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Solving Pseudo-Differential Equations 

Nicolas Lerner* 

Abstract 

In 1957, Hans Lewy constructed a counterexample showing that very 
simple and natural differential equations can fail to have local solutions. A geo-
metric interpretation and a generalization of this counterexample were given 
in 1960 by L.Hörmander. In the early seventies, L.Nirenberg and F.Treves pro-
posed a geometric condition on the principal symbol, the so-called condition 
(ip), and provided strong arguments suggesting that it should be equivalent 
to local solvability. The necessity of condition (ip) for solvability of pseudo-
differential equations was proved by L.Hörmander in 1981. The sufficiency of 
condition (ip) for solvability of differential equations was proved by R.Beals 
and C.Fefferman in 1973. For differential equations in any dimension and for 
pseudo-differential equations in two dimensions, it was shown more precisely 
that (ip) implies solvability with a loss of one derivative with respect to the 
elliptic case: for instance, for a complex vector field X satisfying (ip), f e Lfoc, 
the equation Xu = f has a solution u e L'foc. 

In 1994, it was proved by N.L. that condition (ip) does not imply solvabil-
ity with loss of one derivative for pseudo-differential equations, contradicting 
repeated claims by several authors. However in 1996, N.Dencker proved that 
these counterexamples were indeed solvable, but with a loss of two derivatives. 
We shall explore the structure of this phenomenon from both sides: on the 
one hand, there are first-order pseudo-differential equations satisfying condi-
tion (ip) such that no Lfoc solution can be found with some source in Lfoc. On 
the other hand, we shall see that, for these examples, there exists a solution 
in the Sobolev space #,"*. 

The sufficiency of condition (ip) for solvability of pseudo-differential equa-
tions in three or more dimensions is still an open problem. In 2001, N.Dencker 
announced that he has proved that condition (ip) implies solvability (with a 
loss of two derivatives), settling the Nirenberg-Treves conjecture. Although 
his paper contains several bright and new ideas, it is the opinion of the author 
of these lines that a number of points in his article need clarification. 
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1. From Hans Lewy to Nirenberg-Treves' 
condition (^) 

Year 1957. 
The Hans Lewy operator L0, introduced in [20], is the following complex vector 

field in R3 

d d d 
LQ = - Vi- \-i(xi+ix2)^—• (1.1) 

OXi OX2 OX3 
There exists / £ C°° such that the equation 

L0u = f (1.2) 

has no distribution solution, even locally. This discovery came as a great shock for 
several reasons. First of all, L0 has a very simple expression and is natural as the 
Cauchy-Riemann operator on the boundary of the pseudo-convex domain 

{(zi,z2) £ C2, |zi | 2 + 2Im02 < 0}. 

Moreover L0 is a non-vanishing vector field so that no pathological behaviour related 
to multiple characteristics is to be expected. In the fifties, it was certainly the 
conventional wisdom that any "reasonable" operator should be locally solvable, and 
obviously (1.1) was indeed very reasonable so the conclusion was that, once more, 
the CW should be revisited. One of the questions posed by such a counterexample 
was to find some geometric explanation for this phenomenon. 

1960. 
This was done in 1960 by L.Hörmander in [7] who proved that if p is the 

symbol of a differential operator such that, at some point (x, £) in the cotangent 
bundle, 

p(x.fi) = 0 and {Rep,lmp}(x.fi) > 0, (1.3) 

then the operator P with principal symbol p is not locally solvable at x; in fact, 
there exists / £ C°° such that, for any neighborhood V of x the equation Pu = f 
has no solution u £ V(V). Of course, in the case of differential operators, the 
sign > 0 in (1.3) can be replaced by ^ 0 since the Poisson bracket {Rep, Imp} is 
then an homogeneous polynomial with odd degree in the variable £. Nevertheless, 
it appeared later (in [8]) that the same statement is true for pseudo-differential 
operators, so we keep it that way. Since the symbol of -iL0 is £1 —X2^3+i(^2+xi^), 
and the Poisson bracket {£1 —X2Ç3, £2 + Ï1C3} = 2£3, the assumption (1.3) is fulfilled 
for L0 at any point x in the base and the nonsolvability property follows. This gives 
a necessary condition for local solvability of pseudo-differential equations: a locally-
solvable operator P with principal symbol p should satisfy 

