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Banach KK-theory and 
the Baum-Connes Conjecture 

V. Lafforgue* 

Abstract 

The report below describes the applications of Banach KK-theory to a con-
jecture of P. Baum and A. Connes about the K-theory of group C*-algebras, 
and a new proof of the classification by Harish-Chandra, the construction by 
Parthasarathy and the exhaustion by Atiyah and Schmid of the discrete series 
representations of connected semi-simple Lie groups. 
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This report is intended to be very elementary. In the first part we outline the 
main results in Banach KK-theory and the applications to the Baum-Connes con-
jecture. In the second part we show how the Baum-Connes conjecture for connected 
semi-simple Lie groups can be applied to recover the classification of the discrete 
series representations. 

1. Banach KK-theory and the Baum-Connes con-
jecture 

There are many surveys on Kasparov's KK-theory and the Baum-Connes 
conjecture (see [4, 48, 49, 21, 27, 13, 54]) and on Banach KK-theory ([49, 38]). 

1.1. Generalized Fredholm modules 
We wish to define A-linear Fredholm operators (where A is a Banach algebra), 

with an index in K0(A). If A = C, this index should be the usual index of C-linear 
Fredholm operators in K0(C) = Z . 
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We define a Banach algebra as a (non necessarily unital) C-algebra A that 
is complete for a norm ||.|| satisfying ||aò|| < ||a||||b|| for any a,b £ A. If A and 
B are Banach algebras a morphism 6 : A —t B is an algebra morphism such that 
P(a)[| < IMI f°r a ny a € A. 

K0 and Ki are two covariant functors from the category of Banach algebras 
to the category of abelian groups. If X is a locally compact space and Co(X) the 
algebra of continuous functions vanishing at infinity, Kn(Cn(X)) and Ki(Cn(X)) 
are the Atiyah-Hirzebruch K-theory groups. For technical reasons we shall restrict 
ourselves to unital Banach algebras in this subsection. 

Let A be a unital Banach algebra. 
A right A-module E is finitely generated projective if and only if it is a direct 

summand in An for some integer n. The set of isomorphism classes of right finitely-
generated projective A-modules is a semigroup because the direct sum of two right 
finitely generated projective A-modules is a right finitely generated projective A-
module. Then Kn(A) is the universal group associated to this semigroup (i.e. the 
group of formal differences of elements of the semigroup). If 9 : A —t B is a 
morphism of unital Banach algebras, and E is a right finitely generated projective 
A-module then E (E)A B is a right finitely generated projective B-module and this 
defines 0» : K0(A) - • K0(B). 

There is another definition of Kn(A) for which the functoriality is even more 
obvious : Kn(A) is the quotient of the free abelian group generated by all idem-

(p 0^ 
VO fi 

any idempotents p £ Mk(A) and q £ MfiA) and [p] = [q] if p, q are idempotents of 
Mk(A) and are connected by a path of idempotents in Mk(A) and [0] = 0 where 0 
is the idempotent 0 in Mk(A). The link with the former definition is that any idem-
potent p £ Mk(A) acts on the left on Ak as a projector P and ImP is a right finitely-
generated projective A-module (it is a direct summand in the right A-module Ak). 

The following construction was performed for C*-algebras by Alischenko and 
Kasparov, in connection with the Novikov conjecture ([43, 28]). We adapt it to 
Banach algebras. 

A right Banach A-module is a Banach space (with a given norm \\.\\E) equipped 
with a right action of A such that 1 G A acts by identity and ||a;a||^ < Hx^HaH^ 
for any x £ E and a £ A. Let E and F be right Banach A-modules. A morphism 
u : E —t F of right Banach A-modules is a continuous C-linear map such that 
u(xa) = u(x)a for any x £ E and a £ A. The space CA(E, F) of such morphisms is a 
Banach space with norm ||«|| = supx€£;, | |X||E=I IIWMIIF- A morphism u £ CA(E, F) 
is said to be "A-rank one" if u = w o v with v £ CA(E, A) and w £ CA(A, F). The 
space KA(E,F) of A-compact morphisms is the closed vector span of A-rank one 
morphisms in CA(E,F). If E = F, CA(E) = CA(E,E) is a Banach algebra and 
KA(E) = KA(E,E) is a closed ideal in it. 

Definition 1.1.1 A Fredholm module over A is the data of a Z/2 graded right 
Banach A-module E and an odd morphismT £ CA(E) such thatT2 —Id# £ KA(E). 

In other words E = E0 ® Ei, T = ( J and u £ CA(EQ,EI) and v £ 

potents p in Mk(A) for some integer k, by the relations [p] + [q] for 
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CA(EI,E0) satisfy vu — Id#0 £ ICA(EQ) and uv — I d ^ £ KA(EI). 
If (E, T) is a Fredholm module over A and 9 : A —t B a unital morphism then 

(E (E)A B,T ® 1) is a Fredholm module over B (here E (E)A B is the completion of 
E ®^s B for the maximal Banach norm such that ||x ® b\\ < ||X||E:||&||B for x £ E 
and 6 £ B). 

Yet A[0,1] be the Banach algebra of continuous functions from [0,1] to A with 
the norm | |/ | | = suptGr01n | | /(i) |U and 9n,9i : A[0,1] —t A the evaluations at 0 and 
1. Two Fredholm modules on A are said to be homotopic if they are the images by 
9o and 9i of a Fredholm module over A[0,1]. 

Theo rem 1.1.2 There is a functorial bijection between Kn(A) and the set of ho-
motopy classes of Fredholm modules over A, for any unital Banach algebra A. 

