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1. Introduction

After the groundbreaking work of Ax-Kochen [2] and Eršov [25] in the sixties and of Denef
[16] in the eighties, a wide array of applications of model theory of valued fields is now
flourishing, ranging over topics as diverse as counting subgroups, the Langlands program
and singularity theory. In all these applications the concept of definability in first order logic
is central. In this survey, we shall focus on three such applications, each using the notion of
definability in the context of valued fields in an essential way.

We start by presenting several transfer theorems for p-adic integrals. Such results al-
low to transfer statements over Qp to statements over Fp((t)) and vice versa. A first result,
obtained in collaboration with R. Cluckers deals with identities between integrals with pa-
rameters. In work with R. Cluckers and T. Hales it was shown how it can used for the
integrals occuring in the fundamental lemma. We shall also present more recent results
obtained by R. Cluckers, J. Gordon and I. Halupczok on transfering local integrability or
uniform boundedeness statements and some of their applications to p-adic harmonic anal-
ysis. In the next section, we shall explain how by working in a definable setting one can
deduce global bounds from local bounds on differentials, despite the totally disconnected
nature of non-archimedean valued fields and present some diophantine applications. This is
recent joint work with R. Cluckers and G. Comte. The last section is about the topology of
non-archimedean spaces. We shall present our work with E. Hrushovski on stable comple-
tion of algebraic varieties over a valued field, a model-theoretic analogue of the Berkovich
analytification. A fundamental statement is that the stable completion of an algebraic vari-
ety is pro-definable. We shall explain how using this approach one can prove new tameness
results for the topology of Berkovich spaces.

The present overview is far from being exhaustive, for instance it completely leaves out
important work of Hrushovski and Kazhdan on motivic integration [29, 30], and some of its
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recent applications [32, 35].

2. DeÞnability and integration

2.1. DeÞnable sets.A languageL is a set consisting of symbols for constants (= 0-ary
functions), n-ary functions andn-ary relations. Basic examples are the ring language
{0, 1,+,−,×,=}, the order language{<,=}, or the ordered abelian group language
{<, 0,+,−,=}.

An L-structure consists of a setM together with interpretations for symbols inL. One
requires that= is interpreted by equality inM . A subset ofMn is said to be deÞnable if it
is of the form

{(a1, · · · , an) ∈ Mn : ϕ(a1, · · · , an) holds}

with ϕ a Þrst-order formula inL with n-free variables. When the formulaϕ involves pa-
rameters running over someA ⊂ M , one says the subset isA-deÞnable. A map between
A-deÞnable sets is said to beA-deÞnable if its graph is. In this way one deÞnes the category
DefA of A-deÞnable sets. All these notions extend naturally to many-sorted languages.

2.2. p-adic integrals. In his breakthrough paper [16] on the rationality of the PoincarŽ
series associated to thep-adic points on a variety, Denef proved the following general ratio-
nality result forp-adic integrals:

Theorem 2.3. Let X be a definable subset of Qn
p and g : X → Qp be a bounded definable

function. Then the integral ∫

X
|g|s|dx|

is a rational function of p−s.

Here deÞnability refers to the ring language with parameters inQp (or, which amounts
to the same here, any standard valued ring language, for instanceLk,Γ considered in 4.8).
The proof relies on MacintyreÕs quantiÞer elimination theorem [36] forQp.

ForX a deÞnable subset ofQn
p , denote byCp(X) theQ-algebra generated by functions

of the form |g| andval(g) with g : X → Qp deÞnable. In the paper [17] in which he
extended his rationality result to the setting of integrals with parameters, Denef proved the
following result about stability under integration for functions inCp.

Theorem 2.4. Let X be a definable subset of Qn
p . Let ϕ ∈ Cp(X × Qm

p ). Assume for any
x ∈ X , the function ϕx : λ &→ ϕ(x,λ) is integrable. Then the function x &→

∫
Qm

p
ϕx|dλ|

belongs to Cp(X).

In [18], Denef proved a general cell decomposition theorem forQp-deÞnable sets, pro-
viding direct proofs of Theorems 2.3 and 2.4 and also of MacintyreÕs quantiÞer elimination
theorem. The natural question of uniformity inp in DenefÕs Theorem 2.3 has been addressed
by Pas in [39] and by Macintyre in [37]. In the paper [39] a three sorted language has been
introduced, nowadays called the Denef-Pas languageLDP. In this language, there are three
sorts of variables:

¥ variables running over the valued Þeld for which the language is the ring language
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• variables running over the residue Þeld sort for which the language is the ring language

• variables running over the value group sort for which the language is the language of
ordered groups.

and two additional symbolsac andval from the valued Þeld sort to the residue Þeld and
value group sort, respectively. ForQp or k((t)) the angular component mapac is interpreted
as the Þrst non zero coefficient in thep-adic, resp.t-adic, expansion andval as the valuation.
In this setting, Pas proved a cell decomposition theorem which is uniform inp in [39]. In
particular, this provides a new elementary proof of the following version of the classical
result of Ax-Kochen-Eršov.

