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Abstract. We will state an equivariant foliated version of the classical Brouwer Plane Translation
Theorem and will explain how to apply this result to the study of homeomorphisms of surfaces.
In particular we will explain why a diffeomorphism of a closed oriented surface of genus ≥ 1
that is the time-one map of a time dependent Hamiltonian vector field has infinitely many
periodic orbits. This gives a positive answer in the case of surfaces to a more general question
stated by C. Conley. We will give a survey of some recent results on homeomorphisms and
diffeomorphisms of surfaces and will explain the links with the improved version of Brouwer’s
theorem.
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1. Introduction

It is a natural problem to ask if a given dynamical statement about time independent
vector fields may be extended to periodic time dependent vector fields. Recall that
a complete periodic time dependent smooth vector field on a manifold M defines a
family (Ft )t∈R of diffeomorphisms such that F0 = IdM and Ft+T = Ft # FT , for
every t ∈ R, if T is the period. To study this system, one usually studies the discrete
dynamical system induced by F = FT .

Let us begin with a very simple example. Suppose that M is compact and write
χ(M) for the Euler characteristic of M . If F is a homeomorphism homotopic to the
identity with a finite number of fixed points, one knows by the Lefschetz formula that

∑

F(z)=z

i(F, z) = χ(M),

where i(F, z) is the Lefschetz index. If F is the time-one map of a flow induced by
a vector field, the fixed points are necessarily the singularities of ξ , and the previous
formula may be deduced from the Poincaré–Hopf formula

∑

ξ(z)=0

i(ξ, z) = χ(M),

where i(ξ, z) is the Poincaré index.
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Let us now give a more interesting example. Consider a symplectic compact
manifold (M,ω) and write nM (resp. n′M ) for the minimum number of critical points
that any smooth function (resp. Morse function) defined on M must have. If F is the
time-one map of a family (Ft )t∈R defined by a 1-periodic time dependent Hamiltonian
vector field, we say that a fixed point z is contractible if the trajectory γz : t %→ Ft(z),
defined on [0, 1], is a loop homotopic to a point. Arnold’s conjecture [1] states that
the number of contractible fixed points is minimized by nM , and that it is minimized
by n′M if every fixed point of F is non-degenerate (such results are obviously true in
the case where the vector field is time independent). Now the the minoration by the
sum of the Betti numbers is known to be true in the non-degenerate case (Liu, Tian
[49], Fukaya, Ono [31]). See [36] for a history of this problem whose first proven
case (M = T2n = R2n/Z2n) was solved by Conley and Zehnder [15].

Conley conjectured that the number of contractible periodic points is infinite in
the case of a torus T2n. The conjecture is true if F is a diffeomorphism with no
degenerate fixed points (Salamon–Zehnder [53]). We will explain in Section 5 why
Conley’s conjecture is true if M = T2 and, more generally, if M is a closed surface
of genus ≥ 1. The key result is an equivariant foliated version of the Brouwer Plane
Translation Theorem, which will be stated in Section 4. Roughly speaking, it asserts
that if (Ft )t∈[0,1] is an isotopy from the identity to F on a surface M which has no
contractible point, there exists a continuous dynamics on M which is “transverse” to
the dynamics of F in the following sense: every orbit is “pushed on its left” by the
isotopy. Such a result may be applied in the presence of contractible fixed points if
one takes out some of them. Suppose that F is the time-one map of a Hamiltonian
flow on a symplectic surface M associated to H : M → R, then an example of a
transverse dynamics is the dynamics of the gradient flow of H if we endow M with a
Riemannian structure. We will see that such a transverse gradient-like dynamics may
be produced even in the time dependent case.

We will recall the classical Brouwer theory of homeomorphisms of the plane in
Section 2 and then state equivariant versions in the case of the annulus in Section 3.
We will mention some recent results on dynamics of diffeomorphisms and homeo-
morphisms of surfaces. In particular, in Section 6 we will recall some new results
due to Polterovich and to Franks and Handel about group actions on the space of area
preserving diffeomorphisms of surfaces.

2. Brouwer’s theory of plane homeomorphisms

The following result is due to Brouwer and recent proofs are given in [12], [16] or [32].

Theorem 2.1 ([10]). Let f be an orientation preserving homeomorphism of the eu-
clidean plane R2. If f has a periodic point z of period q≥ 2, then there is a simple
closed curve %, disjoint from the fixed point set Fix(f ), such that i(f,%) = 1, where
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the index i(f,%) is the degree of the map

s %→ f (%(s))− %(s)

∥f (%(s))− %(s)∥ ,

and s %→ %(s) is a parametrization defined on the unit circle S1.

A homeomorphism f of R2 is orientation preserving if and only if it is isotopic to
the identity; in the case where f is the time-one map of a flow (ft )t∈R whose orbits
are tangent to a given continuous vector field ξ , the result is obvious. Indeed, if z is
a periodic point of f of period q≥ 2, the orbit of z (for the flow) is a simple closed
curve%, invariant by f , which is the union of periodic points of period q. This clearly
implies that i(f,%) = 1.

Theorem 2.1 asserts that any fixed point free and orientation preserving homeo-
morphism of R2 is periodic point free. In fact its dynamics has no recurrence at all.
More precisely, suppose that f is an orientation preserving homeomorphism of R2

and that f has a non-wandering point z which is not fixed (i.e. every neighborhood
of z meets one of its iterate). Let us see why the conclusion of Theorem 2.1 is still
satisfied. Choose a free topological open disk V containing z (i.e. disjoint from its
image by f ) and write q≥ 2 for the smallest positive integer such that f q(V )∩V ̸= ∅.
One can compose f with a homeomorphism h supported on V to get a map with a
periodic point of period q, so that Theorem 2.1 can be applied to f # h. The map h

being supported on a free set, f # h and f have the same fixed points. Moreover, h

being isotopic to the identity among the homeomorphisms supported on V , one has
i(f # h,%) = i(f,%) for every simple closed curve % ⊂ R2 \ Fix(f ). The foregoing
argument may be generalized to get the useful Franks Lemma:

Proposition 2.2 ([21]). Let f be an orientation preserving homeomorphism of R2.
If there is a periodic sequence (Vi)i∈Z/qZ of pairwise disjoint free topological open
disks, and a sequence (ni)i∈Z/qZ of positive integers such that f ni (Vi) ∩ Vi+1 ̸= ∅,
then there is a simple closed curve % ⊂ R2 \ Fix(f ) such that i(f,%) = 1.