Let (En,Ei,u,v) be a Fredholm module over A. Its index, i.e. the correspond-
ing element in K0(A), is constructed as follows. It is possible to find n £ N and 
w £ K,A(AU, EI) such that (u, w) £ CA(EQ ® An, E{) is surjective. Its kernel is then 
finitely generated projective and the index is the formal difference of Ker((u,wj) 
and An. 

An ungraded Fredholm module over A is the data of a (ungraded) right Banach 
module E over A, and T £ CA(E) such that T2 — Id# £ KA(E). There is afunctorial 
bijection between KfiA) and the set of homotopy classes of ungraded Fredholm 
modules. 

For a non-unital algebra A, K0(A) = Ker(K0(Ä) -+ K0(C) = Z) and KfiA) = 
Ki(A) where A = A © CI. In particular every idempotent in Mk(A) gives a class 
in Kn(A) but in general not all classes in Kn(A) are obtained in this way. The 
definition of a Fredholm module should be slightly modified for non-unital Banach 
algebras, but the theorem 1.1.2 remains true. 

1.2. Statement of the Baum-Connes conjecture 
Let G be a second countable, locally compact group. We fix a left-invariant 

Haar measure dg on G. Denote by Cc (G) the convolution algebra of complex-valued 
continuous compactly supported functions on G. The convolution of / , / ' £ CC(G) 
is given by / * f'(g) = JG f(h)f'(hr1g)dh for any g £ G. 

When G is discrete and dg is the counting measure, Cc (G) is also denoted by 
CC? and if eg denotes the delta function at g £ G (equal to 1 at g and 0 elsewhere), 
(eg)geG is a basis of CG and the convolution product is given by egegi = eggi. 

The completion of CC(G) for the norm | | / | | L I = JG \f(g)\dg is a Banach algebra 
and is denoted by L1(G). 

For any / £ CC(G) let A(/) be the operator / ' H> / * / ' on L2(G). The 
completion of CC(G) by the operator norm ||/||red = \\Hf)\\c(L2(G)) '1S ealled the 
reduced G*-algebra of G and denoted by C*ed(G). If G is discrete (eg')gieG is an 
orthonormal basis of L2(G) and X(eg) : egi >-¥ eggi. 

For any / £ CC(G), ||/||j,i > ||/||red and L1(G) is a dense subalgebra of 
C*ed(G). We denote by i : L1(G) —¥ C*ed(G) the inclusion. 
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Assume now that M is a smooth compact manifold, and M a Galois covering 
of M with group G (if M is simply connected, G = 7Ti(M)). Let En and Ei be two 
smooth hermitian finite-dimensional vector bundles over M and u an order 0 elliptic 
pseudo-differential operator from L2(M, En) to L2(M, E{). Since u is elliptic there 
is an order 0 pseudo-differential operator v : L2(M,E{) —t L2(M,E0) such that 
Wi2(M,E(]) — vu a n c l Wj,2(M]El) — uv have order < —1 and therefore are compact. 
Let £ be the quotient of M x C*ed(G) by the diagonal action of G (G acting on 
C*ed(G) by left translations) : £ is a flat bundle of right C*ed(G)-modules over AT, 
whose fibers are isomorphic to C*ed(G). Then L2(M,E0 ® £) and L2(M,Ei ® £) 
are right Banach (in fact Hilbert) modules over C*ed(G) and it is possible to lift u 
and v to ü and w so that (L2(M, EQ®£),L2(M, Ei ®£),ü,v) is a Fredholm module 
over C*ed(G), whose index lies in K0(C*ed(Gj) and the index does not depend on 
the choice of the liftings. 

The operator u represents a "if-homology class" in K0(M), and using the 
classifying map M —t BG, it defines an element of K0:C(BG), the K-homology with 
compact support of the classifying space BG. For any discrete group G we can 
define a morphism of abelian groups K*^C(BG) —¥ K„,(C*ed(Gj) (* = 0,1). This 
morphism is the Baum-Connes assembly map when G is discrete and torsion free. 
When G is not discrete or has torsion, the index construction can be performed 
starting from a proper action of G (instead of the free and proper action of G 
on M in the last paragraph), and therefore we have to introduce the space EG 
that classifies the proper actions of G. Using Kasparov equivariant KK-theory, the 
G-equivariant K-homology Kcfi(E_G) with G-compact support (* = 0,1) may be 
defined, and there is an assembly map 

Mred : K^(EG) -+ KfiC;ed(Gj). 

In the same way we can define p,p\ : Kcfi(E_G) —t K^(L1(Gj) and pred = i* ° pp1-

Baum-Connes conjecture [3, 4] : If G is a second countable, locally compact 
group then the assembly map pred : Kcfi(E_G) —t K*(C*ed(Gj) is an isomorphism. 

Bost conjectured : If G is a second countable, locally compact group (and 
has reasonable geometric properties) then the assembly map p,p\ : Kcfi(E_G) —t 
K^(L1(Gj) is an isomorphism. 

In many cases Kcfi(E_G) can be computed. For instance if G is a discrete 
torsion free subgroup of a reductive Lie group 17 and if is a maximal compact 
subgroup of 17, then a possible EG is H/K and Kcfi(E_G) is the K-homology with 
compact support of G\H/K. This group may be computed thanks to Mayer Vietoris 
sequences. See part 2 for the case where G is a Lie group. 

1.3. ÜTÜT-theory 
For any G*-algebras A and B, Kasparov [28, 31] defined an abelian group 

KK(A, B), covariant in B and contravariant in A. There is a product KK(A, B) ® 
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KK(B,C) - • KK(A,C). Moreover KK(C,A) = KQ(A) and therefore the product 
gives a morphism KK(A, B) -+ Hom(i\o(A), K0(Bj). The definition of KK(A, B) 
is like definition 1.3.1 below, but with Hilbert modules instead of Banach modules. 

