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I. Introduction to geometric optimal control. 
Introduction. Optimal control problems are generalizations of classical prob-

lems in the calculus of variations. A typical one can be stated as follows: given 
a smooth (C°° or real analytic Cw) manifold M, a compact smooth manifold U 
(possibly with a boundary), a smooth vector-field E: M xU —• TM (tangent 
space of M) on M, parametrized by U, a smooth function c: M x U —• R, and 
two points A, B in M, let Tr(A, B) be the set of all pairs (x, u) : [a, b] —> M x U, 
such that: (1) x is absolutely continuous and u measurable; (2) dx(t)/dt = 
E(x(t),u(t)) a.e.; (3) x(a) = A, x(b) = B. 

The problem is to find a pair (x,u): [a,b] —• M x U such that 
rb rb 

/ c(x(t),û(t))dt = 'mî / c(x(t),u(t))dt\(x,u): 
J"ä Ja 

[a, b]^MxU, belonging to Tr(A, B) 

A pair in Tr(^4, B) is called a trajectory of the system; the pair (x, u) is called 
an optimal trajectory. 

It is well known that such a pair (x,u) is the projection on M x U of an 
"extremal." An extremal is the generalization of its namesake of classical calculus 
of variations. In the present situation, there are two families £\, X = 0 or 1, 
of extremals: a couple (z, u) : [a, 6] —• T*M x U belongs to £\ if it satisfies the 
following conditions: 

(1) dz/dt = Hx(z(t),u(t)) for almost all t in [a,b], Hx(z,u) = (z,E(x,u)) -
\c(x,u), x being the projection of z onto M; ( , ) denotes the canonical pairing 

TMXMT*M —> R, and Hx is the hamiltonian field associated to Hx considered 
as a function on T*M parametrized by u. 

(2) For almost all t E [a,b], Hx(z(t),u(t)) = Kx(z(t)), where Kx(z) = 
suv{Hx(z,v)\vEU}. 
The family <fi is called ordinary, the family <?o exceptional. 
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As in the classical calculus of variations, one tries to solve the optimal control 
problems using the extremals. Two methods have been exploited up to now. 
The first one, which could be called the direct method, is being developed by 
H. Sussmann and his collaborators. It has yielded some important results in the 
case of dim M being two or three. 

The second method, the singularity method, was introduced by I. Ekeland [E] 
in the special case when 

M = U = R and E(x, u) = u. 

More recently F. Klok pushed this analysis further in the same case [Kl]. Our 
approach belongs to this last line of thought. 

1. Preliminary considerations on extremals. The main difference between 
the classical calculus of variations and our case is that in condition (2) of the 
definition of extremals the maximum Kx can be attained for several distinct w's. 
This allows for the phenomenon of "switching," that is, the extremal changing 
its policy u(t) abruptly at some time T. Mathematically this translates into the 
fact that z is not differentiable at t. Let us formalize this. 

DEFINITION 0. A point z(s) (resp. s) on an extremal z: [a,b] —> T*M is 
called a switching point (resp. a switching time) if s belongs to the closure of 
the set of all Vs where z is not differentiable. 

NOTATION. The set of all possible switching points is a subset of T*M, called 
the switching surface. 

The notion of switching points is crucial in the study of extremals. They 
determine the structure of these curves. What can we say about this structure? 
H. Sussmann has noticed that: (a) in the C°° case, any absolutely continuous 
curve in M is optimal for some appropriate system (E,c); (b) in the Cw case, 
given a system (E,c), if there exists an optimal trajectory joining two given 
points A, B in M, then there exists another optimal trajectory joining A to B, 
which is analytic on an open dense subset of times. Since any optimal trajectory 
is the projection on M of an extremal, this shows that in order to get any 
reasonable theory, we have to put some restrictions on the system (E, c). 

Now, even for a generic system (E, c), the extremals are not smooth in general. 
A consequence of our results is the fact that for an extremal to have an infinite 
number of switching points is a very stable property. Let us note here, that the 
structure of the general extremal in the generic case is not known. 