Theorem 2.5. Let ϕ be a sentence (that is, a formula with no free variable) in the language
L DP. For all but finitely prime numbers p, ϕ is satisfied in Fp((t)) if and only if it is satisfied
in Qp.

2.6. Motivic integrals. In the series of papers [10] and [11] in collaboration with Raf
Cluckers we have developed a general framework for motivic integration on deÞnable sets
in the Denef-Pas language. More precisely letk be a Þeld of characteristic zero and set
K = k((t)). We considerK as a structure for the Denef-Pas language. For any deÞnable
subsetS of Km (or more generally ofKm ! kn ! Zr), we deÞne in [10] an algebraC(S) of
Òconstructible motivic functionsÓ onS. For such functions one deÞnes inductively the no-
tion of being integrable and the value of the integral, using the cell decomposition theorem
of Pas [39], and one proves an analogue of Theorem 2.4 in this context. Working in a relative
setting is essential here. One of the main advantage of working in the deÞnable setting over
previous constructions as those in [19] or [20], is that there is no need anymore to consider
completions of Grothendieck rings. Also, we are able to state and prove Fubini and change
of variables theorems in full generality, and to deal with integrals with parameters. For more
detailed, though accessible, presentations of this theory, we refer to the introduction of [10]
and to the paper [12].

2.7. Transfer theorems for constructible motivic functions. Let F be a number Þeld
with ring of integersO. Let CO denote the collection of triples(F, ι,ϖ), whereF is non-
archimedean local Þeld,ι : O " F a ring homomorphism andϖ a uniformizer inF . We
denote bykF the residue Þeld ofF and byqF the cardinality ofkF . ForM > 0, we denote
by CO,M the subcollection of triples(F, ι,ϖ) with F of residue characteristic> M .

Assume nowk = F, and Þx a deÞnable subsetS of Kn. For someM large enough,
for any (F, ι,ϖ) in CO,M one may consider the specializationSF of S in Fn obtained by
specializing the formulas deÞningS using ι and sendingt to ϖ. Similarly, for M large
enough, a functionϕ in C(S) may be specialized to a function onSF which we shall denote
by ϕF .

In [11], we prove the following:

Theorem 2.8. Let ψ # C(S ! Km) and ψ! # C(S ! Km!
). Then, there exists M > 0 such

that, for every F1 and F2 in CO,M such that kF1 $ kF2 ,
!

Fm
1

(ψF1 )x|dλ| =
!

Fm !
1

(ψ!
F1
)x|dλ! |
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for everyx ! SF1 if and only if
!

F m
2

(! F2 )x |d" | =
!

F m !
2

(! !
F2

)x |d" ! |

for everyx ! SF2 .

In particular, whenF = Q, we get that, for almost allp, the identity
!

Qm
p

(! Qp )x |d" | =
!

Qm !
p

(! !
Qp

)x |d" ! |

holds for everyx ! SQp if and only if
!

Fp (( t )) m
(! Fp (( t )) )x |d" | =

!

Fp (( t )) m !
(! !

Fp (( t )) )x |d" ! |

holds for everyx ! SFp (( t )) . Note that Theorem 2.5 can be viewed as a special case of
Theorem 2.8 whenm = m! = 0 andS is the deÞnable subset ofK 0 deÞned by the sentence
#.

In work with Cluckers and Hales [12] we have shown that Theorem 2.8 applies in par-
ticular to the integrals occurring in the fundamental lemma, both in the unweighted and
weighted case. This is performed by representing all the data entering into the fundamental
lemma within the general framework of identities of motivic integrals of constructible func-
tions. This provides alternative proofs of results of Waldspurger in [46] and [47] and is of
special interest in view of Ng™Õs proof of the fundamental lemma over local Þelds of positive
characteristic [38]. One advantage of our approach is that it may be applied quite directly to
other versions of the fundamental lemma, as in [50].

Another important property of motivic constructible functions is that they satisfy strong
uniform boundedness statements, as proved by Cluckers, Gordon, Halupczok in the appendix
B of [44]:

Theorem 2.9. LetS be a deÞnable set and let# ! C(S " Zn ).

(1) There exist integersa andb, M , such that for everyF in CO ,M , if there exists a set-
theoretical function$ : Zn # R such that|#F (s, " )|R $ $(" ) on SF " Zn , then
|#F (s, " )|R $ qa+ b|| ! ||

F onSF " Zn , with ||" || =
"

i |" i |.

(2) Given integersa andb, there existsM , such that whether the bound

|#F (s, " )|R $ qa+ b|| ! ||
F

holds or not on the whole ofSF " Zn depends only onkF , for F in CO ,M .

In the same paper they show this result may be applied to provide uniform bounds for
orbitals integrals that are used in an essential way in the paper [44].