For any Banach algebras A and B, we define [37, 49] an abelian group 
KKbAn(A,B), covariant in B and contravariant in A. There is no product, but 
a morphism KKbAn(A,B) —t Hom(Kn(A),Kn(B)). Assume that B is unital (oth-
erwise the definition has to be slightly modified). 

Definition 1.3.1 EbAn(A,B) is the set of isomorphism classes of data (E,n,T), 
where E is a 7L/27L-graded right Banach module, n : A —¥ Cp(E) is a morphism 
of Banach algebras and takes values in even operators, and T £ Cp(E) is odd and 
satisfies a(T2 - ldE) £ KB(E) and aT -Ta£ KB(E) for any a £ A. 

Then KKbAn(A,B) is the set of homotopy classes in EbAn(A,B), where the 
homotopy relation is defined using EbAn(A, B[0,1]). 
Remark : EbAn(C, B) is the set of isomorphism classes of Fredholm modules over 
B and KKbAn(C,B) = K0(B). 

If p is an idempotent in A, and (E,n,T) £ EbAn(A,B), the image of [p] £ 
Ko(A) by the image of [(E, TT, T)] £ KKbAn(A, B) in Hom(K0(A), K0(B)) is defined 
to be the index of the Fredholm module over B equal to (lmn(p), irfifiTirfi))). When 
p is an idempotent in Mk(A), we use the image of p by Mk(A) —¥ Cp(Ek). This is 
enough to define the morphism KKbAn(A,B) —t Hom(Kn(A),Kn(B)), when A is 
unital. 

The same definition with ungraded modules gives KKbAn(A, B), and, with the 
notation KK = KKn, we have a morphism KKbAn(A, B) —t Hom(Kj (A), Ki+j (Bj), 
where all the indices are modulo 2. 

1.4. Status of injectivity and the element 7 
The injectivity of the Baum-Connes map pred (and therefore of ppi) is known 

for the following very large classes of groups : 

a) groups acting continuously properly isometrically on a complete simply con-
nected riemannian manifold with controlled non-positive sectional curvature, and 
in particular closed subgroups of reductive Lie groups ([29, 31]), 

b) groups acting continuously properly isometrically on an affine building and in 
particular closed subgroups of reductive p-adic groups ([32]), 

c) groups acting continuously properly isometrically on a discrete metric space with 
good properies at infinity (weakly geodesic, uniformly locally finite, and "bolic" 
[33, 34]), and in particular hyperbolic groups (i.e. word-hyperbolic in the sense of 
Gromov), 

d) groups acting continuously amenably on a compact space ([22]). 

In the cases a),b),c) above, the proof of injectivity provides an explicit idem-
potent endomorphism on K*(C*ed(Gj) whose image is the image of pred (and the 
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same for ppi). In case d), J.-L. Tu has also constructed such an endomorphism, 
but in a less explicit way. 

To state this we need to understand a baby case of Kasparov's equivariant 
KK-groups. Let G be a second countable, locally compact group. We denote by 
EG (C, C) the set of isomorphism classes of triples (H,n,T) where 17 is a Z /2-graded 
Hilbert space, n a unitary representation of G on 17 (such that for any x £ H, 
g H> gx is continuous from G to 17) and T an odd operator on 17 such T2 — Id H 
is compact and •K(g)T/ïï(g^1) — T is compact and depends norm continuously on 
g £ G. Then KKQ (C, C) is the quotient of EG(C,C) by homotopy. Kasparov-
proved that KKG(C, C) has a ring structure (using direct sum for the addition and 
tensor products together with a quite difficult construction for the multiplication). 

If 7T is a unitary representation of G on a Hilbert space Hn and Hi = 0 then 
(17, n, 0) £ EG(C, C) if and only if H0 has finite dimension. If moreover Hn = C and 
7T is the trivial representation of G, the class of (H,n,Ö) is the unit of KKG(C,C) 
and is denoted by 1. If G is compact the classes of (H,n,Ö) with Hi = 0 (and 
dimifo < +oo) generate KKG(C,C) and KKG(C,C) is equal to the representation 
ring of G. 

The important fact is that there is a "descent morphism" 

j r e d : KKG(C,C) -+ End(KfiC;ed(Gjj). 

In fact it is a ring homomorphism and j r ed(l) = 1&K,(C* (G))- It is defined as the 
composite of two maps KKG (C, C) -¥ KK(C*ed(G),C*ed(Gj) -t End(Kr.(C*ed(G)j). 
The construction of jred is due to Kasparov. The construction of jpi to be explained 
below is an adaptation of it. 

The following extremely important theorem also contains earlier works of 
Alishchenko and Solovjev. 

Theorem 1.4.1 (Kasparov, Kasparov-Skandalis [31, 32, 33, 34]) If G belongs to 
one of the classes a),b),c) above, the geometric conditions in a),b) or c) allow to 
construct an idempotent element 7 £ KKG(C,C) such that pred is injective and its 
image is equal to the image of the idempotent jred(7) € End(K„,(C*ed(Gjj). 

1.5. Homotopies between 7 and 1 
We assume that G belongs to one of the classes a),b),c). Then the injectivity 

of pied is known and the surjectivity is equivalent to the equality jred(7) = Id G 
End(KfiC;ed(G)j). 