Finally, the extremals would be the trajectories of the hamiltonian field as-
sociated to Kx, if Kx were smooth, which it is not, in general. Let us mention 
that generalizations of the concept of hamiltonian field to include this case have 
been put forward. 

2. Regular points of finite multiplicity. From now on we drop the superscript 
A in Hx. Let us denote by S the subset in T*M x U of all couples (z,u) such 
that ü is a local maximum point of the function H: v EU —• H(z, v). It is clear 
that if (z,u) : [a, b] —y T*M X U is an extremal, then for almost every t E [a, b], 
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(z(t),u(t)) belongs to S. Let p: S —y T*M denote the restriction to S of the 
canonical projection: T*M x U —• T*M. 

Without making a formal statement, it is clear that, for a generic pair, there 
exist stratifications of T*M and S such that: (1) p is stratified; (2) for any 
stratum A, p: p~x(A) —* A is a finite covering; (3) for any open stratum A of 
T*M, for any z in A, all points in p~x(z) are either nondegenerate quadratic 
singular points of Hz, or are regular points of Hz belonging to the boundary of 
U, which are nondegenerate quadratic singular points for the restriction of Hz 
to the boundary of U. 

On the lower-dimensional strata, a branching of singularities takes place. 
Since we are mainly interested in the switching phenomena, we shall not go 
into branching but concentrate on the open strata. This motivates the following 
definition. In it, we do not assume that S and p satisfy the conditions (l)-(3) 
above. 

DEFINITION 1. A point q in T*M is called a regular point of multiplicity m 
if there exists a neighborhood V of q in T*M, such that: 

(1) The restriction p: p~x{V) —y V is a trivial finite covering. 
(2) Let J be the set of all sections <p: V —y S of this covering such that q 

belongs to the closure T(<p) of the set 
{zeViz?q,H(<p(z))=K(z)}. 

Then for any two sections (p,ij) E J the germs at q of the restrictions of Ho (p 
and Ho^ to T(<p) and T(i/;) respectively, are not equal, m is the cardinal of J. 

The case m = 1 corresponds to the classical theory of the calculus of varia-
tions. Near q, the extremals are the trajectories of a hamiltonian vector-field. 
We have studied the cases when m is 2 or 3. The structure of the extremals 
near q depends essentially on the structure of the contacts of the hamiltonian 
vector-fields Hop, <p E J, with the switching surface and certain subsets of it 
defined by these contacts. This vague statement can be given a precise formu-
lation using the Lie algebra, generated by the set of functions [Hop/p E J], 
under the Poisson bracket. The complexity of the contact structure at a point q 
is measured by the minimum of the length of the brackets not zero at q. 

In the remainder of this paper, we shall discuss two of our results. Both deal 
with the case m = 2. 

II. Statement of the results. 
1. Notations and auxiliary concepts. Let q be a regular point of multiplicity 2. 

J contains two sections p+, <p-. The associated functions Ho <p+ and Ho (p- will 
bë denoted by Ì/+ and H- respectively. In a neighborhood of q, the switching 
surface E is defined by H+ — H- = 0. We shall make the following assumption 
for the remainder of this paper: 

0 = dH+(q)AdH-(q)Ad{H+,H-}(q), where {#+,#_} denotes 
the Poisson bracket of H+ and H-, that is, the Lie derivate of (*) 
ÌJ+ in the direction of H- (see [A-M]). 
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FIGURE 2 

(*) implies that the switching surface is a smooth manifold in a neighborhood 
of q and that the same is true for the set E1 = E fl [{•#+, # - } = 0], where H+ 
and H- are tangent to E (see Figure 1). 

If q does not belong to E1 then, in a neighborhood of it, the extremals are the 
trajectories of a piecewise smooth flow, having a tangential discontinuity along 
E (see Figure 2). Hence the only interesting cases are when q belongs to E1. 