It has been known for a long time that Brouwer theory may be applied to the study
of homeomorphisms of surfaces. Let us explain for example why every orientation
and area preserving homeomorphism on the sphere S2 has at least two fixed points.
The map f being orientation preserving has at least one fixed point z1 by the Lefschetz
formula. The fact that f preserves the area implies that every point is non-wandering;
applying Proposition 2.2 to the map restricted to the topological plane S2 \ {z1}, one
gets a second fixed point z2 ̸= z1. As noticed by Hamilton [34], then by Brown [11],
there is another fixed point result which can be deduced from Proposition 2.2: the
Cartwright–Littlewood Fixed Point Theorem [14]. This theorem asserts that any
non-separating continuum K ⊂ R2 which is invariant by an orientation preserving
homeomorphism f of R2 contains a fixed point. Let us recall Brown’s argument. If
K ∩ Fix(f ) = ∅, then K is included in a connected component W of R2 \ Fix(f ).
One can choose a lift f̃ of f |W to the universal covering space W̃ (homeomorphic
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to R2) which fixes a given connected component K̃ of the preimage of K . The set K̃

being compact, f̃ should contain a non-wandering point (in fact a recurrent point)
while being fixed point free.

Let us state now a much more difficult fixed point theorem, due to Handel, which
is very useful in the study of homeomorphisms of surfaces (see [24], [25], [50]):

Theorem 2.3 ([35]). Let f be an orientation preserving homeomorphism of the closed
unit disk D and suppose that

– there are n ≥ 3 points zi , 1 ≤ i ≤ n, in Int(D) such that limk→−∞ f k(zi) =
αi ∈ ∂D and limk→+∞ f k(zi) = ωi ∈ ∂D;

– the 2n points αi and ωi are distinct;

– there is an oriented convex compact polygon in Int(D) whose i-th side joins αi

to ωi .

Then f has a fixed point in Int(D).

Handel’s Fixed Point Theorem is usually applied to a liftf to the universal covering
space Int(D) of a homeomorphism F of a hyperbolic surface (such a lift can always
be extended to the closed disk). The core of the proof of Handel is a generalization
of the Nielsen–Thurston classification of homeomorphisms of a compact surface M

to the case where M is the complement in R2 of finitely many infinite proper orbits.
In fact, it is possible to directly prove Theorem 2.3 by showing the existence of a
periodic free disk chain of f |Int(D) (i.e. a family of disks satisfying the assumptions
of Proposition 2.2) and thus of a simple closed curve % of index 1 (see [44]).

We will go on by recalling Brouwer’s Plane Translation Theorem. By Schoen-
flies’ Theorem, any proper topological embedding of the real line {0} × R may be
extended to an orientation preserving homeomorphism h of R2. The open sets L(%) =
h(]−∞, 0[×R) and R(%) = h(]0, +∞[×R) are the two connected components of
the complement of the oriented line % = h({0}× R).

Theorem 2.4 ([10]). If f is a fixed point free and orientation preserving homeomor-
phism of R2, then every point belongs to a Brouwer line, that means an oriented
line % such that f (%) ⊂ L(%) and f−1(%) ⊂ R(%).

Such a homeomorphism is usually called a Brouwer homeomorphism. Observe
that W = ⋃

k∈Z f k+1(R(%)) \ f k(R(%)) is an invariant open subset homeomorphic
to R2 and that f |W is conjugate to a non-trivial translation of R2. Theorem 2.4 asserts
that R2 can be covered by such invariant subsets. The quotient space R2/f of orbits
of f is a topological surface which is Hausdorff if and only if f is conjugate to a
translation. Brouwer homeomorphisms have been studied for a long time. Among the
more recent results one may mention the construction of the oscillating set by Béguin
and Le Roux [3] which is a new topological invariant of Brouwer homeomorphisms.
One may also mention the study of Reeb components of Brouwer homeomorphisms
by Le Roux [48]. Such objects, which generalize the classical Reeb components of
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foliations may be defined (in a not easy way) in the framework of Brouwer home-
omorphisms and results that are true for foliations may be extended to this discrete
case. One may also recall the following results about the topology of the space of
Brouwer homeomorphisms when equipped with the compact-open topology: it is
arcwise connected and locally contractible [8], more precisely the set of non-trivial
affine translations is a strong deformation retract [46].

In the case where f = f1 is the time-one map of a flow (ft )t∈R whose orbits are
tangent to a continuous vector field ξ , Theorem 2.4 is also obvious. Indeed one may
find a complete C1 vector field η such that η(z)∧ ξ(z) > 0 for every z ∈ R2 (where∧
is the usual exterior product on R2). Every orbit % of η is a line by the Poincaré–
Bendixson Theorem; it is a Brouwer line because ξ points on % from the right to
the left. Note that the plane is foliated and not only covered by Brouwer lines. The
proof of the Brouwer Plane Translation Theorem is much harder. In all known proofs
(see [10], [23], [32], [45]) a non-recurrence lemma, a variation of Proposition 2.2,
is needed. We will conclude this section by explaining the ideas of the proofs given
in [45] and in Sauzet’s thesis [54] as it will be the starting point of the proofs of the
foliated versions that we will explain later.

A brick decomposition of R2 is given by a one dimensional stratified set ) (the
skeleton of the decomposition) with a zero dimensional submanifold V such that any
vertex v ∈ V is locally the extremity of exactly three edges. A brick is the closure of
a connected component of R2 \). If f is a fixed point free and orientation preserving
homeomorphism of R2, one can construct a maximal free decomposition: it is a brick
decomposition with free bricks such that the union of two adjacent bricks is no more
free. Moreover if z ∈ R2 is a given point, one may suppose that z ∈ ). Let us write B

for the set of bricks. A slightly stronger version of Proposition 2.2, due to Guillou
and Le Roux [47] asserts that there is no closed chain of bricks of B. This implies
that the relation

bRb′ ⇐⇒ f (b) ∩ b′ ̸= ∅
generates by transitivity an order ≤ on B. The decomposition being maximal, two
adjacent bricks are comparable. In fact, it appears that for every brick b, the union of
bricks b′ > b adjacent to b is non-empty and connected, as is the union of adjacent
bricks b′ < b. This implies that b≥ = ⋃

b′≥b b′ is a connected closed subset satisfying
f (b≥) ⊂ Int(b≥). The fact that we are working with bricks implies that the frontier
of b≥ is a one dimensional manifold; the inclusion f (b≥) ⊂ Int(b≥) implies that
every component of this frontier is a Brouwer line. One may cover the skeleton by
Brouwer lines because ) = ⋃

b∈B ∂b≥.
Free cellular decompositions appear already in [32] and are explicitely constructed

in a paper of Flucher [20] about a topological version of Conley–Zehnder theorem
for T2. The trick to consider bricks to simplify the proofs was suggested by Guillou.
Brick decompositions have been studied in detail in Sauzet’s thesis [54] and have
been used in some articles ([4], [9], [47]). In [47], Le Roux gives a very precise
description of the dynamics of a homeomorphism F of a surface in the neighborhood
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of an isolated fixed point such that i(F, z) ̸= 1. In [9], Bonino states the following
result about any orientation reversing homeomorphim f of R2: if f has no periodic
point of period 2, it has no periodic point of period ≥ 2 and the complement of the
fixed point set may be covered by invariant open subsets, where f is conjugate either
to the map (x, y) %→ (x + 1,−y) or to the map (x, y) %→ 1

2 (x,−y).