Theorem 1.5.1 We have 7 = 1 in KKG(C,C) if 

1. G is a free group (Cuntz, [14]) or a closed subgroup of SO(n, 1) (Kasparov, 
[30]) or of SU(n, 1) (Julg-Kasparov, [25]) or of SL2(V) with F a local non-
archimedian field (Julg- Valette, [24]), 

2. G acts isometrically and properly on a Hilbert space (Higson-Kasparov [20, 
27]). 
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In fact the second case contains the first one. 
If G has property (T) and is not compact, 7 7̂  1 in KKG(C, C) : it is impossible 

to deform 1 to 7 in EG (C, C) because the trivial representation is isolated among 
unitary representations of G if G has property (T) and 7 can be represented by 
(17, n, T) such that 17 has no invariant vector (and even 17 is tempered). All simple 
real or p-adic groups of rank > 2, and Sp(n, 1) and F^_20^, and all their lattices, 
have property (T) (see [19]). 

It is then natural to broaden the class of representations in order to break 
the isolation of the trivial one. In [26] Julg proposed to use uniformly bounded 
representations on Hilbert spaces (to solve the case of Sp(n, 1)). 

For any non compact group G the trivial representation is not isolated among 
isometric representations in Banach spaces (think of the left regular representation 
on LP(G), p going to infinity). 

Definition 1.5.2 Let EG
An(C,C) be the set of isomorphism classes of triples 

(E,n,T) with E a Z/2-graded Banach space endowed with an isometric representa-
tion of G (such that g H> gx is continuous from G to E for any x £ E), T £ Cc(E) 
an odd operator such that T2 — Id E belongs to Kc(E) and ir(g)TiT(g^1) — T belongs 
to K-c(E) and depends norm continuously on g £ G. 

Then KKG
An(C,C) is defined as the quotient of EG

An(C,C) by homotopy. 
Since any unitary representation of G on a Hilbert space 17 is an isometric 

representation on the Banach space 17, there is a natural morphism of abelian 
groups KKG(C,C) - • KKbAn(C,C). 

To state our main theorem, we need to look at slightly smaller classes than a) 
and c) above. We call these new classes a') and c'). They are morally the same, 
and in particular they respectively contain all closed subgroups of reductive Lie 
groups, and all hyperbolic groups (for general hyperbolic groups see [42], and [37] 
for a slightly different approach). 

Theorem 1.5.3 [37, 49] For any group G in the classes a'), b), or c'), we have 
7 = 1 in KKbAn(CC). 

In fact the statement is slightly incorrect, we should allow representations 
with a slow growth, but this adds no real difficulty. The proof of this theorem is 
quite technical. Let me just indicate some ingredients involved. If G is in class a') 
then G acts continuously isometrically properly on a complete simply connected 
riemmannian manifold X with controlled non-positive sectional curvature, and X 
is contractible (through geodesies) and the de Rham cohomology of X (without 
support) is C in degree 0 and 0 in other degrees. It is possible to put norms on the 
spaces of differential forms (on which G acts) and to build a parametrix for the de 
Rham operator (in the spirit of the Poincaré lemma) in order to obtain a resolution 
of the trivial representation, and in our language an element of EbAn (C, C) equal to 
1 in KKbAn(C, C). The norms we use are essentially Sobolev L°° norms. Then it 
is possible to conjugate the operators by an exponential of the distance to a fixed 
point in X and then to deform these norms to Hilbert norms (through Lp norms, 
p £ [2, +00]) and to reach 7. 
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If G belongs to class b) the de Rham complex is replaced by the simplicial 
homology complex (with L1 norms) on the building. If G belongs to class c') a Rips 
complex plays the same role as the building in b). 

It is not possible to apply directly this theorem to the Baum-Connes conjecture 
because there is no obvious descent map KKbAn(C,C) —¥ End(K„,(C*ed(Gjj), and 
in the next subsection we shall see the difficulties encountered and the way one 
bypasses them in a few cases. 

On the other hand, we may apply this theorem to Bost conjecture, because 
there is descent map jLi : KKbAn(C,C) - • KKbAn(L1(G),L1(G)). 

We explain it when G is discrete. Let (E,TT,T) £ EG
An(C,C). We de-

note by L1(G,E) the completion of E ® CG for the norm || ^2geGxÌ9) ® esll = 

12geG\\x(s)\\E- Then L1(G,E) is a right Banach L1 (G)-module by the formula 
(x ® eg)egi = x ® eggi and there is a Banach algebra morphism n : L1(G) —¥ 
Cpi(G)(L1(G,Ej) by the formulan(egi)(x®eg) = ir(g')(x)®egig. Then (L1(G,£'),7r, 
T ® 1) € EbAn(L1(G),L1(Gj) gives the desired class in KKbAn(L1(G),L1(G)). 

This and section 1.3 imply the Bost conjecture in many cases. 

Theo rem 1.5.4 For any group G in the classes a'), b) or c'), pLi : Kcfi(E_G) —t 
K^(L1(Gj) is an isomorphism. 

1.6. Unconditional completions 
Let G be a second countable, locally compact group. Let A(G) be a Banach 

algebra containing Cc (G) as a dense subalgebra. We write -4(G) instead of A for 
notational convenience. We ask for a necessary and sufficient condition such that 
there is a "natural" descent map j A : KKbAn(C,C) - • KKbAn(A(G),A(Gj). 

In order to simplify the argument below, we will assume G to be discrete. 
Let E be a Banach space with an isometric representation of G. Then E ® CG 

has a right CG-module structure given by (x ® eg)egi = x ® eggi and there is 
a morphism n : CG —¥ Endos (E ® CG) given by the formula n(eg')(x ® eg) = 
ir(g')(x) ® eg'g. We look for a completion A(G,E) of E ® CG by a Banach norm 
such that A(G, E) is a right Banach „4(G)-module and n extends to a morphism of 
Banach algebras n : A(G) —¥ C^G)(A(G,Ej). 