NOTATION. (1) For simplicity, let us denote by / , g the brackets 

{H.{H+,H-}} and {H+{H.,H+}} 

respectively. 
(2) Given an open subset W in T*M, a subset N of W will be called invariant 

in W if any extremal contained in W and meeting N is contained in TV. 
2. First theorem—Fold points. 
DEFINITION 3. A regular point of multiplicity 2, q, satisfying the assump-

tion (*), is called a fold point if f(q) and g(q) are both nonzero. If they are 
both positive (resp. negative) q is called hyperbolic (resp. elliptic). If they have 
opposite signs, q is parabolic. 

NOTATION. (3) In the elliptic case, the following vector-field R, defined on 
E1, plays an important role: 

R 
fH+ + gH_ 

f + 9 
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It is clear that R is the unique convex combination of H+ and H- tangent to 
E1 at the points of E1. 

THEOREM 1. Let q be a fold point. There exists a neighborhood W of q 
such that: 

(e) If q is elliptic, we have a generalized "flow-boa? result; there exist a ball 
B of codimension 1 in T*M, an interval I = [—a, a], and a continuous mapping 
z: I x B -+W, with the properties: 

(i) z(0,b) = bifbEB, and z is a homeomorphism onto W, piecewise smooth 
on any I x K, K compact subset of B — E1. 

(ii) For b G E1 fl B, the curve z^: I —> W is the trajectory of R, passing at 
time 0 through b. 

(iii) For b E B — E1, z is an extremal. 
(iv) For any subinterval d of I, any b E B — E1, let N(d,b) be the number 

of switching times of Zb in d. When b tends to E1 , N(d,b) tends to oo and 
N(d,b). h(z(t,b)) tends to the length of d, for any t E d. h is the function 
2-{H+,H.}-[l/f + l/g}. 

(h) / / q is hyperbolic, it behaves somewhat like a hyperbolic singular point of 
a vector-field. W contains two smooth hypersurfaces 5(+) and S(-), having a 
contact of first order with E along E1, with the following properties: 

(i) W — S(+) U S(—) has four connected components W+,W-,Wr,Wi. W+ 
and S(+) (resp. W- and S(—)) are located in [H+ > H-] (resp. [ÜT+ < H-]). 
Wk (resp. Wi) is located in {H+,H-} > 0 (resp. {H+,H-} < 0). 

(ii) The sets 5(+) U S(-), W+,W-,Wr,Wt are invariant in W. 
(iii) In W+ (resp. W-) the extremals are trajectories of H+ (resp. H-). They 

do not switch. 
(iv) In Wr (resp. Wi), the extremals switch exactly once and they are the 

trajectories of a piecewise smooth flow. 
(v) In S(+) U S(-), the extremals either do not switch and then they are the 

trajectories of H+ in S(+) or of H- in S(-), or they switch once and cross 
from S(-l-) to S(-) or vice versa. 

(p) If q is parabolic, let us assume that f(q) > 0 and g(q) < 0. W contains a 
smooth hypersurface Sp with the following properties: 

(i) W — Sp has two connected components, W+ and W-. 
(ii) W+ is contained in [H+ > / / _ ] , SpUW- in [H+ < H-]. 
(iii) Sp,W+,W-, are invariant in W. 
(iv) In SpUW-, the extremals do not switch and they are the trajectories of 

H-. In PF+ they switch twice and are the trajectories of a piecewise smooth flow. 
The case f(q) < 0, g(q) > 0 is similar. 

(For these results see Figure 3.) 
This theorem calls for some remarks: 
(1) The field R is called the residual field. It also shows up in some work of 

Arnold (see [Ar]). 
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(2) The only really interesting and nontrivial part of the preceding theorem 
is the elliptic case. Near an elliptic point the number of switching points on an 
extremal is not bounded, and this occurrence is stable. The extremals "spiral" 
around E1, and as they tend to E1, they pick up more and more switching points, 
so that, in the limit, they become smooth. 

(3) The residual field R is also defined in the hyperbolic domain and it is 
important in the study of relaxed trajectories. The trajectories of R are relaxed 
trajectories of the system (E,c). In the elliptic case, these curves are more ex-
pensive than the nearby extremals. But in the hyperbolic case, they are cheaper 
and together with the extremals in S(+) U S(—), they can be used to construct 
local optimal control synthesis of the "turnpike" type. 