3. Equivariant versions of Brouwer’s theory

Let us recall the classical Poincaré–Birkhoff Theorem which is the starting point of
Arnold’s conjecture:

Theorem 3.1 ([6]). Let F be an area preserving homeomorphism of the annulus
T1 × [0, 1] isotopic to the identity and let f be a given lift to the universal covering
space R × [0, 1]. Denote by p1 : R × [0, 1] → R the first projection and suppose
that p1(f (x, 0)) < x < p1(f (x, 1)) for every x ∈ R. Then f has at least two fixed
points which project in different points of T1 × [0, 1].

Soon after the original proof of Birkhoff, it was noticed (see Birkhoff [7], Kerékjár-
tó [37]) that the existence of one fixed point could be deduced by replacing the area
preserving assumption with the following intersection property: any essential (i.e. not
null-homotopic) simple closed curve of T1× [0, 1] meets its image by F . Kerékjártó
obtained the result as a consequence of Brouwer’s Plane Translation Theorem. Sup-
pose that F and a given lift f satisfy the assumptions of Theorem 3.1 but the area
condition, and that f is fixed point free. Then one can extend nicely f to the whole
plane in such a way that a Brouwer line may be constructed on R×]0, 1[ that is a
lift of a simple closed curve of T1×]0, 1[ (see [32] for a modern explanation). More
recently, Guillou [33] and Sauzet [54] gave a proof of the following “equivariant”
version of the Brouwer Plane Translation Theorem:

Theorem 3.2. Let F be a homeomorphism of T1×R isotopic to the identity and let f
be a given lift to the universal covering space R2 that is fixed point free. Then

– either there is an essential simple closed curve% of T1×R such that F(%)∩% = ∅,
– or there is a topological line joining the two ends of T1 ×R that is lifted to R2 by

Brouwer lines of f .

Franks [21] gave a different method to deduce the Poincaré–Birkhoff Theorem
from Brouwer theory by using Proposition 2.2. Suppose that the assumptions of
Theorem 3.1 are satisfied and moreover that the number m of fixed points of F which
are lifted to fixed points of f is finite. Then one can construct a closed chain of free
disks of f |R×]0,1[, which implies that there is a simple closed curve % ⊂ R×]0, 1[
such that i(f,%) = 1. The Lefschetz–Nielsen formula implies that m ≥ 2. This
argument has been used by Franks to give many generalizations of the Poincaré–
Birkhoff Theorem, including results on the torus [22]. We will state below such a
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result which is implicitly contained in Franks’ papers and which can also be deduced
directly from Theorem 3.2 (see [5]).

Under the hypothesis of the Poincaré–Birkhoff Theorem, F admits periodic points
of arbitrarily large period. Indeed, if ρ− and ρ+ are the Poincaré rotation numbers
defined respectively on T1 × {0} and T1 × {1}, one has ρ− < 0 < ρ+. For every
rational number p/q∈]ρ−, ρ+[ written in an irreducible way, one may apply again the
Poincaré–Birkhoff Theorem to Fqand its lift T −p #f q(where T (x, y) = (x+1, y)).
One gets a fixed point of T −p#f qwhich projects onto a periodic point of F of period q.
Moreover, the theory of homeomorphisms of the circle gives us such a periodic point if
one of the numbersρ− orρ+ is equal to p/q. Let us give now a more general statement.
Let us denote by A one of the annulus T1× [0, 1] or T1×]0, 1[ and by Ã its universal
lift. Write π : Ã→ A for the covering projection and T : (x, y) %→ (x + 1, y) for the
fundamental covering automorphism. Consider a homeomorphism F of A isotopic to
the identity and a lift f to Ã. Suppose that z ∈ A is a positively recurrent point of F

and that z̃ ∈ Ã is a preimage of z. For every sequence (Fqk (z))k≥0 that converges
to z, there exists a sequence (pk)k≥0 in Z such that (T −pk # f qk(z̃))k≥0 converges
to z̃. The sequence (pk)k≥0 is uniquely defined up to a finite number of terms and
does not depend on z̃. Let us say that z has a rotation number ρ if, for every sequence
(Fqk (z))k≥0 that converges to z, the sequence (pk/qk)k≥0 converges to ρ. Another
choice of lift f changes the rotation number by adding an integer.

Proposition 3.3. Let F be a homeomorphism of A isotopic to the identity and f a
given lift to Ã. We suppose that

– there is a positively recurrent point z− of rotation number ρ−;

– there is a positively recurrent point z+ of rotation number ρ+ > ρ−;

– every essential simple closed curve in A meets its image by F .

Then for every rational number p/q∈]ρ−, ρ+[ written in an irreducible way, there
is a periodic point z of period qand rotation number p/q.

In the case where F is area preserving, the intersection property is satisfied and
Proposition 3.3 may be applied. More can be said in that case ([5], [24], [39]). First,
one can prove the existence of a periodic point of period qand rotation number p/q

if there is a positively recurrent point of rotation number p/q. Moreover one can
prove the existence of a non-trivial interval of rational rotation numbers if there is a
positively recurrent point that has no rotation number. As a consequence, the unique
case where such a homeomorphism has no periodic point is the case where there exists
an irrational number ρ such that every positively recurrent point (thus almost every
point) has a rotation number equal to ρ. Such a map is usually called an irrational
pseudo-rotation.

One may notice the following recent result on irrational pseudo-rotations, previ-
ously stated by Kwapisz [38] in the context of the torus, revisited by Béguin, Crovisier,
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Le Roux, Patou [4] in the case of a closed annulus and extended by Béguin, Crovi-
sier, Le Roux [5] in the case of an open annulus:
For any convergent p/q of ρ, there exists a simple arc γ joining the two ends of
the annulus such that the iterates of γ , F(γ ), . . . , Fq(γ ) are pairwise disjoint and
cyclically ordered as the iterates of a vertical under a rigid rotation of angle ρ.

As a consequence ([4], [5]) one has the following:
The rigid rotation of angle ρ is in the closure of the conjugacy class of the pseudo-
rotation.

Note that one does not know if an irrational pseudo-rotation of rotation number ρ
is in the closure of the conjugacy class of a rigid rotation of angle ρ.

It has been known for a long time that the dynamics of an irrational pseudo-rotation
may be strongly different from the dynamics of a rigid rotation. Anosov and Katok [2]
gave an example of a smooth (C∞) irrational pseudo-rotation on the closed annulus
which is weakly mixing (and therefore ergodic) relatively to the Lebesgue measure.
Many other pathological examples may be constructed as explained by Fayad and
Katok in [17]. All these examples are constructed as a limit of diffeomorphisms
which are smoothly conjugate to rigid rotations of rational angle. The rotation number
is always a Liouville number. In fact, Fayad and Saprykina [18] proved that every
Liouville number is the rotation number of a weakly mixing smooth pseudo-rotation
on T1 × [0, 1]. Such examples do not exist for Diophantine numbers. Indeed, an
unpublished result of Herman states that for a smooth diffeomorphism of T1× [0, 1],
the circle T1 × {1} is accumulated by a set of positive measure of invariant curves
of F if the rotation number induced on T1× {1} is Diophantine. Let us conclude this
section by recalling the following old conjecture of Birkhoff, still unsolved, stating
that an irrational pseudo-rotation on the closed annulus which is real analytic must
be conjugate to a rigid rotation.