{Rep, lmp}(x, £) < 0 at p(x.fi) = 0. (1.4) 

Naturally, condition (1.4) is far from being sufficient for solvability (see e.g. the 
nonsolvable Af3 below in (1.5)). After the papers [20], [7], the curiosity of the 
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mathematical community was aroused in search of a geometric condition on the 
principal symbol, characterizing local solvability of principal type operators. It is 
important to note that for principal type operators with a real principal symbol, 
such as a non-vanishing real vector field, or the wave equation, local solvability was 
known after the 1955 paper of L.Hörmander in [6]. In fact these results extend quite 
easily to the pseudo-differential real principal type case. As shown by the Hans Lewy 
counterexample and the necessary condition (1.4), the matters are quite different 
for complex-valued symbols. 

1963. 
It is certainly helpful to look now at some simple models. For t, x £ R, with 

the usual notations 
Dt = -Wt, (\Dfi\u)(0 = |£|«(£), 

where « is the ar-Fourier transform of u, I £ N, let us consider the operators defined 
by 

M, = Dt + itlDx, Ni = Dt + itl\Dx\. (1.5) 

It is indeed rather easy to prove that, for k £ N, M2k, N2k, Ar
2*fc+1 are solvable 

whereas M2k+i, N2k+i are nonsolvable. In particular, the operators Afi, Ari satisfy 
(1.3). On the other hand, the operator Ar

1* = Dt — it\Dx\ is indeed solvable since 
its adjoint operator Ari verifies the a priori estimate 

r||Ari«||L2(R2) > ||«||L2(R2), 

for a smooth compactly supported u vanishing for \t\ > T/2. No such estimate is 
satisfied by N£u since its a:-Fourier transform is 

-idf.v — it\Ç\v = (—i)(dt.v + t\Ç\v), 

where v is the ar-Fourier transform of u. A solution of Nfu = 0 is thus given by 
the inverse Fourier transform of e-* ^/2, ruining solvability for the operator Ari. 
A complete study of solvability properties of the models M/ was done in [23] by 
L.Nirenberg and F.Treves, who also provided a sufficient condition of solvability 
for vector fields; the analytic-hypoellipticity properties of these operators were also 
studied in a paper by S.Alizohata [21]. 

1971. 
The ODE-like examples (1.5) led L.Nirenberg and F.Treves in [24-25-26] to 

formulate a conjecture and to prove it in a number of cases, providing strong grounds 
in its favour. To explain this, let us look simply at the operator 

L = Dt + iq(t,x,Dx), (1.6) 

where q is a real-valued first-order symbol. The symbol of L is thus r + iq(t,x.fi). 
The bicharacteristic curves of the real part are oriented straight lines with direction 
d/dt; now we examine the variations of the imaginary part q(t, x, £) along these 
lines. It amounts only to check the functions t >-¥ q(t,x,Ç) for fixed (#,£). The 
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good cases in (1.5) (when solvability holds) are t2kÇ, —t2k+1\Ç\: when t increases 
these functions do not change sign from — to +. The bad cases are t2k+1\Ç\: when t 
increases these functions do change sign from — to +; in particular, the nonsolvable 
case (1.3), tackled in [8], corresponds to a change of sign of Imp from — to + at a 
simple zero. The general formulation of condition (ip) for a principal type operator 
with principal symbol p is as follows: for all z £ C, lm(zp) does not change sign 
from — to + along the oriented bicharacteristic curves of Re(zp). It is a remarkable 
and non-trivial fact that this condition is invariant by multiplication by an elliptic 
factor as well as by composition with an homogeneous canonical transformation. 
The Nirenberg-Treves conjecture, proved in several cases in [24-25-26], such as for 
differential operators with analytic coefficients, states that, for a principal type 
pseudo-differential equation, condition (ip) is equivalent to local solvability. 