In order to have enough „4(G)-rank one operators, it is quite natural to assume 
that the norm on A(G, E) satisfies : for any x £ E and £ £ Cc(E, C), if we denote 
by Rx : CG - • E ® CG the map eg H> x ® eg and by S(_ : E ® CG -^ CG the 
map y ® eg >-+ Ç(y)eg, we have \\Rx(f)\\A(G,E) < IMbll/IU(G) for any f £ CG 
and IIScMIU^) < ||C||£::(iî,c)||a;m(Giiï) for any u £ E®CG. Now fix x £ E 
and £ £ Cc(E,C) and denote by 1 the unit in G. For any / = X ^ G G fÌ9)ea e 

CG, S^(n(fi)(Rx(eijj) is X^oGG^(7r(5)(-c))/(5)es m <^r- ^ o r a n y function c on G, 
we define the Schur multiplication by c to be the pointwise product CG —¥ CG, 
E s G G f(9>g ^ E s G G c(g)f(g)eg. 

In this way we obtain the following necessary condition : for any x £ E and 
£ £ Cc(E,C) the Schur multiplication by the matrix coefficient g H- Ç(n(g)(x)) is 
bounded from A(G) to itself and its norm (in Cc(A(Gjj) is less than ||x||s||C||£ .-{E,Q • 
But for any L°°-function c on G we can find an isometric representation n of G on 
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a Banach space E and x £ E and £ £ Cc(E,C) such that ||X||E:||£||£.-{E,Q = llcIU°° 
and c(g) = Ç(n(g)x) for any g £ G (take E = L1(G), x = ó~i, Ç = c). Therefore 
a necessary condition is that A(G) is an unconditional completion in the following 
sense. 

Definition 1.6.1 A Banach algebra A(G) (with a given norm \\-\\A(G)) contain-
ing CC(G) as a dense subalgebra is called an unconditional completion if the norm 
ll/IU(G) of f £ CC(G) only depends on g ^ \f(g)\, G - • K+. 

Remark that L1(G) is an unconditional completion of CC(G) but C*ed(G) is 
not. 

In fact this condition is also sufficient to construct the descent map. For the 
sake of simplicity, we still assume that G is discrete. If A(G) is an unconditional 
completion of CG, and (E,n,T) is in EbAn(C,C), we define A(G,E) as the com-
pletion of E ® CG for the norm || E S G G X ( # ) ® esll = II E S G G IkG?)!!^ eslU(G) a n d 
A(G, E) is a right Banach module over A(G) and there is a morphism n : A(G) —¥ 
£A(G)(A(G,E)), and (A(G,E),n,T®1) £ EbAn(A(G),A(G)). 

In this way, for any unconditional completion A(G) of CG, we have a descent 
map jfn : KKG

An(C,C) - • KKbAn(A(G),A(G)) - • End(KfiA(G))). We can 
also define an assembly map PA '• K^(EG) —¥ K*(A(G)). If A(G) is an involutive 
subalgebra of C*ed(G), and i : A(G) —¥ C*ed(G) denotes the inclusion, pied = ì*°PA-

Theorem 1.6.2 ([37]) For any group G in the classes a'), b) or c'), and for any 
unconditional completion A(G) of CC(G), PA '• Kcfi(E_G) —t K*(A(G)) is an iso-
morphism. 

Yet A, B be Banach algebras and i : A —¥ B an injective morphism of Banach 
algebras. We say that A is stable under holomorphic functional calculus in B if any 
element of A has the same spectrum in A and in B. If A is dense and stable under 
holomorphic functional calculus in B then z» : KfiA) —t K*(B) is an isomorphism 
(see the appendix of [6]). 

Corollary 1.6.3 For any group G in the classes a'), b) or c'), if CC(G) admits an 
unconditional completion A(G) which is an involutive subalgebra of C*ed(G) and is 
stable under holomorphic functional calculus in C*ed(G), then pred '• K^(EG) —¥ 
Kx(C*ed(Gj) is an isomorphism. 

This condition is fulfilled for 

a) hyperbolic groups, 
b) cocompact lattices in a product of a finite number of groups among Lie or p-adic 
groups of rank one, SL3(¥) with F a local field (even M) and E6^_26^, 
c) reductive Lie groups and reductive groups over non-archimedian local fields. 

In case c), A(G) is a variant of the Schwartz algebra of the group ([37]). In this 
case the Baum-Connes conjecture was already known for linear connected reductive 
groups (Wassermann [55]) and for the p-adic GLn (Baum, Higson, Plymen [5]). In 
case a),b) this result is based on a property first introduced by Haagerup for the 
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free group and called (RD) (for rapid decay) by Jolissaint ([23]). In case a),b) G 
has property (RD) : this is due to Haagerup for free groups ([16]), Jolissant for 
"geometric hyperbolic groups", de la Harpe for general hyperbolic groups ([18]), 
Ramagge, Robertson and Steger for SL% of a non-archimedian local field ([47]), the 
author for SL3(R) and SL3(C) ([39]), Chatterji for SL3(M) and E6{_26) ([10]), and 
the remark that it holds for products is due to Ramagge, Robertson and Steger 
([47]) in a particular case, and independantly to Chatterji ([10]) and Talbi ([50]) 
in general. A discrete group G has property (RD) if there is a lenght function 
£ : G —¥ R+ (i.e. a function satisfying i(g^v) = 1(g) and £(gh) < 1(g) + 1(h) for 
any g,h £ G) such that for s £ R+ big enough, the completion HS(G) of CG for 
the norm || E f(g)eg\\H*(G) = II EC1 + % ) ) s / ( ^ K I I L ^ G ) is contained in Gr*ed(G). 
Then, for s big enough, HS(G) is a Banach algebra and an involutive subalgebra of 
C*ed(G) and is dense and stable under holomorphic functional calculus ([23, 39]); it 
is obvious that HS(G) is an unconditional completion of CG. 