4. Foliated versions of Brouwer’s Plane Translation Theorem

As noticed at the end of Section 2, if f is a Brouwer homeomorphism which is
the time-one map of a flow whose orbits are tangent to a continuous vector field ξ ,
then R2 may be foliated and not only covered by Brouwer lines. Suppose now
that G is a discrete group of orientation preserving diffeomorphisms acting freely and
properly on R2 and that ξ is G-invariant (that means invariant by every element of G).
By considering the surface M/G one can construct a G-invariant C1 vector field η
satisfying η(z) ∧ ξ(z) > 0. One deduces that there exists a G-invariant foliation by
Brouwer lines of f . The following result states that this is a general fact:

Theorem 4.1 ([40], [41]). If f is a Brouwer homeomorphism, there is an oriented
topological foliation F of R2 whose leaves are Brouwer lines for f . Moreover, if G is
a discrete group of orientation preserving homeomorphisms acting freely and properly
on R2 and if f commutes with every T ∈ G, then F may be chosen G-invariant.
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Let us give the idea of the proof of the first statement. Consider the maximal free
brick decomposition introduced in Section 2. Using Zorn’s Lemma one can extend
the order ≤ to get a weaker one ≤′ which is a total order. If C = (C←, C→) is a cut
of ≤′ the sets

⋃
b∈C← and

⋃
b∈C→ have the same frontier and the (oriented) frontier

of
⋃

b∈C→ is a union of Brouwer lines because f
(⋃

b∈C→
)
⊂ Int

(⋃
b∈C→

)
. The

set B of such lines covers the skeleton and may be written B = ⋃
e∈E Be, where E

denotes the set of edges and Be the set of lines % ∈ B containing e. One can define
a partial order ≼ on the set of oriented lines of R2: % ≼ %′ if R(%) ⊂ R(%′). The
fact that ≤′ is a total order implies that two lines of B do not intersect transversally
and consequently that ≼ is a total order when restricted to each Be. The space B,
equipped with the topology generated by the Be, e ∈ E, is not necessarily Hausdorff
but each set Be is. In fact each Be is compact and the restricted topology coincides
with the order topology. As an ordered topological space, B looks like a lamination
of R2, that means a closed subset of leaves of a foliation (in fact it will be isomorphic
to a lamination of the foliation that we want to construct). There is a natural (but
not unique) way to foliate each brick and then to extend B by constructing a family
of Brouwer lines that cover the plane and that do not intersect transversely. By a
desingularization process around each vertex of ), one can blow up our extended
family to get a foliation by Brouwer lines.

The proof of the second statement is much harder. First one considers a free brick
decomposition invariant by every T ∈ G and maximal for these properties. It is
not necessarily maximal among all the free bricks decomposition; however there is a
natural G-invariant order ≤ on B such that

f (b) ∩ b′ ̸= ∅ ⇒ b < b′.

Moreover, for every brick b, the union of bricks b′ > b adjacent to b is non-empty
and connected, as is the union of adjacent bricks b′ < b. As previously one can
cover ) by a G-invariant family of Brouwer lines. To get our G-invariant foliation,
one needs to cover ) by a G-invariant family of Brouwer lines that do not intersect
transversally. If G is abelian (that means if G = Z or G = Z2) one knows, by a
simple set theory argument, that there is a G-invariant total order ≤′ weaker than ≤:
the previous proof is still valid. If G is not abelian, the existence of such an order
does not seem so clear. The construction of B uses more subtle arguments based on
the topology of the surface R2/G.

If F is an oriented topological foliation of R2 whose leaves are Brouwer lines of f ,
it is easy to prove that for every point z there is an arc γ : [0, 1] → R2 joining z to
f (z) that is positively transverse to F . That means that γ intersects transversely each
leaf that it meets, and locally from the right to the left. One deduces immediately (by
lifting the isotopy (Ft )t∈[0,1] to an isotopy (ft )t∈[0,1] from the identity and applying
Theorem 4.1 to f = f1):

Corollary 4.2. Let (Ft )t∈[0,1] be an isotopy from the identity to F on an oriented
surface M . Suppose that F has no contractible fixed point. Then there exists a
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topological foliation F on M that is dynamically transverse to the isotopy: the
trajectory γz : t %→ Ft(z) of every point is homotopic, relatively to the extremities, to
an arc that is positively transverse to F .

This result belongs to the category of statements that are obviously true when F

is the time-one map of a flow and that can be extended to the case where F is the
time-one map of an isotopy from the identity. Let us give now a result that does not.
One could ask similarly if there exists a foliation by invariant lines for a Brouwer
homeomorphism, as it is true in the case of the time-one map of a flow. The an-
swer is no, there exist Brouwer homeomorphisms without any invariant line (Brown,
Slaminka, Transue [13]). Observe that in the case of a flow the foliation by invariant
lines was explicitely and uniquely defined. In contrast to this, there are many choices
of foliations by Brouwer lines and none of them is canonical.

The only closed surface M where Corollary 4.2 can be applied is the torus M = T2.
Indeed, the Lefschetz–Nielsen formula implies the existence of a contractible fixed
point for any homeomorphism isotopic to the identity on an oriented closed surface
of genus ̸= 1. In the case of a torus, a stronger hypothesis on the isotopy will imply
additional properties of the foliation. Write f for the natural lift of F to R2 defined
by the isotopy and recall the definition of the rotation set R(f ) whose origin goes
back to Schwartzman [55]. The map f − IdR2 is invariant by the integer translations
and lifts a continuous function ψ : T2 → R2. For every Borel probability measure
which is invariant by F , one may define the rotation vector ρ(µ) =

∫
T2 ψ dµ ∈

R2 ≈ H1(T2, R) and the set R(f ) of rotation vectors of all invariant probability
measures. The set R(f ) is a non-empty convex compact subset of H1(T2, R). If
one supposes that 0 ̸∈ R(f ) (which of course implies that f is fixed point free) one
can find cohomology classes κ ∈ H 1(T2, R) that are positive on R(f ). One has the
following:

Theorem 4.3 ([43]). Let F be a homeomorphism of T2 isotopic to the identity and
let f be a lift of F to R2. Suppose that κ ∈ H 1(T2, R) is positive on the rotation
set R(f ). Then there is a non-vanishing smooth closed 1-form ω whose cohomology
class is κ , and such that H(f (z)) − H(z) > 0 if H is a primitive of the lifted form
on R2.