2.10. Transfer theorems for exponential constructible motivic functions.In [11], we
extend the construction of algebras constructible motivic functionsC(S), to take in account
motivic versions of exponential functions, by constructing the algebraCexp (S) of exponen-
tial constructible motivic functions onS for any deÞnable setS. The formalism developed
in [10] for C(S) carries over toCexp (S).
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Given an non-archimedean ÞeldF , one denotes byDF the set of additive characters on
F that are trivial on the maximal ideal and nontrivial on the valuation ring. Now, givenϕ in
Cexp (S), for anyF in CO ,M and any characterθ in DF , one may specializeϕ to a function
ϕF, ! onSF .

In this setting, Theorem 2.8 may be generalized as follows:

Theorem 2.11.Letψ ! Cexp (S" K m ) andψ! ! Cexp (S" K m !
). Then, there existsM > 0

such that, for everyF1 andF2 in CO ,M such thatkF1 # kF2 ,
!

F m
1

(ψF1 ,! )x |dλ| =
!

F m !
1

(ψ!
F1 ,! )x |dλ! |

for everyx ! SF1 and anyθ ! DF1 if and only if
!

F m
1

(ψF1 ,! )x |dλ| =
!

F m !
1

(ψ!
F1 ,! )x |dλ! |

for everyx ! SF1 and anyθ ! DF1 .

In the paper [13], Cluckers, Gordon, Halupczok prove the following remarkable transfer
theorem for (local) integrability and boundedness:

Theorem 2.12.LetS be a deÞnable subset ofK m and letϕ ! Cexp (S). There existsM > 0
such that, for ÞeldsF in CO ,M , the validity of the statement thatϕF, ! is (locally) integrable,
resp. (locally) bounded, for allθ ! DF depends only on the isomorphism class ofkF .

Using Theorem 2.12, Cluckers, Gordon, Halupczok have been able in [14] to transfer
Harish-ChandraÕs theorems on local integrability of characters of irreducible admissible rep-
resentations of connected reductivep-adic groups from characteristic zero to (large) positive
characteristic. An important ingredient in their approach is the deÞnability of the Moy-
Prasad Þlration subgroups, which they have proved in a number of important special cases.

3. DeÞnability and non-archimedean diophantine geometry

3.1. Lipschitz functions. A C1-function on an interval inR which has bounded derivative
is automatically Lipschitz continuous. It is well known that such a result cannot hold for
generalC1-functions over thep-adics sinceQp is total disconnectedness. However, under
some deÞnability conditions it is still possible to get results of this kind, as we shall explain
now.

Let K be a Þeld endowed with a discrete valuation for which it is complete. In this
section, by deÞnable we shall mean deÞnable in the ring languageL K with parameters inK
(in this case deÞnable sets are also called semi-algebraic sets), or in the analytic language
L an

K which is obtained by adding toL K a symbol for each restricted power seriesf in
K { x1, . . . , xm } , for m $ 1. Such a symbol is interpreted as the functionK m % K which
is zero outsideOm

K and given byx &% f (x) for x ! Om
K . In this case deÞnable sets are also

called subanalytic sets.
Let X be a subset ofK m . We say a functionf : X % K is C-Lipschitz if for everyx

andy in X , |f (x) ' f (y)| ( C|x ' y|. We say it is locallyC-Lipschitz if for each pointx0

in X , the restriction off to some neighborhood ofx0 is C-Lipschitz.
In the paper [7] with Cluckers and Comte we prove the following:
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Theorem 3.2. Let X be a definable subset of Qm
p and let f : X → Qp be a definable map.

Assume f is locally C-Lipschitz. Then there exists a finite partition of X into definable sets
X i and C! such that the restriction of f to each X i is C!-Lipschitz.

This statement is ap-adic analogue of a theorem of Kurdyka for real subanalytic sets
[34]. In [9] Cluckers and Halupczok proved that it is in fact always possible to takeC! = C.

3.3. A p-adic analogue of the Yomdin-Gromov lemma. A very efficient tool in diophan-
tine geometry is the so-called determinant method which was developed by Bombieri and
Pila in the inßuential paper [6] about the number of integral points of bounded height on
affine algebraic and transcendental plane curves. Basically, the method consists in using a
determinant of a suitable set of monomials evaluated at the integral points, in order to con-
struct a family of auxiliary polynomials vanishing at all integral points on the curve within
a small enough box. Building on the estimates in [6] for algebraic curves, Pila proved in
[40] bounds on the number of integral (resp. rational) points of bounded height on affine
(resp. projective) algebraic varieties of any dimension, improving on previous results by S.
D. Cohen using the large sieve method [15].