(4) The proof of the above result and some other ones will appear in the 
Transactions of the American Mathematical Society. 

In agreement with our remarks at the end of paragraph 2 of §1 the preceding 
result dealt with the case where the bracket of length 2 of the Lie algebra L 
generated by (H+,H-) is zero at q, but those of length 3 are not. The situation 
when these latter are zero but those of length 4 are not, we shall not examine 
here and instead pass to the next stage where new phenomena appear. In our 
preceding considerations, a single extremal switched a finite number of times 
only. The question is: is it possible to have a general system (E, c) such that 
above each point from an open subset of M, there passes an extremal that 
switches an infinite number of times in a finite time-interval? We shall answer 
this question next. 

3. The Fuller curves. Let g be a point in T*M as in Definition 3. 
DEFINITION 4. A pair of smooth arcs of curves, C(+) and C(-), contained 

in E — E1, having both q as extremity and no other point in common, is called 
a Fuller pair if it has the following properties: (1) there is a continuous function 

r : C ( + ) U C ( - ) ^ R , 

such that any extremal z starting at a point s in C(+) U C(—), is defined on the 
interval [0,T(s)] and z(t) tends to q when t tends to T(s). 

(2) Let s E G(u), u = + or —. The switching times of z form an increasing 
sequence [0, ti,..., tn,...] such that z(tn) belongs to C(u) (resp. C(—u)) if n is 
even (resp. odd). 

(3) There exist a constant k > 1, depending only on the pair (C(+),C(—)) 
and a continuous function D: C(+) UC(—) —> R, such that fcn(£n+i — tn) tends 

°to-J3(^)=as°n-tends-tc^infinit3r(see~Figure^4). ~ — 
To state our second theorem we need one more notation. 
NOTATION 4. Let T denote the vector space of all smooth functions on an 

unspecified open subset of T*M. a:TxT^yTxTx-'XT(6 times) is the 
mapping defined as follows: a(f,g) = (<*i(f,g),...,ae(f,g)) where a i , . . . , a 6 
is the ordered set of all elements of length 5 from a Hall basis built on the set 
(/, g) ordered by / < g, ad f(g) = {/, g}. 
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EXAMPLE. 

ai(f,g) = ad4 f(g), a2(f,g) = ad gad3 f(g), as(f,g) = ad2 pad2 f(g), 
a*(f,9) = -ad 4 0( / ) , a5(/,0) = {ad/(p),ad2/(p)}, 

a6(f,g) = {zdf(g),-ad2g(f)}. 

THEOREM 2. TAere eató a semialgebraic set 7 (explicit) in R6, with non-
empty interior having the property: let q be a regular point of multiplicity 2, 
satisfying the assumption (*). If the couple (H+,H-) has the properties (a)-(b) 
below, then there is a Fuller pair passing through q. 

(a) All the Poisson brackets of length 2, 3, and 4, built on H+,H-, are zero 
at q. 

(b) a(H+,H-) belongs to 7. 

COMMENT. This result shows that the presence of a Fuller pair is a remark-
ably stable phenomenon. Using it, one can show that on any smooth manifold 
M, there is an open (C°°-topology) set of systems (E, c), such that, for any one 
of these systems, there exists an open subset O of M with the property that 
above any point x in O, there is a point q with a Fuller pair passing through it. 

III. Short review of the techniques used. Essentially, three types of 
techniques are used: (i) discrete dynamical systems, (ii) partial normal forms, 
and (iii) blowing up procedures. 

1. Discrete dynamical systems. To each point q regular of multiplicity 2, 
satisfying the assumption (*), we associate a discrete dynamical system (DDS 
for short), a, as follows: the domain of a, dom(<r), is the set of all z in E, such 
that: 

(1) {H+,H-}(z) ^ 0. Let u be the sign of this number. 
(2) The trajectory of Hu, starting at z, meets E again, at zu for the first time. 
(3)u{H+,H-}(zu)<0. 