The level curves of H define a foliation of R2 by Brouwer lines of f . It projects
onto a foliation diffeomorphic to a linear one, the leaves are closed if κ is a rational
class, they are dense if not. One may ask if a similar statement occurs in higher
dimension. Let (Ft )t∈[0,1] be an isotopy from the identity on a compact manifold M

and write γz : t → Ft(z) for the trajectory of any point z. Let µ be a Borel probability
measure invariant by F . Ifω is a smooth closed 1-form, the integral

∫
M

( ∫
γz
ω

)
dµ(z)

is well defined and vanishes whenω is exact. As it depends linearly on the cohomology
class [ω] of ω, one may find ρ(µ) ∈ H1(M, R) such that

∫

M

( ∫

γz

ω

)
dµ(z) = ⟨[ω], ρ(µ)⟩.
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The rotation set of the isotopy is the set of rotation vectors ρ(µ) of invariant proba-
bility measures. Here again it is a non-empty convex compact subset of H1(M, R).
Suppose now that κ ∈ H 1(M, R) is positive on the rotation set of the isotopy:

Does there exist a non-vanishing smooth 1-form ω such that [ω] = κ and
∫
γz
ω > 0

for every z ∈ M?

The answer is yes if F is the time-one map of a flow (Ft )t∈R induced by a smooth
vector field ξ (see Fried [30] or Schwartzman [55]). More precisely, ωmay be chosen
such that ⟨ω(z), ξ(z)⟩ > 0 for every z ∈ M . Fried’s proof may be adapted in the
discrete case to find a smooth closed 1-form ω such that [ω] = κ and

∫
γz
ω > 0 for

every z ∈ M . The problem is that ω can vanish. In the case of a time-one map of a
flow, if the rotation set does not contain zero, κ may be chosen in H 1(M, Z) and ω
will be written ω = dH where H : M → T1 is a submersion. Consequently M fibers
over T1. Therefore one may naturally ask:

Suppose that on a given compact manifold M one may find an isotopy from the identity
whose rotation set does not contain 0, does the manifold necessarily fiber over T1?

Theorem 4.3 gives us an example where a dynamical assumption on an isotopy
implies dynamical properties of some foliation dynamically transverse to the isotopy.
In many situations such an assumption will imply dynamical properties of every
foliation dynamically transverse. This is the fundamental fact that will permit us to
apply Theorem 4.1 and its corollary to the study of homeomorphisms of surfaces. We
will conclude this section by an example: a short proof of Proposition 3.3. We will
give first two useful statements which illustrate how conservative assumptions satisfied
by a homeomorphism can be transposed to dissipative properties of a dynamically
transverse foliation. Suppose that (Ft )t∈[0,1] is an isotopy from the identity to F

without contractible fixed point on a surface M and that F is a foliation dynamically
transverse. This implies that for every point z′ ∈ M and for every k ≥ 1 one may find
an arc joining z′ to Fk(z′) that is positively transverse to F . It is easy to prove that this
arc may be perturbed into a loop positively transverse to F if the extremities z′ and
Fk(z′) are sufficiently close to a previously given point z. Hence the following holds:

For every non-wandering point z, there is a loop based on z that is positively transverse
to F .

Fix now a point z and define the set W of points z′ ∈ M which can be joined by an
arc from z that is positively transverse to F . It may be noticed that F(W) ⊂ Int(W).
Hence the next assertion is true:

If every point is non-wandering, then for every points z and z′, there is an arc joining z

to z′ that is positively transverse to F .

Let us now prove Proposition 3.3. Suppose for example that ρ− < 0 < ρ+
and that A is open. We want to prove that the intersection property is not satisfied
if f has no fixed point. In this case we can construct an oriented foliation F on A
which is lifted to Ã into a foliation by Brouwer lines of f . The points z−and z+
being recurrent, there are loops %− and %+ based respectively on z− and z+ that are
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positively transverse to F . Write [%] ∈ H1(A, Z) for the homology class of any
loop % and consider the generator [%0] of the loop %0 : t %→ (t + Z, 1/2) defined on
[0, 1]. The fact that ρ− < 0 implies that %− may be chosen such that [%−] = n−[%0]
where n− < 0. Similarly one may suppose that [%+] = n+[%0] where n+ > 0.
Using the fact that F is a non-singular foliation, it is straightforward to prove the
following:

– the loops %− and %+ are disjoint;

– there is a unique relatively compact annular component U of A \ (%− ∪ %+);

– the frontier of U is the union of two simple essential loops positively transverse
to F ;

– the leaves on ∂U are all leaving U or all entering in U .

The Poincaré–Bendixson Theorem implies the existence of a closed leaf inside U .
This leaf does not meet its image by F because it is lifted into a Brouwer line of f .

5. Hamiltonian homeomorphisms of surfaces

Let us say that a homeomorphism F on an oriented closed surface, time-one map of
an isotopy from the identity (Ft )t∈[0,1], is Hamiltonian if it preserves a probability
measure µ whose support is M and whose rotation vector is 0. The classical example
is obtained when M is endowed with a symplectic structure ω and when the isotopy
is defined by a time dependent Hamiltonian vector field. The measure is nothing
but the normalized measure induced by the volume form ω. Let us give another
example. Consider an irrational pseudo-rotation F on T1×]0, 1[ and extend F to the
end compactification of the annulus. One gets a Hamiltonian homeomorphism on
the sphere that has no periodic points but the two fixed ends. As we will see in this
section, extended irrational pseudo-rotations are the only examples, up to conjugacy,
of Hamiltonian homeomorphisms having finitely many periodic points.

It was shown by Franks [25] that a Hamiltonian homeomorphism on S2 which
has at least three fixed points admits infinitely many periodic points. More recently
Franks and Handel [26] proved that a non-trivial Hamiltonian diffeomorphism of
a surface of positive genus admits periodic points of arbitrarily large periods (and
that this is also the case on a sphere if F has at least three fixed points). Their
arguments are mainly of topological nature. The differentiability condition prevents
the dynamics to be too wild in a neighborhood of a non-isolated fixed point. For each
connected component U of the complement of the fixed point set, they construct a
normal form of the restriction map F |U in the sense of Thurston–Nielsen’s theory of
homeomorphisms of surfaces like it is usually done for a surface of finite type. There
are three cases to look at and in each case periodic orbits may be found for different
reasons, the case where there exists at least one pseudo-Anosov component, the case
where there is a twist condition in a reducing annulus, the case where the map is



From Brouwer theory to the study of homeomorphisms of surfaces 89

isotopic to the identity. The last case is the most difficult one and subtle geometric
arguments that already appeared in [35] are needed.

We will state now a more general result, which gives a positive answer to Conley’s
conjecture in the case of surfaces:

Theorem 5.1 ([41], [42]). Suppose that F is a Hamiltonian time-one map of an
isotopy from the identity (Ft )t∈[0,1] on a compact oriented surface M of genus g ≥ 1.

i) If F ̸= IdM , there are periodic points of arbitrarily large period.

ii) If the set of contractible fixed points is contained in a disk of M , there are
contractible periodic points of arbitrarily large period.

Moreover we have a similar result in the case where M is a sphere if we suppose
that F has at least three fixed points.