In [41], Pila and Wilkie proved a general estimate for the number of rational points on
the transcendental part of sets deÞnable in an o-minimal structure; this has been used in a
spectacular way by Pila to provide an unconditional proof of some cases of the AndrŽ-Oort
Conjecture [42]. Lying at the heart of Pila and WilkieÕs approach is the possibility of having
uniform - in terms of number of parametrizations and in terms of bounds on the partial
derivatives -Ck -parametrizations. These parametrizations are provided by an o-minimal
version of GromovÕs algebraic parametrization Lemma [26], itself a reÞnement of a previous
result of Yomdin [48],[49]. SuchCk -parametrizations enter the determinant method via
Taylor approximation.

In the work [8] with Cluckers and Comte we provide a version of the Yomdin-Gromov
lemma and the Pila-Wilkie theorem valid overQp. At Þrst sight one may have doubts such
a statement could exist, since there seem there is no way for a global Taylor formula to
make sense in this framework. However Theorem 3.2 which provides a version of Þrst-order
Taylor approximation, piecewise globally, in the deÞnablep-adic setting is an encouraging
sign. In [8], instead of generalizing this result to higher order, we show directly the existence
of uniform Ck -parametrizations that do satisfy Taylor approximation, which is enough for
our purpose.

Ourp-adic analogue of the Yomdin-Gromov lemma is the following statement:

Theorem 3.4. Let n ≥ 0, m ≥ 0 and r ≥ 0 be integers and let X ⊂ Zn
p be a sub-

analytic set of dimension m. Then there exists a finite collection of subanalytic functions
gi : Pi ⊂ Zm

p → X such that the union of the gi (Pi ) equals X , the gi have Cr norm
bounded by 1, and the gi may be approximated by Taylor polynomials of degree r − 1 with
remainder of order r , globally on Pi .

For the precise deÞnition of theCr norm and of approximation by Taylor polynomials
of certain degree and with certain error we refer to [8].

3.5. A p-adic analogue of the Pila-Wilkie theorem. For X a subset ofQn
p andT > 1 a

real number, writeX (Q, T) for the set consisting of points(x1, á á á, xn ) in X ∩Qn such that
one can writexi asai /b i whereai andbi ̸= 0 are integers with|ai |R ≤ T and|bi |R ≤ T.

For X a subset ofQn
p , write X alg for the subset ofX consisting of pointsx such that
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there exists an algebraic curveC ! An
Qp

such thatC(Qp) " X is locally atx of dimension
1.

We prove in [8] the followingp-adic analogue of the Pila-Wilkie theorem:

Theorem 3.6. Let X ! Qn
p be a subanalytic set of dimensionm with m < n . Let

! > 0 be given. Then there exist an integerC = C(! , X ) > 0 and a semialgebraic set
W = W (! , X ) ! Qn

p such thatW " X lies insideX alg , and such that for eachT, one has

#( X \ W )(Q, T) # CTε.

3.7. Results overC[[t ]]. In the paper [8] we also obtain results whenK = C(( t)) . For
instance a version of Theorem 3.2 still holds overC(( t)) (with C! = C), if one replaces Òa
Þnite partition ofX Ó by Òa partition parametrized byCr , for somer Ó. For this to make sense
one has to enlarge the language to have (higher) angular components maps ˆ la Denef-Pas,
see [8] for more details. Similarly, a version of Theorem 3.4 overC(( t)) is also proved in [8].
We end this section by stating a diophantine application of this result.

For each positive integerr one denotes byC[t]<r the set of complex polynomials of
degree< r . WhenA is a subset ofC(( t)) n , one denotes byAr the setA " (C[t]<r )n and by
nr (A) the dimension of the Zariski closure ofAr in (C[t]<r )n $ Cnr .

Let X be an algebraic subvariety ofAn
C(( t )) of dimensionm. One can prove that for any

r > 0, nr (X ) # rm . WhenX is linear this ÒtrivialÓ estimate is the best possible. However,
we prove in [8] that as soon asX has degreed % 2, the following non-trivial bound holds:

Theorem 3.8. Let X be an irreducible subvariety ofAn
C(( t )) of dimensionm and degree

d % 2. Then, for every positive integerr , one has

nr (X ) # r (m & 1) +
! r

d

"
.

This result is a geometric analogue of a result of Pila in [40] on the number of integral
(resp. rational) points of bounded height on a! ne (resp. projective) algebraic varieties of
any dimension. PilaÕs proof proceeds by reducing to the case of curves which was considered
by Bombieri and Pila in [6].

4. DeÞnability and topology

In this section we present a model-theoretic approach to proving topological tameness prop-
erties in non-archimedean geometry which we developed in collaboration with Ehud Hru-
shovski [31].