The paper [25] introduced a radically new method of proof of energy estimates 
for the adjoint operator L* based on a factorization of q in (1.6): whenever 

<l(t, x, £) = a(t, x, £)6(x, £) (1.7) 

with a < 0 of order 0 and 6 of order 1, then the operator L in (1.6) is locally solvable. 
Looking simply at the ODE 

Dt + ia(t, x, Ob(x, £) = (-*) (dt - a(t, x, £)6(ar, £)), (1.8) 

it is clear that in the region {&(#,£) > 0}, the forward Cauchy problem for (1.8) is 
well posed, whereas in {&(#,£) < 0}, well-posedness holds for the backward Cauchy 
problem. This remark led L.Nirenberg and F.Treves to use as a multiplier in the 
energy method the sign of the operator with symbol 6. They were also able to 
provide the proper commutator estimates to handle the remainder terms generated 
by this operator-theoretic method. Although a factorization (1.7) can be obtained 
for differential operators with analytic regularity satisfying condition (rp), such a 
factorization is not true in the C°° case. Incidentally, one should note that for 
differential operators, condition (ip) is equivalent to ruling out any change of sign of 
Imp along the bicharacteristics of Rep (the latter condition is called condition (Pj); 
this fact is due to the identity p(x, —£) = ( — l)mp(x, £), valid for an homogeneous 
polynomial of degree m in the variable £. 

Using the Malgrange-Weierstrass theorem on normal forms of complex-valued 
non-degenerate C°° functions and the Egorov theorem on quantization of homoge-
neous canonical transformations, there is no loss of generality considering only first 
order operators of type (1.6). The expression of condition (ip) for L is then very-
simple since it reads 

q(t, x, £) < 0 and s > t =^> q(s,x.fi) < 0. (1.9) 

Note that the expression of condition (P) for L is simply q(t,x.fi)q(s,x.fi) > 0. 
Aluch later in 1988, N.Lerner [14] proved the sufficiency of condition (ip) for lo-
cal solvability of pseudo-differential equations in two dimensions and as well for 
the classical oblique-derivative problem [15]. The method of proof of these results 
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is based upon a factorization analogous to (1.7) but where b(x.fi) is replaced by 
ß(t,x)|£| and ß is a smooth function such that t >-¥ ß(t,x) does not change sign 
from + to — when t increases. Then a properly defined sign of ß(t, x) appears as a 
non-decreasing operator and the Nirenberg-Treves energy method can be adapted 
to this situation. 

1973. 
At this date, R.Beals and C.Fefferman [1] took as a starting point the previous 

results of L.Nirenberg and F.Treves and, removing the analyticity assumption, they 
were able to prove the sufficiency of condition (P) for local solvability, obtaining 
thus the sufficiency of condition (ip) for local solvability of differential equations. 
The key ingredient was a drastically new vision of the pseudo-differential calculus, 
defined to obtain the factorization (1.7) in regions of the phase space much smaller 
than cones or semi-classical "boxes" {(#,£), |x| < 1,|£| < h^1}. Considering the 
family {q(t,x.fi)}f ,_ 1 1 , of classical homogeneous symbols of order 1, they define, 
via a Calderón-Zygmund decomposition, a pseudo-differential calculus depending 
on the family {q(t, •)}, in which all these symbols are first order but also such that, 
at some level to, some ellipticity property of q(to, •) or Vx^q(to, •) is satisfied. Con-
dition (P) then implies easily a factorization of type (1.7) and the Nirenberg-Treves 
energy method can be used. It is interesting to notice that some versions of these 
new pseudo-differential calculi were used later on for the proof of the Fefferman-
Phong inequality [5]. In fact, the proof of R.Beals and C.Fefferman marked the day 
when microlocal analysis stopped being only homogeneous or semi-classical, thanks 
to methods of harmonic analysis such as Calderón-Zygmund decomposition made 
compatible with the Heisenberg uncertainty principle. 