Let us explain first what happens when F is the time-one map of a time independent
Hamiltonian flow associated to a function H : M → R on a surface of genus≥ 1. Let
us suppose that there are finitely many critical points of H (there are at least three). The
minimum of H corresponds to a contractible fixed point z0. This point is surrounded
by invariant curves which are level curves of H . The map F is conjugate to a rotation
on each curve. Thus one gets a foliated open annulus with one end corresponding
to z0 and one “critical” end which does not correspond to a point (because M is not a
sphere) but to a degenerate curve containing a critical point of H . The rotation number
of F on each curve (which is a well defined real number) depends continuously of
the curve, never vanishes and tends to zero when the curve tends to the critical level.
This implies that the rotation numbers take their values onto a non-trivial interval.
One concludes that there are contractible periodic points of arbitrarily large period.

In the case where F is the time-one map of a time dependent Hamiltonian flow,
Floer [19] and Sikorav [56] proved that F has at least three contractible fixed points,
giving a positive answer to Arnold’s conjecture for surfaces. In symplectic geometry
contractible fixed points of Hamiltonian isotopies are usually found by studying the
dynamics of the gradient flow of a function H defined on an infinite dimensional space
(space of loops) or on a high dimensional space (if one uses generating functions)
whose critical points are in bijection with contractible fixed points. Franks [24]
gave a purely topological proof of the existence of three contractible fixed points
for a Hamiltonian diffeomorphism making use of Handel’s Fixed Point Theorem,
the proof of which was extended by Matsumoto [50] to the case of Hamiltonian
homeomorphisms. The fundamental idea in the proof of Theorem 5.1 is to make a
link between the symplectic and the topological methods by producing a “singular”
dynamically transverse foliation and by proving that its dynamics is “gradient-like”.
This will permit us first to find again Matsumoto’s result, then to produce a topological
“twist property”. Such a property is easy to prove if F is a diffeomorphism with no
degenerate fixed points. We will give here some ideas of the proof of assertion ii)
of Theorem 5.1. We will begin by the simplest case where the set Fix(F )cont of
contractible fixed point is finite.



90 Patrice Le Calvez

Case where M = S2 and ♯Fix(F )cont < +∞. Here Fix(F )cont coincides with the
set Fix(F ) of fixed points. We suppose that F preserves a probability measure µ

with total support and that 3 ≤ ♯Fix(F ) < +∞. We want to prove that F has
periodic points of arbitrarily large period. Let us say that Z ⊂ Fix(F ) is unlinked
if F is isotopic to the identity relatively to Z. This is always the case if ♯Z ≤ 3. As
Fix(F ) is supposed to be finite, one can find a maximal (for the inclusion) unlinked
set Z and one knows that ♯Z ≥ 3. Fix an isotopy (Ft )t∈[0,1] such that Ft(z) = z for
every z ∈ Z and every t ∈ [0, 1], and look at the restricted isotopy to N = S2 \ Z.
It is standard to prove that (Ft |N)t∈[0,1] has no contractible point, by maximality
of Z. By Corollary 4.2, one may construct a foliation F on N which is dynamically
transverse to the isotopy. As we suppose that F preserves µ we know that every point
is non-wandering, which implies that every point belongs to a loop that is positively
transverse to F . This clearly implies that F has no closed leaf and more generally
has only wandering leaves. In fact the dynamics of F is easy to understand:
– any leaf λ joins a point α(λ) ∈ Z to a different point ω(λ) ∈ Z;
– there is no sequence of leaves (λi )i∈Z/pZ such that ω(λi ) = α(λi+1) for any

i ∈ Z/pZ .
Fix a leaf λ and consider the annulus A = S2 \ (α(λ) ∪ ω(λ)). The isotopy

(Ft |A)t∈[0,1] may be lifted to the universal covering space Ã of A into an isotopy
(ft )t∈[0,1] from the identity. We will apply Proposition 3.3 by finding two positively
recurrent points with different rotation numbers. The map f = f1 clearly fixes every
point of the preimage of Z \ (α(λ)∪ ω(λ)), which implies that the rotation vector of
any point of Z \ (α(λ) ∪ ω(λ)) is 0. The foliation F is lifted to a foliation on the
preimage Ñ of N which is dynamically transverse to the isotopy (ft |Ñ )t∈[0,1]. Any
lift of λ is a Brouwer line of f because λ joins the two ends of the annulus. It is not
difficult, using classical arguments of Ergodic Theory (and in particular the Birkhoff
Ergodic Theorem), to prove that F has positively recurrent points whose rotation
number is ̸= 0 (this is the case for almost every point that has a preimage between a
given lift λ̃ and its image by f ).

Case where g ≥ 1 and ♯Fix(F )cont < +∞. Here again suppose that the set
Fixcont(F ) of contractible fixed points is finite and say that Z ⊂ Fixcont(F ) is unlinked
if there is an isotopy (Ft )t∈[0,1] (homotopic to the one given by hypothesis) such that
Ft(z) = z for every z ∈ Z and every t ∈ [0, 1]. Fix a maximal unlinked set Z.
Again, there exists a foliation F on N = M \ Z which is dynamically transverse to
the isotopy (Ft |N)t∈[0,1], and we would like to understand the dynamics of F . As
we suppose that F preserves µ we already know that every point belongs to a loop
positively transverse to F . The fact that the rotation of µ is zero implies a stronger
result:
For every υ ∈ H1(M, Z) and every z ∈ M there is a loop% ⊂ N positively transverse
to F and based in z such that [%] = υ.

One must prove that the set C(z) ⊂ H1(M, Z) of homology classes of loops in N

based in z and positively transverse to F , which is stable by addition, is the whole
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group H1(M, Z). The nullity of the rotation vector of µ implies that every class
κ ∈ H 1(M, R) takes different signs on C(z) and therefore that the convex hull in
H1(M, R) of C(z) contains a neighborhood of 0. It becomes easy to prove that C(z)

is a subgroup and therefore a lattice of H1(M, Z). If one now applies the transverse
transitivity condition stated in the previous section to a natural finite covering of M ,
one obtains that C(z) = H1(M, Z).

It is easy to deduce that there is no closed leaf and more precisely that every leaf
is wandering. In fact one can prove that the dynamics of F is gradient-like. Note
first that any loop % ⊂ N homologous to zero induces naturally by duality a function
1% : M\%→ Z defined up to a constant, where1%(z′)−1%(z) denotes the algebraic
intersection number % ∧ %′ between % and any arc %′ joining z to z′. Observe now
that 1% decreases along the oriented leaves if % is positively transverse to F . In
other words, the sub-level surfaces of1% define a filtration of F . The property stated
above permits us to construct a loop % homologous to zero and positively transverse
to F which sufficiently “fills” the surface in the following sense:

– every connected component U of M \ % is the interior of a closed disk of M and
contains at most one point of Z;

– if there exists a leaf of F which joins z ∈ Z to z′ ∈ Z, then 1%(z′) < 1%(z).