As a consequence of this result the Baum-Connes conjecture has been proven 
for all almost connected groups by Chabert, Echterhoff and Nest ([9]). 

1.7. Trying to push the method further 
In order to prove new cases of the surjectivity of the Baum-Connes map (when 

the injectivity is proven and the 7 element exists) we should look for a dense 
subalgebra -4(G) of C*ed(G) that is stable under holomorphic functional calcu-
lus and a homotopy between 7 and 1 through (perhaps special kind of) elements of 
EbAn(C, C) which all give a map K„,(A(Gj) —¥ K*(C*ed(Gj) by the descent construc-
tion. Thanks to the discussion in subsection 1. a necessary condition for this is that 
for any (E, n, T) in the homotopy between 7 and 1, for any x £ E and £ £ Cc(E, C), 
the Schur multiplication by the matrix coefficient g H> Ç(ir(g)(xj) is bounded from 
A(G) to C*ed(G) and has norm < ||X||E:||£||£r{E,Q- So we should first look for a 
homotopy between 7 and 1 such that the fewest possible matrix coefficients appear. 
For groups acting properly on buildings, this homotopy can be shown to exist. The 
problem for general discrete groups properly acting on buildings is to find a sub-
algebra v4(G) of C*ed(G) that is stable under holomorphic functional calculus and 
satisfies the condition with respect to these matrix coefficients. The first step (the 
crucial one I think) should be to find a subalgebra -4(G) of C*ed(G) that is stable 
under holomorphic functional calculus and satisfies the following condition : there 
is a integer n, a distance d on the building and a point xo on the building such that 
the Schur product by the characteristic function of {g £ G,d(xo,gxo) < r} from 
A(G) to C*ed(G) has norm less than (1 + r)n, for any r £ R+. 

1.8. The Baum-Connes conjecture with coefficients 
Let G be a second countable, locally compact group and A a G-Banach algebra 

(i.e. a Banach algebra on which G acts continuously by isometric automorphisms 
g : a >-¥ g (a)). The space CC(G,A) of A-valued continuous compactly supported 
functions on G is endowed with the following convolution product : f * f'(g) = 
JG fWh(f'(h^19J)dh and the completion L1(G, A) of CC(G, A) for the norm | |/ | | = 
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J G 11/(5) I ÌAdg is a Banach algebra. Alore generally for any unconditional completion 
„4(G), we define A(G,A) tobe the completion of CC(G, A) for the norm | | / | U ( G , / 1 ) = 
\\9^\\f(g)\\A\\A{Gr 

For any G-Banach algebras A and B, we define in [37] an abelian group 
KKbAn(A, B). This is a contravariant functor in A and a covariant functor in B. 
When G = 1 this is equal to KKbAn(A, B). For any unconditional completion „4(G) 
of CC(G), there is descent morphism KKbAn(A,B) - • KKbAn(A(G,A),A(G,Bj). 

These constructions are adaptations of the classical constructions for C*-
algebras : for any G-G*-algebra A (i.e. G acts continuously by G*-algebras au-
tomorphisms on A) we have a natural G*-algebra C*ed(G,A) containing L1(G,A) 
as a dense subalgebra. If B is another G-G*-algebra, Kasparov defined an abelian 
group KKG(A,B). This is a contravariant functor in A and a covariant functor in 
B. When G = 1 this is equal to KK(A,B). There is an associative and distribu-
tive product KKQ(A,B) ® KKQ(B,C) —¥ KKQ(A,C) and a descent morphism 
KKG(A,B) -+ KK(C;ed(G,A),C;ed(G,Bj). 

Let Kcfi(E_G,A), * = 0,1, be the inductive limit over G-invariant G-compact 
subsets Z of EG of KKa,*(Cn(Z),A). Then the assembly map 

Pred,A '• K* (EG, A) -t K*(C*ed(G, A)) 

is defined in [4] and similar maps ppi}A, and more generally PA,A for any uncondi-
tional completion A(G), can be defined. 

The Baum-Connes conjecture "with coefficients" claims that preA,A is an iso-
morphism and the Bost conjecture "with coefficients" claims that ppi^i is an iso-
morphism. Theorems 1.4.1, 1.5.4, 1.6.2 are still true with arbitrary coefficients. 

The surjectivity of the Baum-Connes conjecture with coefficients has been 
counter-exampled recently (Higson, Lafforgue, Ozawa, Skandalis, Yu) using a ran-
dom group constructed by Gromov ([15]) but Bost conjecture with coefficients still 
stands. If the Baum-Connes conjecture with coefficients is true for a group, it is 
true also for all its closed subgroups; the Baum-Connes conjecture with coefficients 
is also stable under various kinds of extensions (Chabert [7], Chabert-Echterhoff [8], 
Oyono [44], and Tu [51]). 

Kasparov's equivariant KK-theory was generalized to groupoids by Le Gall 
[31, 40, 41] and this generalized KK-theory was applied by Tu in [52, 53] to the 
bijectivity of the Baum-Connes map for amenable groupoids and the injectivity for 
(the holonomy groupoids of) hyperbolic foliations. It is possible to generalize also 
Banach KK-theory and unconditional completions. In this way we obtain the Baum-
Connes conjecture for any hyperbolic group, with coefficients in any commutative 
G*-algebra, and also for foliations with compact basis, admitting a (strictly) nega-
tively curved longitudinal riemannian metric, and such that the holonomy groupoid 
is Hausdorff and has simply connected fibers (not yet published). 