(2) implies that: u{H+,H-}(z) < 0). lî z belongs to dom(cr), we set a(z) = zu. 
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The DDS a is useful in keeping track of the switching points, and it deter-
mines the behavior of the extremals: if z: [a,b] —• W - E1 is such a curve, 
its set of switching points is discrete. Let y be the first (timewise) of these 
points. Then the set of them, ordered by increasing time, is a partial orbit of 
V' [y,<r(y)i<r2(y)i-.-,°N(y)]. 

As an example, the main ingredient in the proof of the elliptic case of Theo-
rem 1 is a very convenient normal form for the associated DDS a. 

2. Partial normal forms. Using symplectic coordinate transformations, we 
determine partial normal forms for the pair (H+,H-). Such a form is the sum 
of a normal form for some set of (H+, H-) and a remainder term. More precisely: 
let 

F = ± ( t f + + i /_) , G = $(H+-H-). 

We determine a symplectic system of coordinates, centered at q, (xi,...,Xd, 
Pi) • • • iPd), such that G = pi, F = Fo -j- Fi, where Fo is the normal form and 
Fi the remainder. There is a gradation on the coordinates such that Fo is a 
homogeneous polynomial and the order of Fi at q (degree of the lowest degree 
terms in the Taylor series of Fi at q) is greater than the degree of Fo- This 
gradation is intimately linked with the structure at q of the Lie algebra generated 
by H+ and H_. It defines a local group action of the multiplicative group of all 
positive reals on a neighborhood of q, for which Fo and G are semi-invariants. In 
the next proposition, w(P) will denote the degree of the homogeneous polynomial 
P, and ord(ft), the order of h at q. 

PROPOSITION 1. (i) / / {H+,H-}(q) = 0, but not all brackets of length 3 
are zero at q, then 

FQ=P2 + xi(\axi + bx2), 
w(xn) = 1 and w(pn) — 2 if n = 1 or 2, 

w(xn) = w(pn) = 3 ifn>3, 
w(F0) = 2, ord(Fi) > 3, 

a = {G{G,F}}(q), b = {F{G,F}}(q). This is the fold case. 
(ii) If all the Poisson brackets of length 2 and S of H+,H- are 0 at q but not 

all brackets of length 4: 

^——~-^~~-~Fo=^ — 
w(%n) = 1 and w(pn) = 2 if n — 1 or 2, 

w(xn) = w(pn) = 3 ifn > 3, 
W(F0) = 3, ord(Fi) > 4. 

a = - ad3 G(F)(q), c = ad3 F(G)(q), b = - ad F ad2 G(F)(q). This is the cusp 
case. 



GENERALIZED HAMILTONIANS AND OPTIMAL CONTROL 1189 

(iii) / / all the brackets of length 2, 3, and 4 of H+,H- at q are 0 but not all 
of length 5: 

F = P2 + ffi(p3 + \bx\x$ + ax2x3 - \c±xl + \c$xixl + ^c2xjx2 + \cix\), 
w(xn) = 1 and w(pn) = 4 if n = 1 or 2, 

w(xs) = 2, iu(p3) = 3, iu(an) = w(pn) = 3 ifn>4, 
w(F0) = 4, ord(Fx) > 5, cn = at(G,F)(q) if % < n < 4, 

6 = a6(G,F)fo), a = «6(G,F)(^). 

3. Blowing up technique. Using the action of the multiplicative group of the 
positive reals, RÜj_, we can blow up the point q on the manifold T*M. This 
is not the classical blowing up procedure but a "weighted" version of it, q is 
replaced by the quotient, Q, of V — q under the action of RÜj_, V being a suitable 
neighborhood of q. 