Using the Poincaré–Bendixson Theorem, one may deduce first that every leaf
meets % and then that it joins a point z ∈ Z to a point z′ ∈ Z. In fact, the dynamics
of F is trivial inside a component U with no singularity and well understood inside
a component that contains a singularity. Such a singularity is necessarily a sink, a
source or a generalized saddle point (with p ≥ 1 attracting sectors alternating with
p ≥ 1 repelling sectors).

An easy consequence of the previous results is the fact that ♯Z ≥ 3. Existence of
contractible periodic points of arbitrarily large period is much more difficult to get.
One wants to generalize the case where F is the time-one map of a Hamiltonian flow
associated to a function H : M → R. If M is equipped with a Riemannian metric,
the foliation by orbits of the gradient flow of H on the complement of the set Z

of critical points is dynamically transverse to the isotopy and the point z0 where H

reaches its minimum is a sink of the foliation. In our more general situation, one
will choose a sink of F and then will prove that there exists periodic points inside
the basin of attraction W (for the foliation). The set W has no reason to be invariant
by F . However the two following facts

– there exists at least one contractible fixed point in the frontier of W ,

– there is a radial foliation on W which is pushed along the isotopy,

give us a weak twist condition. Some plane topology arguments and the use of the
discrete Conley index permit us to find periodic points inside W .

Case where ♯Fix(F )cont = +∞. The case where the set of contractible fixed points
is infinite is much harder to deal with because it does not seem so easy to find maximal
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unlinked sets, which are necessary to construct a dynamically transverse foliation.
Under the hypothesis ii) of Theorem 5.1, there is a unique component N of M \
Fixcont(F ) such that the inclusion i : N → M induces an isomorphism between the
first groups of homology and this component is fixed. If there is a lift f of F |N to the
universal covering space of N which commutes with every covering transformation,
then by Corollary 4.2 a dynamically transverse foliation F may be constructed. Of
course there is no decomposition of the dynamics of F in elementary pieces as in the
finite case. However, the previous arguments may be generalized, even if they are not
so easy to get. In the case where such a lift does not exist, we will get contractible
periodic orbits of arbitrarily large periods for different reasons, that will be explained
in the next section.

There are natural reasons to study carefully homeomorphisms of surfaces of in-
finite type. Consider a volume form on S2 and write Diffk

ω(S2) for the set of Ck

diffeomorphisms that preserve ω. Consider F ∈ Diffk
ω(S2) and fix a connected com-

ponent U of S\Per(F ). There is an integer qsuch that Fq(U) = U . By Theorem 2.1,
one knows that there would be a fixed point of Fq in U if U were a disk, which is not
the case. By Franks result stated above [25] it cannot be a hyperbolic surface of finite
type. Therefore it is an annulus (and in that case the restricted map is an irrational
pseudo-rotation) or a surface of infinite type. One may ask the following:
Can U be a surface of infinite type or should it be necessarily an annulus?

The interest in this question comes from the following: it is not difficult to prove
that there is a residual set G ⊂ Diffk

ω(S2) (for the Ck-topology) such that for every
F ∈ G there are no annulus among the connected components of S2 \ Per(F ) (see
[29]). A positive answer to the previous question would imply that the periodic orbits
are generically dense. What is known is that the union of the stable manifolds of the
hyperbolic periodic points is dense [29], a result extended by Xia [57] to any compact
surface.

6. On the group of diffeomorphisms of surfaces

Consider a compact Riemannian manifold M . If F is a C1 diffeomorphism one can
define its growth sequence (%n(F ))n≥0 where

%n(F ) = max
(

max
z∈M
∥TzF

n∥, max
z∈M
∥TzF

−n∥
)
.

The growth sequence of a non-trivial diffeomorphism may be bounded. This is the
case for a periodic map, a translation on a torus or a rigid rotation on S2. Even when
it is not bounded it may tend to +∞ not very quickly (see Polterovitch, Sodin [52]).
The situation is different in the case of area preserving diffeomorphisms of surfaces.
More precisely:

Theorem 6.1. If F is a non-trivial Hamiltonian diffeomorphism of a closed oriented
surface of genus ≥ 1, there exists C > 0 such that %n(F ) ≥ Cn for every n ≥ 0.
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Proved by Sikorav and Polterovitch in the special case of the torus, the result was
generalized to other surfaces by Polterovich [51] applying a result of Schwarz related
to Floer homology. Note that in the case of a surface of genus ≥ 2, the result is
still true for any area preserving diffeomorphism isotopic to the identity. Indeed, by
the Lefschetz–Nielsen formula, such a map has at least one contractible fixed point.
Therefore the diffeomorphism admits two probability measures with different rotation
vectors if it is not Hamiltonian. It is not difficult to see that such a property implies
that the conclusion of Theorem 6.1 is necessarily true.

Applications of the previous result to actions of higher rank lattices in simple Lie
groups on compact manifolds were given in [51], yielding a positive answer, in the
special case of surfaces, to a more general conjecture of Zimmer:

Theorem 6.2. Fix a volume form ω on a closed oriented surface M of genus g ≥ 2.
Then any morphismψ of SL(n, Z) in the group Diff∞ω (M) of diffeomorphisms which
preserves ω has a finite image if n ≥ 3.

Franks and Handel in [27] gave an alternative proof which works in the C1 case
and includes the case g ≤ 1. The smoothness of F is used in a much weaker way,
mainly to construct a Thurston–Nielsen normal form on the complement of the fixed
point set. The two important properties satisfied by the group SL(n, Z), n ≥ 3, and by
any normal subgroup of finite order are the following (the first one is due to Margulis):

– it is almost simple (every normal subgroup is finite or has a finite index);

– it contains a subgroup isomorphic to the group of upper triangular integer valued
matrices of order 3 with 1 on the diagonal (the integer Heisenberg group).

More precisely, using algebraic properties of the mapping class group, it is suf-
ficient to study the case where ψ takes its values in the subgroup Diff1

ω,∗(M) of
diffeomorphisms of Diff1

ω(M) which are isotopic to the identity. Using the sec-
ond property, there exist three elements F , G, H in Im(ψ) such that [G, H ] = F ,
[F, G] = [F, H ] = IdM and such that F is the image of an element of infinite order.
To get the theorem it is sufficient to prove that F = IdM , because this would imply
that Ker(ψ), being an infinite normal subgroup, has a finite index. Note that F is
Hamiltonian because it is a commutator and that Fn2 = [Gn, Hn]. The fact that
F = IdM will follow from the next result (and the fact that F has periodic orbits if it
is not trivial):

Theorem 6.3 ([28]). Suppose that F is a diffeomorphism of a closed surface M

of genus g which satisfies the following distorsion property: it belongs to a finitely
generated subgroup of diffeomorphisms isotopic to the identity and there are two
sequences nk and pk with pk = o(nk) and nk → +∞ such that Fnk can be written as
the product of pk elements chosen in the ( finite) set of generators. Then F is isotopic
to the identity relatively to the fixed point set and has no periodic points except the
fixed points if g ≥ 2, if g = 1 and Fix F ̸= ∅, or if g = 0 and ♯Fix F ≥ 3.
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The proof uses the Thurston–Nielsen normal form on the complement of the fixed
point set explained in Section 5. The distorsion property implies that F is isotopic
to the identity relatively to the fixed point set. Every iterate Fk will also satisfy the
distorsion property and should be isotopic to the identity relatively to its fixed point
set. But this situation cannot occur in case Fix(F k) ̸= Fix(F ) if g ≥ 2, if g = 1 and
Fix F ̸= ∅, or if g = 0 and ♯Fix F ≥ 3.