2. Discrete series representations of connected 
semi-simple Lie groups 
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In this part we examine how the Baum-Connes conjecture for a connected 
semi-simple Lie group with finite center can be used to establish the construction of 
the discrete series by Dirac induction ([17, 45, 1]). That this is morally true is known 
from the beginning of the conjecture (see for instance [12]). In the proof we shall 
introduce 3 ingredients : these are classical facts stated here without proof. Parts 
of the argument apply to more general groups (not connected, not semi-simple). 

This work owes its existence to Paul Baum. He asked me to study the problem 
and we discussed a lot. 

2.1. Dirac operators 
Let G be a Lie group, with a finite number of connected components, and K a 

maximal compact subgroup. We assume that there exists a G-invariant orientation 
on G/K. For the sake of simplicity, we assume that G/K admits a G-invariant spin 
structure (it is true anyway for a two fold covering of G). Alore precisely let p be a 
complementary subspace for the Lie algebra 6 of If in the Lie algebra g of G. We 
choose p such that it is invariant for the adjoint action of K and we endow it with a 
lf-invariant euclidian metric. The above assumption means that the homomorphism 
K —t SO(p) lifts to Spin(p). We denote by S the associated spin representation of 
K. If dim(G/K) is even, S is Z/2Z-graded. We write i = dim(G/K) [2]. 

We denote by R(K) the (complex) representation ring of K and for any finite 
dimensional representation V of K we denote by [V] its class in R(K). 

Yet V be a finite dimensional representation of K. Yet Ey be the right Banach 
(in fact Hilbert) module over C*ed(G) (Z/2Z-graded if i = 0 [2]) whose elements are 
the ÜT-invariant elements in V* ® S* ® C*ed(G), where K acts by left translations 
on C*ed(G). Yet Dy be the unbounded C*ed(G)-linear operator on Ey equal to 
E l ® c(pi) ® pi, where the sum is over i, (pt) is an orthonormal basis of p, pi 
denotes also the associated right invariant vector field on G, and c(p») is the Clifford 
multiplication by p». Let Ty = Py

 2 . Then we define [dy] £ Ki(C*ed(Gj) to be 

the class of the Fredholm module (Ey,Ty) over C*ed(G). 
In other words, Ey is the completion of the space of smooth compactly sup-

ported sections of the bundle on K\G associated to the representation V* ® S* of 
K, for the norm ||w|| = sup/GL2(G),||/| | i2(G)=i \\w* f\\L*{{v*®s*)xKG), and Dy is the 
Dirac operator, twisted by V*. 
Connes-Kasparov conjecture. The group morphism pred '• R(K) —¥ Ki(C*ed(Gj) 
defined by [V] H> [dy] is an isomomorphism, and Ki+i(C*ed(Gj) = 0. 

This is a special case of the Baum-Connes conjecture because we may take 
EG = G/K and thus Kf(EG) = R(K) and Kf+l(EG) = 0. It was checked for G 
connected reductive linear in [55] and the Baum-Connes conjecture was proved for 
any reductive group in [37] (see c) of the corollary 1.6.3 above). 

The following lemma has been suggested to me by Francois Pierrot. Assume 
that i is even. Let moreover 17 be a unitary tempered admissible representation 
of G. This implies that we have a G*-homomorphism C*ed(G) —¥ K.(H). For any 
element x £ K0(C*ed(Gj) we denote by (H,x) £ Z the image of x by K0(C*ed(Gj) —¥ 
Kn(K,(H)) = Z. If x is the class of an idempotent p £ C*ed(G), the image of p in 
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K,(H) is a finite rank projector, whose rank is (H,x). 

Lemma 2.1.1 We have (H, [dy]) = dim(F* ® S* ® H)K. 

2.2. Dual-Dirac operators 
From now on we assume that G is a connected semi-simple Lie group with finite 

center and we still assume that G/K has a G-invariant spin structure. Kasparov-
has constructed an element n £ Hom(Ki(C*ed(Gj),R(Kj) (coming from an element 
of KKi(C*ed(G), C*ed(Kj), itself coming from an element of KKQ,ì(C, CO (G/K))). 
Kasparov has shown that n o pied = Id#(jq [29, 31]. 

Here is the detail of the construction. The G-invariant riemannian structure 
on G/K given by the chosen If-invariant euclidian metric on p has non-positive cur-
vature. Let p be the distance to the origin and £ = d ( \ / l + p2)- Yet V be a finite 
dimensional complex representation of If, endowed with an invariant hermitian met-
ric. Let Hy be the space of L2 sections of the hermitian G-equivariant fibre bundle 
on G/K associated to the representation of K on S ® V and let c^y be the Clifford 
multiplication by £. In other words Hy is the subspace of If-invariant vectors in 
L2(G) ® S® V, where K acts by right translations L2(G), and c^y is the restriction 
to this subspace of the tensor product of the Clifford multiplication by £ on L2(G)®S 
with Id y. Left translation by G on G/K or on L2(G) gives rise to a (G*-)morphism 
nv : C*ed(G) - • Cc(Hy) and (Hv,ny,c^v) defines nv £ KKbAn(C*ed(G),C) (in 
fact in KKi(C*ed(G),Cj). We denote by [ny] £ Hom(lfj(G*ed(G)),Z) the associ-
ated map, and n = EvbAAp7] € Hom(Ki(C*ed(Gj),R(Kj), where the sum is over 
the irreducible representations of K. 

Since the Connes-Kasparov conjecture is true, pred '• R(K) —¥ Ki(C*ed(Gj) 
and n : Ki(C*ed(Gj) —¥ R(K) are inverse of each other and Ki+i(C*ed(Gj) = 0. 