4.1. o-minimality. It is by now quite well known that o-minimal geometry provides an
e! cient framework for the study of topology arising from an ordered structure, in particular
in the context of ordered Þelds. Let us recall that an inÞnite structureM which is totally
ordered by a binary relation< is said to be o-minimal if every deÞnable subsetX ! M ,
with parameters inM , is a Þnite union of intervals and points. Sets deÞnable in a o-minimal
structure have nice topological properties. For instance, for o-minimal expansions of the Þeld
R of real numbers, andn ' N, deÞnable subsets ofRn have a Þnite number of connected
components which furthermore are deÞnable, they are locally contractible and triangulable;
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in particular they have the homotopy type of a Þnite simplicial complex. Classical examples
of subsets ofRn deÞnable in a o-minimal structure include semi-algebraic sets, subanalytic
sets, or sets deÞnable in the language of ordered rings with an exponential function. Another
class of examples of o-minimal structures, playing an important role in our work, is provided
by divisible ordered abelian groups! . In this last setting deÞnable subsets of! n essentially
correspond to piecewise linear sets. An important feature of this model-theoretic framework
for tameness is that it is particularly well adapted to proving uniformity statements for the
topology of deÞnable sets varying in deÞnable families, for instance Þniteness of homotopy
types occuring in a given such family.

4.2. Valued Þelds.By a valued Þeld we mean a ÞeldK , together with a surjective mul-
tiplicative mapval : K ! → ! , with ! = ( ! , 0, + , < ) an ordered abelian group such that
val(x + y) ≥ min(val( x), val(y)) . We extendval to a mapval : K → ! " , with ! " the
disjoint union of! with a distinguished element∞ which is larger than any element of!
and absorbing for the addition. We shall denote byOK the valuation ring ofK and byMK

the maximal ideal ofK .

4.3. Berkovich spaces.Let K be a valued Þeld such that! is a subgroup of(R, +) . Then
x #→ |x| = e# val(x ) deÞnes an absolute value| · | : K → R$ 0. One saysK is ultrametric if
it is complete for this norm.

In [3], Berkovich introduced a general notion of analytic spaces over an ultrametric Þeld
K . In particular, for any algebraic varietyV overK one may consider its Berkovich analyti-
ÞcationV an . In caseV is affine with ring of regular functionsK [V ], let us deÞneV an as a
topological space. As a setV an is the set of multiplicative seminorms onK [V ] extending
the absolute value onK . There is a natural embeddingV an ⊂ RK [V ] and one endowsV an

with the topology induced by the product topology onRK [V ]. For an arbitrary algebraic va-
riety V overK , one deÞnesV an by glueing. This construction is functorial: any morphism
of algebraic varietyf : V → W gives rise to a morphismf an : V an → W an . Note that
V (K ) may be naturally identiÞed with a subset ofV an . WhenV is affine, this is done by
assigning to a pointa in V (K ) the seminormf #→ |f (a)|.

4.4. Some previously known topological properties of Berkovich spaces.Already in [3]
Berkovich proved that general analytic spaces (including analytiÞcations of algebraic vari-
eties) have excellent general topological properties, in particular they are locally compact
and locally path-connected.

More recently, in his paper [4], Berkovich proved that the general Þbre of any polystable
formal scheme admits a strong deformation retraction to a Þnite polyhedron, and using de
JongÕs results on alterations he deduced that any smooth analytic space is locally contractible.

On the other hand, Ducros proved in [21] that semi-algebraic subsets ofV an , i.e. subsets
which are Zariski locally boolean combinations of subsets deÞned by inequalities|f | ◃▹ λ|g|
with f , g in K [V ] andλ ∈ R$ 0, where◃▹∈ {<, >, ≤,≥}, have only a Þnite number of
connected components, each of them semi-algebraic.

Another statement with an o-minimal ßavour us the following. LetX be a compact
analytic space and letf be an analytic function onX . For everyε ≥ 0, let X ε denote
the set of pointsx in X such that|f (x)| ≥ ε. According to Abbes and Saito under the
assumption thatf is invertible [1] and to Poineau in general [43], there is a Þnite partition of
R$ 0 into intervals such that on each of these intervals the natural mapπ0(X ε′ ) → π0(X ε)
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is a bijection whenever ε ≤ ε′.

4.5. Statement of results. The results recalled in 4.4 provide rather strong evidence that
there should exist general tameness results for the topology of non-archimedean spaces,
quite analogous to the ones available in the o-minimal world. In the paper [31], we prove the
following general statements on the topology of analytifications of algebraic varieties:

Theorem 4.6. Let K be an ultrametric1field. Let V be a quasi-projective variety over K
and let X be a semi-algebraic subset of V an .

(1) There exists a strong homotopy retraction h : [0, 1]× X → X onto a closed subset of
X which is homeomorphic to a compact finite polyhedral complex.

(2) The space X is locally contractible (one may drop the assumption V quasi-projective
here).

(3) Let f : V → W be a morphism of algebraic varieties over K . Then the set of
homotopy types of fibers of the map f an |X : X → W an is finite.

(4) Let f : V → A1
K a morphism. For every ε ≥ 0, let X ! denote the set of points x in

X such that |f (x)| ≥ 0. Then there exists a finite partition of R≥0 into intervals such
that the natural map X ! ! ↪→ X ! is a homotopy equivalence whenever ε ≤ ε′ belong
to the same interval.