4. Sketch of the proof of Theorem 2. Let a and O~Q denote the associated DDS 
to the couples (H+, H- ) and (Fo + G, FQ — G). Using the blowing up technique, 
the stability theorem of hyperbolic manifolds we reduce the problem of finding a 
Fuller pair for the couple (H+,H-) to that same problem for the second couple. 
A suitable neighborhood of Q in the blown up space is fibered by the orbits of 
the Rîj.-action. Since the couple (Fo + G,Fo — G) is semi-invariant, the lifting 
VQ of ao to the blown-up space preserves Q and this fibration. Assume we can 
find a fixed point h of the restriction of CTQ to Q. The fiber 0(h) above h is then 
invariant under CTQ. If we can choose h in such a way that 0(h) is a contracting 
curve for 5Q, then the projection on T*M of the pair (0(h), &o(0(h))) is a Fuller 
pair for the couple (F0 + G,F0-G). This ends the "proof" of Theorem 2. 
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Dynamics of Area Preserving Maps 

JOHN N. MATHER 

Poincaré initiated the study of the dynamics of area preserving mappings, in 
his studies of celestial mechanics [20]. He showed that the study of the dynamics 
of the restricted three body problem (two positive masses, one zero mass) could 
be reduced to the study of the dynamics of an area preserving mapping. He 
showed, moreover, that even in this case, which is nearly the simplest nontrivial 
case of Hamiltonian mechanics, the dynamics is so complicated that there is 
no hope of "solving" the n-body problem (or even the restricted three body 
problem), in the sense of finding exact expressions of the trajectories as a function 
of time. 

As a consequence of Poincaré's pioneering work, the focus of mathematical 
studies related to celestial mechanics has shifted to the more topological and 
analytical approach which Poincaré dubbed "dynamical systems." The books of 
Arnold and Avez [1] and Moser [15] and the articles of Kolmogorov [10] and 
Smale [21] present overviews of modern developments in the theory of dynamical 
systems. 

One of the main questions of dynamical systems is the extent to which they 
display randomness or stability. Many studies in the past century have dealt 
with these questions. The KAM (Kolmogorov, Arnold, Moser) theory shows 
that small Hamiltonian perturbations of integrable Hamiltonian systems display 
a great deal of stability. Invariant tori on which the flow is conjugate to a linear 
flow exist and fill up most of phase space in the sense of Lebesgue measure. 
(See, e.g., Moser [15].) In contrast, hyperbolic systems exhibit a great deal of 
randomness, as is discussed, for example, in Hadamard [8], Anosov [2], Smale 
[21], Bowen [6], and Pesin [19]. But, even small Hamiltonian perturbations of 
integrable Hamiltonian systems have regions of instability or randomness along-
side the regions of stability. This instability was discovered by Poincaré, further 
explored by Birkhoff, and given a very transparent form by Smale [21] in terms 
of "horseshoes." 

All this work shows that, typically, one finds a pattern of stability and in-
stability mixed together in a complicated way. But there are many unresolved 
questions. In the Newtonian n-body problem are the unbounded trajectories 
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dense in phase space (where the center of mass is fixed at the origin)? Newton 
integrated the 2-body problem and thereby showed that for n = 2, the answer 
to this question is no. The restricted 3-body problem is a Hamiltonian system 
in 2 degrees of freedom and it is possible to deduce from KAM theory that the 
answer is no in that case, too (Moser [16]). But all other cases are unsolved, 

Is it generically the case that Hamiltonian systems on a smooth compact 
symplectic manifold are topologically transitive? Here, one must specify what 
one means by "generically." A popular notion of genericity is that a property 
of Hamiltonian systems is Cr generic if the set of Cr Hamiltonian systems on 
the given manifold having that property is a residual set in the Cr topology, in 
the sense of Baire category. We recall that a dynamical system is said to be 
topologically transitive if it has a dense orbit. Here again, KAM theory shows 
that the answer is no for systems in 2 degrees of freedom (i.e., on a 4-manifold) 
and r sufficiently large, but other cases are unsolved. The KAM theory resolved 
the analogous problem for "topologically transitive" replaced by "ergodic" and 
r sufficiently large, the answer being no, contrary to what was expected. 

These problems are very difficult and no solution is in sight. In this article, 
I will report on some recent progress on Hamiltonian systems in two degrees of 
freedom and the closely related subject of area preserving mappings. Even for 
such an apparently simple case, there are many difficult unresolved questions, 
and these questions have attracted engineers, who have recently done a great deal 
of numerical work on them (surveyed in [11]), as well as inspired mathematicians 
to obtain deep results (e.g., [9]). 