1978. 
Going back to solvability problems, the existence of C°° solutions for C°° 

sources was proved by L.Hörmander in [9] for pseudo-differential equations satisfying 
condition (P). For such an operator P of order m, satisfying also a non-trapping 
condition, a semi-global existence theorem was proved, with a loss of 1+e derivatives, 
with e > 0. Following an idea given by R.D.Aloyer [22] for a result in two dimensions, 
L.Hörmander proved in [10] that condition (ip) is necessary for local solvability: 
assuming that condition (ip) is not satisfied for a principal type operator P, he was 
able to construct approximate non-trivial solutions u for the adjoint equation P*u = 
0, which implies that P is not solvable. Although the construction is elementary for 
the model operators N2k+i in (1.5) (as sketched above for Ari in our 1963 section), 
the multidimensional proof is rather involved and based upon a geometrical optics 
method adapted to the complex case. The details can be found in the proof of 
theorem 26.4.7' of [11]. 

We refer the reader to the paper [13] for a more detailed historical overview of 
this problem. On the other hand, it is clear that our interest is focused on solvability 
in the C°° category. Let us nevertheless recall that the sufficiency of condition (ip) 
in the analytic category (for microdifferential operators acting on microfunctions) 
was proved by J.-M.Trépreau [27] (see also [12], chapter vu). 
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2. Counting the loss of derivatives 
Condition (tp) does not imply solvability with loss of one derivative. 

Let us consider a principal-type pseudo-differential operator L of order m. 
We shall say that L is locally solvable with a loss of p derivatives whenever the 
equation Lu = f has a local solution u in the Sobolev space Hs+m^'i for a source 
/ in Hs. Note that the loss is zero if and only if L is elliptic. Since for the simplest 
principal type equation d/dxi, the loss of derivatives is 1, we shall consider that 1 
is the "ordinary" loss of derivatives. When L satisfies condition (P) (e.g. if L is a 
differential operator satisfying condition (ip)), or when L satisfies condition (ip) in 
two dimensions, the estimates 

C\\L*u\\H->\\u\\H,+m-i, (2.1) 

valid for smooth compactly supported u with a small enough support, imply local 
solvability with loss of 1 derivative, the ordinary loss referred to above. For many-
years, repeated claims were made that condition (ip) for L implies (2.1), that is 
solvability with loss of 1 derivative. It turned out that these claims were wrong, as 
shown in [16] by the following result (see also section 6 in the survey [13]). 

Theorem 2.1. There exists a principal type first-order pseudo-differential operator 
L in three dimensions, satisfying condition (fi), a sequence Uk of Cfi" functions with 
suppig C {x £ R3, |x| < 1/k} such that 

IKIIL2(R3) = 1, um \\L*Uk\\L2(m) = 0- (2-2) 

As a consequence, for this L, there exists / £ L2 such that the equation 
Lu = f has no local solution u in L2. We shall now briefly examine some of the 
main features of this counterexample, leaving aside the technicalities which can be 
found in the papers quoted above. Let us try, with (t, x, y) £ R3, 

L = Dt- ia(t)(Dx + H(t)V(x)\Dy\), (2.3) 

with H = 1 R + , C°°(R) 9 V > 0, C°°(R) 9 a > 0 flat at 0. Since the function 
q(t,x,y.fi,n) = —a(£)(£ + H (t)V (x)\n\) satisfies (1.9) as the product of the non-
positive function —a(t) by the non-decreasing function t >-¥ £ + H(t)Yr(x)\r]\, the 
operator L satisfies condition (ip). To simplify the exposition, let us assume that 
a = 1, which introduces a rather unimportant singularity in the t-variable, let us 
replace \Dy\ by a positive (large) parameter A, which allows us to work now only 
with the two real variables t,x and let us set W = AV. We are looking for a 
non-trivial solution u(t,x) of L*u = 0, which means then 

du-{ BxU' for * < °' 
*" ~ 1 (Dx + W(x))u, for t > 0. 