Let 17 be a discrete series representation of G, i.e. an irreducible unitary-
representation with a positive mass in the Plancherel measure. We recall that this 
is equivalent to the fact that some (whence all) matrix coefficient cx (g) = (x, n(g)x), 
x £ H, ||x|| = 1, is square-integrable. Then ||cœ||^2(G) is indépendant of x, and its 
inverse is the formal degree dn of 17, which is also the mass of 17 in the Plancherel 
measure. We introduce a first ingredient. 

Ingredient 1. All discrete series representations of G are isolated in the 
tempered dual. 

In other words, all matrix coefficients belong to C*ed(G). In fact a standard 
asymptotic expansion argument shows that for any lf-finite vector x £ H, cx be-
longs to the Schwartz algebra ([17], II, corollary 1 page 77). 

Therefore there exists an idempotent p £ C*ed(G) such that the image in 
L2 (G) of the image of p by the left regular representation is H* as a representation 
of G on the right. In fact we can take p = dnci for any x £ H, \\x\\ = 1, where 
c^(g) = cx(g). The class of p in K0(C*ed(Gj) only depends on 17 and we denote it 
by [H]. It is easy to see that i : (DH^ —t K0(C*ed(Gj), (UH)H ^ E if ïIH[H], where 
the sums are over the discrete series representations of G, is an injection. Indeed, 
if 17 and H' are discrete series representations of G, (H', [H]) = 1 if 17 = 17' and 0 
otherwise. 
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As a corollary we see that if i = 1 [2], G has no discrete series representations. 
From now on we assume i = 0 [2]. 

The first part of the following lemma was suggested to me by Georges Skan-
dalis. Let 17 be a discrete series representation of G. We write r]([H]) = E v ^v[V] 
in R(K) where the sum is finite and over the irreducible representations of K (in 
the notation above, ny = [ny]([H]j). 

Lemma 2.2.1 IfV is an irreducible representation of K, ny = dim(H*®S®Yr)K 

and therefore ny = (H, [dy]). 

We have 1 = (17, [17]) = (H, pred o n([H])) = Zvnv(H,[dv]) = E v « v -
Therefore one of the ny is ±1 and the others are 0. 

Alternatively we can consider the morphisms 

®yZ[F] = R(K) ^ K0(C:ed(G)) 4 J j z where TT(X) = ({H,x))H 
H 

and ®ff Z 4 Ko(C*ed(Gj) 4 R(K) = @VZ[V\ 

where the sums are over the irreducible representations V of K and the discrete 
series representations 17 of G. Their product TT O pied or]oi = noiis equal to the 
inclusion of ®#Z in f\HZ and their matrices in the base ([V])y and the canonical 
base of ®#Z are transpose of each other. Therefore each column of the matrix of 
n o i contains exactly one non-zero coefficient, which is equal to ± 1 . A posteriori, n 
takes its values in ®#Z. 

Corollary 2.2.2 The discrete series representations of G are in bijection with a 
subset of the set of isomorphism classes of irreducible representations of K. The 
irreducible representation V of K associated to a discrete series representation H 
is such that V = ±(H ® S*) as a formal combination of irreducible representations 
of K, and H occurs in the kernel of the twisted Dirac operator Dy. 

Corollary 2.2.3 7/rankG ^ ranklf, G has no discrete series. 

In this case S* is 0 in R(K) (Barbasch and Moscovici [2] (1.2.5) page 156) : 
this was indicated to me by Henri Moscovici. 

2.3. A trace formula 
From now on we assume that rank G = rank K. Yet T a maximal torus in K 

(therefore also in G). Choose a Weyl chamber for the root system of g and choose 
the Weyl chamber of the root system of 6 containing it. Let V be an irreducible 
representation of K, p its highest wheight, and À = p + PK where PK is the half 
sum of the positive roots of 6. 

We recall that the unbounded trace Tr : C*ed(G) —¥ R, / H> / ( l ) gives rise to 
a group morphism Ko(C*ed(Gj) —¥ R. When 17 is a discrete series representation 
of G, Tr([17]) is the value at 1 of p = dnc^ for some x £ H, \\x\\ = 1, and therefore 
it is the formal degree dn of 17 and is > 0. 
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Ingredient 2. Tr([dy]) = ELe* (pod' w r i e r e * is the set of simple roots of 
the chosen positive root system in g, and p is the half sum of the positive roots of 
this system. 

In this formula is used a right normalization of the Haar measure (if G is linear 
it is the one for which the maximal compact subgroup of the complexification of 
G has measure 1). This formula is proven in [11] by a heat equation method, and 
in [1] by Atiyah's L2-index theorem. 

Corollary 2.3.1 If X is singular for g, [V] does not correspond to a discrete series 
representation ofG. 

Ingredient 3. For any x £ K0(C*ed(Gj) such that Tr(x) ^ 0, there is a 
discrete series representation 17 such that (H, x) fi^ 0. 

By the Plancherel formula, if G is the tempered spectrum of G, Tr(x) = 
JG(H,x) dH. We have to prove that, for almost all 17 outside the discrete series, 
(17, x) = 0. There are several possible arguments : 

• almost all 17 outside the discrete series are induced from a parabolic subgroup 
and belong to a family of representations indexed by some W, but (17', x) is 
constant when H' varies in this family and goes to 0 when H' goes to infinity, 

• write x = [dy] for some V, then the 17 outside the discrete series with (H, x) fi^ 
0 have measure 0 by [1] pl5 (3.19), p50 (9.8) and p51 (9.12) or by [11] p318-
320. 

Corollary 2.3.2 If X is not singular for g, [V] does correspond to a discrete series 
representation, whose formal degree is ihji 

l l a€* (p,a) 

We have recovered some results proved in [17], [45] and [1]. 
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