h.s.’s of (9) and (10) are universal: they do
not depend on the nonlinearity |u|2pu, the dimension n and the initial condition
u0.
Estimates similar to (9), (10) remain true for solutions of equation (7) with

non-zero forcing ζ if we assume that ζ = ζω(t, x) is a random field, smooth odd
periodic in x and stationary in t (such equations are believed to present right
mathematical description of physical turbulence, see in [EKMS, K8]): If uω(t, x)
is a solution for (7) with, say, zero initial condition at t = 0 and ⟨∥u∥2m⟩ is its
averaged squared Sobolev norm, ⟨∥u∥2m⟩ = δa

∫ δ−a
0 E∥u(t, ·)∥2mdt, then

(11) C−1m δ−2mνm ≤ ⟨∥u∥2m⟩ ≤ Cmδ−2mµm if a ≥ 1,
where µm ↗ B < ∞ and νm ↗ A > 0. Moreover, we know that 3

17 < A,
B ≤ 3

2 and that (11) remains true if in the definition of ⟨∥u∥
2
m⟩ we replace the

time-segment [0, δ−a] by any segment in [0,∞), longer than δ−a.
A popular mathematical idealisation of the physically correct forcings ζ as above

is given by a random field ζ which is white noise in time [EKMS]. For forcings like
that the estimates (11) hold with A = 1

2 , B = 1.
An important feature of turbulent behaviour of a solution uωδ (t, x) is a short

size of its space-scale lx (see e.g. [LL], § 33 and [CDT]). Defining the space-scale
as lx = δγ , where

γ = γ(uω) = lim inf
m→∞

lim inf
δ→0

ln⟨∥uδ∥2m⟩1/2m
ln δ−1

(see [K8]), we get from (11) that A ≤ γ ≤ B.
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3.3. Asymptotical spectral properties of solutions and the Kol-
mogorov - Obukhov law. The estimates for the space-scale lx of a solution
uω(t, x), discussed above, characterise its infinitesimal in x behaviour. Arguments
of Tauberian kind transform these estimates to information on asymptotical as
s→∞ behaviour of Fourier coefficients ûωs (t) of the solution.5 To present it we de-
note by Es the averaged squared Fourier coefficient ûs, Es = δa

∫ δ−a
0 E|ûωs (t)|2 dt.

(We remark that if uω was a space-periodic solution for the NS equations, then
Es would be the energy of the fluid, corresponding to the wave vector s).
The numbers Es obey the following asymptotic, which hold for any ε > 0 with

A,B and γ as in the previous section:
1. Es = o(|s|−M ) for |s| ≥ δ−B−ε with every M , if δ is sufficiently small.

If |s| ≥ δ−γ−ε, then the same holds true for all δ from an appropriate sequence
{δj ↘ 0}.
2. There exist c(ε) and C(ε) such that

δc ≤ |Aε|−1
∑

s∈Aε

Es ≤ δC ,

where Aε = {δ−A+ε ≤ |s| ≤ δ−B−ε}, for all small δ. The same holds true for
the smaller set Aε = {δ−γ+ε ≤ |s| ≤ δ−γ−ε} with appropriate exponents c(ε) and
C(ε), for all δ from a sequence {δj ↘ 0}.
The heuristic Kolmogorov - Obukhov (K-O) law (see [LL], § 33) states that the

energy Es of a wave-vector s is o(|s|−M ) for every M if |s| > δ−γ
K

, and

1

C

∑

r≤|s|≤r+C

Es ∼ const · rθ for δ−γ
0

< r < δ−γ
K

.

The inverse threshold δγ
K
is called Kolmogorov’s inner scale of the turbulent flow.

For 3-dimensional NS equations the exponent θ = 5/3 and γK = 3/4, see [LL].
The properties 1 and 2 of a solution uω(t, x) for (7) present a weak form of the K-

O law. In particular, if any solution uω for (7) satisfies the K-O law, then γK must
equal the exponent γ(uω). Consequently, γK must meet the estimate A ≤ γK ≤ B.
It is curious to note that for the forcing ζω(t, x) which is white noise in time, the
results of section 3.2 imply the bounds 12 ≤ γK ≤ 1 which remarkably agree
with the value γK = 3/4, prescribed by K-O for the 3-dimensional hydrodynamic
turbulence.
The property 1 shows that the Fourier modes ûωs e

πis·x with |s| > δ−γ can be
ignored when a solution u is calculated numerically, while the modes with |s| < δ−γ
are essential. Hence, a numerical scheme to calculate u has to have dimension of
order δ−2γn. This is a very big number since δ corresponding to a turbulent regime
is very small (for turbulence in water and in air it is as small as 10−7 − 10−4). –
This is why it is so difficult to study turbulence numerically.

Proofs of the results presented in sections 3.1-3.3 see in [K7, K8]. See [EKMS]
for the turbulence-limit δ → 0 in a randomly forced Burgers equation.

5We write uω(t, x) as
∑
s∈Zn û

ω
s (t)e

πis·x.
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