4.7. Model-theoretic preliminaries. We shall deal with a complete theory T having quan-
tifier elimination and work in a fixed universe U, by which we mean a large very saturated
and homogeneous model. All models M (and parameter sets A) we shall consider will be
small substructures (resp. subsets) of U.

If A is a small subset of U, the definable closure dcl(A) is the set of all elements c in U
such that there exists a formula ϕ(x) with one free variable and parameters in A such that
c is the only element of U such that ϕ(c) holds. If X is a C-definable set and C ⊂ A , we
write X (A) for X (U) ∩ dcl(A).

A basic notion we shall use is that of a definable type. Let assume for simplicity of
notation that there is only one sort. Let B be a set of parameters. Let c = ( c1, á á á, cn ) be
a finite tuple of elements of U. The set of all B -formulas satisfied by c in some model of
T containing the ci ’s is denoted by tp( c/B ) and called the type of c over B . Such a set
of formulas is called an n-type over B . In the special case where all ci ’s already belong to
B one says the type is realized (over B ). Let A ⊂ M . We say an n-type p over M is A-
definable if for every formula ϕ(x1, á á á, xn , y1, á á á, ym ) without parameters, there exists
a formula ϕp(y1, á á á, ym ) with parameters in A , such that for any (b1, á á á, bm ) in M m ,
ϕ(x1, á á á, xn , b1, á á á, bm ) belongs to p if and only if ϕp(b1, á á á, bm ) holds in M . The
mapping ϕ '→ ϕp is called a defining scheme for p. If p is such an A-definable type over M ,
for any model M ′ containing M one can extend p to an A-definable type over M ′, by using
the same defining scheme. Thus, we will not care about a specific M anymore when dealing
A-definable types. Note that a realized type over A is always A-definable. These definitions
extend naturally to many-sorted languages.

Let X be a C-definable set with C ⊂ A . We say that an A-definable type p is on
X if the formula expressing that x ∈ X belongs to the type p. We denote by SX,def (A)
the set of A-definable types on X and set SX,def = ∪A SX,def (A). Any C-definable map

1In fact the completeness hypothesis on K plays no role here.
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f : X ! Y betweenC-deÞnable sets induces a natural push-forward maps

f ! : SX,def (A) ! SY,def (A) andf ! : SX,def ! SY,def .

4.8. The language.Classically, to study valued Þelds one considers a 3-sorted language
L k,Γ (or one of its variants) with sortsVF, Γ andk for the valued Þeld, value group and
residue Þeld sorts, with respectively the ring, ordered abelian group and ring language, and
additional symbols for the valuationval and the mapRes : VF2 ! k sending(x, y) to the
residue ofxy" 1 if val(x) " val(y) andy #= 0 and to0 otherwise. We considerACVF ,
the theory of algebraically closed Þelds with non trivial valuation such thatval is surjective
in this language. This theory become complete once the characteristic of the valued Þeld
and of its residue Þeld are both Þxed. It is a classical result of A. Robinson thatACVF
admits quantiÞer elimination. Note that this result has already nice consequences in non-
archimedean geometry. For instance in the paper of Ducros [23] it is used to give an alternate
proof of the Bieri-Groves theorem [5].

We shall use an expansionLG of this language introduced by Haskell, Hrushovski and
Macpherson in [27]. It has additional sortsSn and Tn for n " 1, coding respectively
n-dimensional lattices over the valuation ring, and elements in the reduction modulo the
maximal ideal of such lattices. The main result of [27] is thatACVF has elimination of
imaginaries in the languageLG (which was not the case in the original languageL k,Γ). A
theoryT is said to have elimination of imaginaries in a given language if all quotients of
deÞnable sets by deÞnable equivalence relations are representable by deÞnable sets. It is
also proved in [27] thatACVF still has elimination of quantiÞers inLG .

One should note that expanding the language fromL k,Γ to LG does not create new de-
Þnable sets in the sortsVF, Γ andk. If V is an algebraic variety over a valued Þeld, we
may deÞne deÞnable subsets ofV by requiring that their intersection with any affine open is
a deÞnable set.

Given a valued ÞeldF , a in F andα in val(F ), resp. α in val(F # ), one denotes by
B (a,α) andB o(a,α) respectively the closed and open ball of centera and valuative ra-
diusα. They are deÞnable sets deÞned respectively by the formulasval(x $ a) " α and
val(x $ a) > α. If B is a ball deÞned over a modelK of ACVF , the type expressing that
x % B andx /% B $ for everyK -deÞnable ballB $ strictly contained inB is aK -deÞnable
type, called the generic type ofB , and denoted bypB .