The operator D,x + W is unitarily equivalent to D,x: with A'(x) = W(x), we have 
Dx -V W(x) = e^tA^Dxe%A^x\ so that the negative eigenspace of the operator 
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D,x + W(x) is {v £ L2(R),supp eiAv C R_}. Since we want u to decay when 
t —¥ ±00, we need to choose vi,v2 £ L2(M), such that 

{ etD"Vi, suppwTcR+ for t < 0, 
(2.4) 

et-(D*+w)V2_ suppeMv2 CK_ fort>0. 

We shall not be able to choose vi = 1)2 in (2.4), so we could only hope for L*u to 
be small if \\v2 — WI||L2(R) is small. Thus this counterexample is likely to work if the 
unit spheres of the vector spaces 

E+ = {v £ L2(R), supp v C R+ } and Efi = {v £ L2(R), supp tßv C L } 

are close. Note that since W > 0, we get Eff\Efi = {0}: in fact, with L2(R) scalar 
products, we have 

v£E+ 0<W v£E~ 
v £ E+ n Efi = ^ 0 < (Dv, v) < ((D + W)v, v) < 0 = ^ (Dv, v) = 0 

which gives v = 0 since v £ Ef. Nevertheless, the "angle" between Ef and E^ 
could be small for a careful choice of a positive W. It turns out that Wo(x) = TT8O(X) 
is such a choice. Of course, several problems remain such as regularize Wo in such a 
way that it becomes a first-order semi-classical symbol, redo the same construction 
with a smooth function a flat at 0 and various other things. 

Anyhow, these difficulties eventually turn out to be only technical, and in fine, 
the actual reason for which theorem 2.1 is true is simply that the positive eigenspace 
of D,x (i.e. L2(R) functions whose Fourier transform is supported in R+) could be 
arbitrarily close to the negative eigenspace of D,x + W(x) for some non-negative W, 
triggering nonsolvability in L2 for the three-dimensional model operator 

Dt - ia(t)(Dx + lR+(t)W(x)\Dy\), (2.5) 

where a is some non-negative function, flat at 0. This phenomenon is called the 
"drift" in [16] and could not occur for differential operators or for pseudo-differential 
operators in two dimensions. A more geometric point of view is that for a principal 
type symbol p, satisfying condition (ip), one may have bicharacteristics of Rep which 
stay in the set {Imp = 0}. This can even occur for operators satisfying condition 
(P). However condition (P) ensures that the nearby bicharacteristics of Rep stay-
either in {Imp > 0} or in {Imp < 0}. This is no longer the case when condition 
(ip) holds, although the bicharacteristics are not allowed to pass from {Imp < 0} to 
{Imp > 0}. The situation of having a bicharacteristic of Rep staying in {Imp = 0} 
will generically trigger the drift phenomenon mentioned above when condition (P) 
does not hold. So the counterexamples to solvability with loss of one derivative are 
in fact very close to operators satisfying condition (P). 

A related remark is that the ODE-like solvable models in (1.5) do not catch the 
generality allowed by condition (ip). Even for subelliptic operators, whose tranposed 
are of course locally solvable, it is known that other model operators than M2k, Arj 
can occur. In particular the three-dimensional models Dt + it2k(Dx+t2l+1x2m\Dy\), 
where k, l, m are non-negative integers are indeed subelliptic and are not reducible 
to (1.5) (see chapter 27 in [11] and the remark before corollary 27.2.4 there). 
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Solvability with loss of two derivatives. 
Although theorem 2.1 demonstrates that condition (ip) does not imply solv-

ability with loss of one derivative, the counterexamples constructed in this theorem 
are indeed solvable, but with a loss of two derivatives, as proven by N.Dencker in 
1996 [2]. The same author gave a generalization of his results in [3] and later on, 
analogous results were given in [17]. 

A measurable function p(t, x, £) defined on 1 x I " x I " will be called in the 
next theorem a symbol of order m whenever, for all (a, ß) £ N" x N" 

sup \(d^dflp)(t,x,0\(l + ̂ \rm+m <+oo. (2.6) 
(M,Ç)eRxR»xRn 

Theorem 2.2. Let a(t,x.fi) be a non-positive symbol of order 0, b(t,x,Ç) be a real-
valued symbol of order 1 such that df.b > 0, and r(t,x,£) be a (complex-valued) 
symbol of order 0. Then the operator 

L=Dt + ia(t, x, Dx)b(t, x, Dx) + r(t, x, Dx) (2.7) 

is locally solvable with a loss of two derivatives. Since the counterexamples con-
structed in theorem 2.1 are in fact of type (2.7), they are locally solvable with a loss 
of two derivatives. 