In this article, I will report on one aspect of recent work on dynamics of area 
preserving mappings, based on variational methods. Although these methods do 
not apply to all area preserving homeomorphisms, they apply to a large class 
of such homeomorphisms, the monotone tilt homeomorphisms. This work is an 
extension of earlier work of Aubry [3] and myself [12]. Bangert [5], Chenciner 
[7], and Moser [17, 18] have given very complete expositions of this earlier work 
and related matters, so I will use this opportunity to announce extensions of this 
earlier work, which are not yet published. 

For simplicity, I will confine the discussion to C1 monotone twist (area preserv-
ing) diffeomorphisms, of an annulus. There is no loss of generality in considering 
only positive twist diffeomorphisms, since the inverse of such a diffeomorphism 
is a negative twist diffeomorphism. This is the class of mappings considered, for 
example, in [12]. 

A mapping in this class is a C1 diffeomorphism / of the annulus 

Ä = S1 x [0,1] 

onto itself which maps each boundary component to itself, preserves area and 
orientation, and has the "positive twist" property, i.e., for each 9 E S1, the 
mapping y i-+ p r^ f l , y) has positive derivative at each point, where prj denotes 
the projection of S1 X [0,1] on its first factor. We let / be a lift of / to the 
universal cover A = R X [0,1] of Ä. Then the rotation interval (p(fo)iP(fi)) of 
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/ is defined, where fi = / | R x i, i = 0,1, and p(fi) is the Poincaré rotation 
number of / , i.e., p(fa) = limn_>±oo fjl(x)/n for any xER. 

We let ft:5 - > R b e a "generating function" of / , i.e., B = {(x,xf) E R2: 
there exists y E [0,1] with p ^ f(x,y) = a;'}, and h is the function defined (up to 
addition of a constant) by f(x,y) = (x1 ,y') if and only if y = —d\h(x,x') and 
y1 = d2 h (x, x'). 

We let C denote the subset of R z consisting of bi-infinite sequences x = 
(xi)iez € R z with (xi,Xi+i) E B. We let M denote the set of x E C such that 
for all m, n E Z with m < n, we have that re' EC, x!m = xm, and a;̂  = xn imply 

n 
y ^ h(xi,xi+i) < y ^ f t ( ^ , ^ + 1 ) . 

Elements of C are called configurations and elements of M are ailed minimal 
energy configurations. Aubry and Le Daeron [3] have developed a more or less 
complete theory of minimal energy configurations. See Bangert [5] for a complete 
exposition of this theory. If a; is a minimal energy configuration, the rotation 
number p(x) = \vaii^±QOXi/i exists and lies in [p(/o))/o(/i)]. We define the 
rotation symbol p(x) of x to be p(x) if p(x) is irrational or if p(x) = p/q and 
Xi+q = Xi + p for all i E Z. If p(x) = p/q and Xi+q > Xi + p for all i E Z, 
we set p(x) = p/q+. If p(x) = p/g and Xi+q < Xi + p for all i E Z, we set 
p(x) = p/q—. According to the theory of Aubry and Le Daeron, one of these 
three possibilities always holds for x E M. If u; is a rotation symbol, we let Mw 

denote the set of minimal energy configurations of rotation symbol CJ. We let 
$w = Po(Mu), where po(x) = ^o- If CJ E R, then $ w is a closed subset of R. Also 
cl$p/g+ = $p/g+ U $p/g, cl$p/g_ = $p/q- U $p/g, where cl means "closure." 
These results are due to Aubry and Le Daeron [3]. Bangert [5] has explained 
them clearly. 