Remark 4.9. Note that the set of all closed balls forK running over all models ofACVF
(contained inU) is deÞnable inLG (without parameters). Indeed, it suffices to prove that
the set of all closed balls of Þnite valuative radius is deÞnable inLG , and this follows
from the following observation: givena, a$ in K and b, b$ in K # , the ballsB (a, val(b))
andB (a$, val(b$)) are equal if and only if the two-dimensionalOK -lattices generated by
((b,0), (a, b)) and by((b$, 0), (a$, b$)) are equal. More precisely, there exists a deÞnable set
D in LG such that for anyA & U, D (A) is in natural bijection with the set ofA-deÞnable
closed balls.

4.10. Stably dominated types.In [28], Haskell, Hrushovski and Macpherson introduced
within a general model-theoretic framework the notion of stably dominated types. Roughly
speaking, a stably dominated type is a deÞnable type which is Òcontrolled by its stable partÓ.
In ACVF , stable domination is equivalent to being orthogonal toΓ in the following sense.
Let X be aC-deÞnable set and letp %SX,def (A), for C & A. We shall say thatp is orthog-
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onal to Γ if for every model M of ACVF containing A, every tuple c such that p = tp(c/M),
and every M -definable map f : X → Γ∞, f(c) ∈ val(M). We denote by X̂(A) the set of
A-definable types on X that are orthogonal to Γ and by X̂ the union of all the sets X̂(A),
for A ⊂ U. We call X̂ the stable completion of X .

Examples 4.11.

1. Realized types are stably dominated, i.e. for any definable set X there is a natural
inclusion ι : X → X̂ .

2. A type over Γn
∞ is stably dominated if and only it is realized, i.e. ι : Γn

∞ → Γ̂n
∞ is a

bijection.

3. The generic type of a ball is stably dominated if and only if the ball is closed.

It follows from Remark 4.9 and Example 4.11 (3) that, given a valued field F , there is a
natural bijection ϑ between Â1

F and a definable set D, inducing, for any A ⊂ U, a bijection
between Â1

F (A) and D(A). This is a special case of Theorem 4.14, but before going any
further, we should introduce the notion of a pro-definable set. One defines the category
ProDefC of pro-definable sets over C as the category of pro-objects in the category of C-
definable sets indexed by a small directed partially ordered set. Thus, if X = (Xi)i∈I and
Y = (Yj)i∈J are two such pro-objects

HomProDefC (X,Y ) = lim←−
j

lim−→
i

HomDefC (Xi, Yj).

Elements of HomProDefC (X,Y ) will be called C-pro-definable morphisms between X and
Y . By a result of Kamensky [33], the functor of “taking U-points” induces an equivalence of
categories between the category ProDefC and the sub-category of the category of sets whose
objects and morphisms are inverse limits of U-points of definable sets indexed by a small
directed partially ordered set. By pro-definable, we mean pro-definable over some C. We
shall thus freely identify a pro-definable set X = (Xi)i∈I with the set X(U) = lim←−i

Xi(U).
For any set B with C ⊂ B ⊂ U, we set X(B) = X(U) ∩ dcl(B) = lim←−i

Xi(B).

Definition 4.12. Let X be a pro-definable set.

(1) X is called strict pro-definable if it can be written as a pro-definable set with surjective
transition morphisms.

(2) X is called iso-definable if it is in pro-definable bijection with a definable set.

(3) Y ⊂ X is called relatively definable if there exists i ∈ I and a definable subset W of
Xi such that Y = π−1

i (W ), with πi the canonical projection X → Xi.

Theorem 4.13. Let X be a B-definable set. Then X̂ may be canonically endowed with the
structure of a strict B-pro-definable set. In particular, there exists a strict B-pro-definable
set E such that for any B ⊂ A, there is a canonical identification X̂(A) = D(A).

For curves we have the following stronger statement:

Theorem 4.14. Let C be an algebraic curve over a valued field K and let X be a definable
subset of C. Then X̂ is iso-definable.
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For C = P̂1 the result follows from the description of Â1 in terms of closed balls given
above. The proof in the general case uses Riemann-Roch and Theorem 4.13.

Remark 4.15. The previous statement is optimal since one can show that, for X a definable
subset of Kn , X̂ is iso-definable if and only the dimension of the Zariski closure of X is
! 1.

Lemma-DeÞnition 4.16. Let f : X " Y be a map between B-definable sets. Then the
map f! : SX,def " SY,def restricts to a B-pro-definable map f̂ : X̂ " Ŷ . In this way we
have a functor from the category of B-definable sets to the category of B-pro-definable sets.

Let X be a definable subset. If Y is a definable subset of X , then Ŷ is a relatively
definable subset of X̂ . The set of realized types in X̂ , which can be identified with X(U) is
iso-definable and relatively definable in X̂ . Its points are called simple points of X̂ .

4.17. V̂ as a topological space.We endow Ân with the coarsest topology such that for
every polynomial F # U[x1, á á á, xn ], the map !val $F : Ân " ! " is continuous, where
the topology on ! " is the order topology. For any definable subset X of An , we endow X̂
with the induced topology. If V is an algebraic variety over a valued field K, we define the
topology on V̂ by gluing: it is the unique topology inducing the previous topology on Û for
U an a! ne open in V . If X is a definable subset of V , we endow the relatively definable
subset X̂ with the induced topology.