In fact, for all points in R"+1, there exists a neighborhood V, a positive con-
stant C such that, for all u £ C£°(V) 

C\\L*u\\Ho>\\u\\H-i. (2.8) 

This estimate actually represents a loss of two derivatives for the first-order L; the 
estimate with loss of 0 derivative would be ||L*U||ìJO > ||«||ffi, the estimate with 
loss of one derivative would be ||L*U||ìJO > ||w||if°> and both are false, the first 
because L* is not elliptic, the second from theorem 2.1. The proof of theorem 2.2 
is essentially based upon the energy method which boils down to compute for all 
T £ R 

Re(L*u, iBu + iH(t — T)u)L2(R„+i) 

where B = b(t,x,Dx). Some complications occur in the proof from the rather weak 
assumption df.b > 0 and also from the lower order terms. Anyhow, the correct 
multiplier is essentially given by b(t,x,Dx). Theorem 2.2 can be proved for much 
more general classes of pseudo-differential operators than those given by (2.6). As 
a consequence, it can be extended naturally to contain the solvability result under 
condition (P) (but with a loss of two derivatives, see e.g. theorem 3.4 in [17]). 

Miscellaneous results. 
Let us mention that the operator (1.6) is solvable with a loss of one derivative 

(the ordinary loss) if condition (ip) is satisfied (i.e. (1.9)) as well as the extra 
condition 

I d x ^ ^ O I 2 ! ^ - 1 + l % ( M , £ ) | 2 | £ | < C\dtq(t,x,Ç)\ when q(t,x,Ç) = 0. 
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This result is proved in [18] and shows that "transversal" changes of sign do not 
generate difficulties. Solvability with loss of one derivative is also true for operators 
satisfying condition (ip) such that the changes of sign take place on a Lagrangean 
manifold, e.g. operators (1.6) such that the sign of q(t,x,Ç) does not depend on 
£, i.e. q(t,x,Ç)q(t,x,n) > 0 for all (t,x,Ç,n). This result is proved in section 8 of 
[13] which provides a generalization of [15] where the standard oblique-derivative 
problem was tackled. On the other hand, it was proved in [19] that for a first-order 
pseudo-differential operator L satisfying condition (ip), there exists a L2 bounded 
perturbation R such that L + R is locally solvable with loss of two derivatives. 

3. Conclusion and perspectives 
The following facts are known for principal type pseudo-differential operators. 

F l . Local solvability implies (ip). 
F2. For differential operators and in two dimensions, (ip) implies local solvability. 
F3. (ip) does not imply local solvability with loss of one derivative. 
F4. The known counterexamples in (F3) are solvable with loss of two derivatives. 

The following questions are open. 
QI. Is (ip) sufficient for local solvability in three or more dimensions? 
Q2. If the answer to QI is yes, what is the loss of derivatives? 
Q3. In addition to (ip), which condition should be required to get local solvability 

with loss of one derivative? 
Q4. Is analyticity of the principal symbol and condition (ip) sufficient for local 

solvability? 
The most important question is with no doubt QI, since, with F l , it would settle 
the Nirenberg-Treves conjecture. From F3, it appears that the possible loss in Q2 
should be > 1. In 2001, N.Dencker announced in [4] a positive answer to QI, with 
answer 2 in Q2. His paper contains several new and interesting ideas; however, the 
author of this report was not able to understand thoroughly his article. 

The Nirenberg-Treves conjecture is an important question of analysis, connect-
ing a geometric (classical) property of symbols (Hamiltonians) to a priori inequalities 
for the quantized operators. The conventional wisdom on this problem turned out 
to be painfully wrong in the past, requiring the most careful examination of future 
claims. 
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