This machinery permits us to define "Peierls's energy barrier" Pcj(C) for a real 
number £ and a rotation symbol CJ, whose underlying number is in the rotation 
interval of / . If £ E c l$ w , we set P w ( 0 = 0- Otherwise, we let (a,b) be the 
complementary interval of cl <È>W which contains f. By the theory of Aubry and 
Le Daeron, there exist x, y E Mw such that XQ = a and 2/0 = 6- Moreover, yi > Xi 
for all i E Z, and Y^ieA yi~xi ^ 1? where A = Z if CJ is an irrational number or 
of the form p/q+ or p/q— and A = {0 , . . . , q — 1} if CJ = p/q. We set 

P w ( 0 = m i n I ^Th(zi,Zi+i) - h(x{,xi+i) \ , 
ueA J 

Ivhere z ranges over all^önfi^fatidns~such that Xi < Zi < yi and ZQ = f"Tfii¥ 
was defined and called Peierls's energy barrier in Aubry, Le Daeron, and André 
[4]. See also Mather [13], where the basic properties of Pw(£) are developed. 
I defined a closely related quantity AWU in [14], where I showed that as a 
function of the number CJ, this quantity is continuous at irrationals, although 
it is discontinuous at rational CJ, for generic / . The definition of AW& may 
be extended to rotation symbols CJ, and then the functions CJ H-> AW^ and 
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CJ \-y Pu)(€) are continuous on the space of rotation symbols. We provide the 
set of rotation symbols with the topology associated to the obvious order. In 
this topology, rational numbers are isolated points. The intervals [p/q+^p/q + s) 
in the set of rotation symbols form a basis of neighborhoods of p/q+, where e 
ranges over all positive numbers. The continuity of these functions follows from 
[14] or slight extensions of the results of [14]. Its importance derives from the 
fact I proved in [14] that there is an invariant circle for / of rotation number 
CJ (where CJ is irrational) if and only if AWU = 0, or equivalently, Pw vanishes 
identically. 

Recently, I have improved these results, to give moduli of continuity for AW^ 
or Po,(f), as functions of CJ. It is easy to see that there exists G > 0 such that 
| iw(0 - Pu>{£')\ < C|£ - £'|, for all f, f E R. The dependence on CJ, however, 
is more complicated. For Pw(£)> we have 

\Pp/q(0-PM)\<C(q-1 + \quj-p\), 

where C depends only on / . Moreover, 

\Pp/M0 - PM)\ < C\qu-p\, if CJ > p/q, 
\Pp/q-(0 - PM)\ < C\qu-p\, if w <p/q. 

There are similar estimates for AW^. 
Using these estimates, I have been able to prove that if CJ is a Liouville number, 

then there is a dense set D in the space of C°° monotone twist diffeomorphisms 
such that a homotopically nontrivial invariant circle of a diffeomorphism in D 
has rotation number CJ. This is a converse of well-known results in KAM theory. 
The proof of this result is based on the theorem of Mather [14] that / has an 
invariant circle of rotation number CJ if and only if AWW = 0, and this holds if 
and only if Pu vanishes identically. 

In another direction, I have shown that in a certain sense it is possible to 
"shadow" minimal energy orbits in a fixed Birkhoff region of instability by local 
minimal energy orbits. Recall that a minimal energy configuration x is station-
ary, in the sense that dih(xi-i,xi) + d2h(xi,Xi+i) = 0, and therefore if we set 
yi = -dih(xi,Xi+i), we have f(xi,yi) = (xi+i,yi+i). Thus, to every mini-
mal energy configuration, we may associate an orbit, and we call the resulting 
orbit a minimal energy orbit. Consider two homotopically nontrivial invariant 
circles which do not intersect, so they bound an annulus. If the annulus which 
they bound contains no invariant circle, then the region between the circles is 
called a Birkhoff region of instability. A local minimal energy configuration x 
minimizes in the same sense that a minimal energy configuration minimizes, but 
only for small perturbations of x. Local minimal energy orbits are the orbits 
corresponding to local minimal energy configurations. Then we have the follow-
ing result: given a sequence (0i)iez of minimal energy orbits, all in the same 
Birkhoff region of instability, and numbers Si > 0, there is a local minimal en-
ergy orbit 0 = (Pj)3-ez and an increasing sequence ( n ^ ^ z of integers, such that 
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dist.(Pn(i), Oi) < 6i, i.e., 0 comes as close as we please to each orbit Oi in turn. 
Proofs will appear elsewhere. 
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