Let us conclude this article by explaining how to get another interpretation of
Theorem 6.1 and Theorem 6.3 with the use of the foliated version of Brouwer’s Plane
Translation Theorem. We will look at the case of a surface of genus g ≥ 1 by using
the notion of linking number. The case of the sphere may be studied in a similar way
by using an appropriate notion of linking number.

Suppose that F is the time-one map of an isotopy from the identity (Ft )t∈[0,1] on
a closed surface M of genus g ≥ 1 and lift the isotopy to an isotopy from the identity
(ft )t∈[0,1] on the universal covering space M̃ . One may identify the universal lift M̃

of M with the complex plane if g = 1 or with the Poincaré disk if g ≥ 2. If z and z′

are two fixed points of f , the degree of the map ξ : S1 → S1 defined by

ξ(e2iπ t ) = ft (z)− ft (z
′)

|ft (z)− ft (z′)|

is called the linking number I (z, z′) of z and z′. One course I (z, z′) = 0 if z′ is the
image of z by a covering automorphism. There exits a “natural lift” of f |M̃\{z} to the
universal covering space of the annulus M̃ \ {z} which fixes the preimages of every
image of z by a covering automorphism of M̃ . The linking number I (z, z′) is nothing
but the rotation number (up to the sign) of the fixed point z′ of f |M̃\{z} for this natural
lift. Note that for every integer n ≥ 1, the linking number of z and z′ for f n is equal
to nI (z, z′). In the case where I (z, z′) ̸= 0 it is not difficult to deduce that there exists
C > 0 such that %n(F ) ≥ Cn for every n ≥ 0 and also that F does not satisfy the
distorsion property in the group of diffeomorphisms isotopic to the identity. Observe
that if F preserves a probability measure with total support, then f |M̃\{z} satisfies the
intersection property. Therefore, in this case, if f has two fixed points z and z′ such
that I (z, z′) ̸= 0, it has periodic points with arbitrarily large period which project onto
contractible periodic points of F . The next statement permits us to understand why,
in the proof of Theorem 5.1, it is sufficient to study the case where the map F|N has a
lift to the universal covering space that commutes with the covering transformations.

Proposition 6.4 ([42]). Let (Ft )t∈[0,1] be an isotopy from the identity to F on a closed
surface M of genus g ≥ 1 and (ft )t∈[0,1] the lifted isotopy to the universal covering
space M̃ starting from the identity. Suppose that there is a connected component N of
M \ Fixcont(F ) such that the inclusion i : N → M induces an isomorphism between
the first groups of homology and that there is no lift of F |N to the universal covering
space of N that commutes with the covering automorphisms. Then there are two fixed
points z and z′ of f = f1 such that I (z, z′) ̸= 0.
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Let us give the ideas of the proof. By an approximation argument it is sufficient
to study the case where Fixcont(F ) is finite. One considers a maximal unlinked set
Z ⊂ Fixcont(F ). By hypothesis one knows that Z ̸= Fixcont(F ). One may suppose
that our isotopy (Ft )t∈[0,1] fixes every point of Z. We consider a foliation F on
N ′ = M \ Z dynamically transverse to (Ft |N ′)t∈[0,1] and lift it to a foliation F̃ onto
the preimage Ñ ′ of N ′ in M̃ . Fix a point z′ ∈ Fix(f ) ∩ Ñ ′. There is a loop %0 ⊂ Ñ ′

based in z′ that is positively transverse to F̃ and homotopic in Ñ ′ to the trajectory %1
of z′. The dual function 1%0 : M̃ \ %0 → Z assigning to z the index of %0 relatively
to z is zero outside a compact set and takes finitely many values. One may suppose
for example that the maximum l+ of 1%0 is different from zero. The loop %0 being
positively transverse to the foliation, it is easy to prove that every component of
M̃ \ %0 where1%0 takes the value l+ is the interior of a closed disk whose boundary
is a simple loop transverse to the foliation. Therefore, there exists a singularity z

inside this component. The loop %1 being homotopic to %0 in Ñ , the index of %1
relatively to z is equal to l+. This number is nothing but the linking number I (z, z′).

The linking number I (z, z′) between a fixed point z and a periodic point z′ of f

may be defined similarly. The previous proof may be adapted to get:

Proposition 6.5 ([42]). Let (Ft )t∈[0,1] be an isotopy from the identity to F on a closed
surface M of genus g ≥ 1 and (ft )t∈[0,1] the lifted isotopy to the universal covering
space M̃ starting from the identity. For every periodic point z′ of f = f1 that is not
fixed, there is a fixed point z of f such that I (z, z′) ̸= 0.

Let us explain how to deduce Theorem 6.1 from Proposition 6.5. Suppose that F

is a non-trivial Hamiltonian diffeomorphism of a closed surface M of genus g ≥ 1.
One can choose a periodic point z′ of period ≥ 2. If z′ is contractible, then one gets
the conclusion of Theorem 6.1 by applying Proposition 6.5. If the rotation vector
of z′ is non-zero, the conclusion follows easily. It will follow also in the missing case
where z′ is not contractible but has a rotation vector equal to zero. This is possible
only if g ≥ 2. Identify M̃ with the Poincaré disk. If z̃′ is a preimage of z′ in M̃ , it is
not difficult to prove that there exits C > 0 such that for every n ≥ 0 the hyperbolic
distance between z′ and f n(z′) is minimized by Cn, which implies the validity of the
conclusion of Theorem 6.1.

The previous arguments imply that a diffeomorphism which satisfies the assump-
tions of Theorem 6.3 has no periodic points of period ≥ 2 if g ≥ 2 or if g = 1 and F

has a contractible fixed point, and that every fixed point is contractible. One may adapt
the arguments of Proposition 6.4 to prove that for every connected component U of
M \ Fixcont(F ), the map F |U has necessarily a lift to the universal covering space
which commutes with the covering automorphisms.

The analogs of Theorem 6.2 and Theorem 6.3 for homeomorphisms are unknown.
They should be deduced from the (positive) answer to the following open question:

Suppose that f is the lift to the universal covering space of a homeomorphism F

isotopic to the identity defined by an isotopy (Ft )t∈[0,1] and that f has two fixed
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point z and z′ such that I (z, z′) ̸= 0. Does this imply that F does not satisfy the
distorsion property in the group of homeomorphisms isotopic to the identity?
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