We have the following basic properties:

Proposition 4.18. LetV be an algebraic variety deÞned over a valued ÞeldK. Then:

(1) The topology on̂V is pro-deÞnable in the following sense: there exists a small set
I, and for eachi # I, a K-deÞnable familyUi = (Ui,b )b# U of relatively deÞnable
subsets of̂V , such that the setsUi,b , for b # U andi # I generate the topology on̂V .

(2) The topology on̂V is Hausdor! .

(3) The subset of simple points is dense inV̂ .

(4) The induced topology on the set of simple points is the valuation topology.

In general, we shall call pro-definable sets with a pro-definable topology, pro-definable
spaces.

More generally, consider the map ! : V %Am " V %! m
" which is the identity on the

V factor and val on the remaining ones. It induces a map !̂ : !V %Am " !V %! m
" and we

endow !V %! m
" with the direct image topology, making it a pro-definable space. One shows

that the canonical map !V %! m
" " V̂ %!̂ m

" = V̂ %! m
" is an homeomorphism.

4.19. DeÞnable compactness.The usual notion of compactness is not well suited to the
present setting as shown by the following example. Let K be a valued field with val(K$ )=Q.
Fix " # val(U$ ) such that 0 < " < # for every positive # in Q. Let C be set defined by the
formula 0 ! val(x) ! 1. For # # Q & [0, 1] let U! be defined by # ' " < val(x) < # + " .
The family of open sets Û! is a cover of Ĉ with no finite subcover.

To remidy this we shall introduce the notion of definable compactness for pro-definable
spaces. Let us note that the definition we gave of a definable type still makes sense on
pro-definable set.
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DeÞnition 4.20. Let X be a pro-deÞnable space.

(1) Let p be a deÞnable type onX . We saya ! X is a limit of p if for every relatively
deÞnable neighborhoodW of a, the formula expressingx ! W belongs top.

(2) We sayX is deÞnably compact if every deÞnable type onX has a limit.

Note that ifX is Hausdor! , limits are unique when they exist.
Let V be a closed subvariety ofAm . A subsetX " V is said to be bounded inV if

it is contained in a product of closed balls. For an arbitrary varietyV , a deÞnable subset
X " V is said to be bounded, if one may writeV = #n

i =1 Vi with Vi open and a" ne and
X = #n

i =1 X i , with X i bounded inVi . A subset ofV $ ! m
! will be said to be bounded if

its preimage inV $ Am is. Finally, a pro-deÞnable subsetX " !V $ ! m
! will be said to be

bounded if there exists a bounded deÞnable subsetW of V $ ! m
! such thatX " "W .

Theorem 4.21. Let X be a pro-deÞnable subset of!V $ ! m
! . ThenX is deÞnably compact

if and only if it is closed and bounded.

Corollary 4.22. A varietyV over a valued Þeld is complete if and only if!V is deÞnably
compact.

4.23. ! -internality. We shall now deÞne an important class of subsets of!V $ ! m
! which

Òlook like o-minimal setsÓ.

DeÞnition 4.24.A subsetZ of !V $ ! m
! is said to be! -internal if it is iso-deÞnable and there

is a deÞnable subsetD of some! n
! and a surjective pro-deÞnable mapD % Z .

The iso-deÞnability condition is crucial here, and cannot be replaced by just requiring
pro-deÞnability. This deÞnition is purely deÞnable and does not say anything a priori about
the topology ofZ . The following embedding result shows that being! -internal imposes
strong restrictions on the topology:

Theorem 4.25. Let Z be a ! -internal subset of!V $ ! m
! . Then there exists an injective

continuous deÞnable mapf : Z ↪% ! n
! for somen. If Z is deÞnably compact, such anf is

an homeomorphism.

If V andZ are deÞned over some set of parametersA, one cannot in general expect such
an f to be deÞned, because it should be respect the Galois action. However the following
holds:

Proposition 4.26.AssumeV andZ are deÞned over some set of parametersA in theVF and
! sorts. Then there exists a ÞniteA-deÞnable setw and an injective continuousA-deÞnable
mapf : Z ↪% ! w

! .

4.27. Paths and deÞnable connectedness.The mapping[0,∞] % "P1 sendingt to the
generic type of the ballB (0, t) may be seen as a path connecting0 and the generic typepO
of the closed unit ball. Similarly the mapping[0,∞] % "P1 sendingt to the generic type of
the ballB (1, t) connects1 andpO. By composing these paths one connects the point0 and
1. However a technical issue occurs here. Since multiplication is not part of the structure
! ! , there is no way to identify the space obtained by gluing two copies of[0,∞] at 0 with
an interval. We are thus led to consider generalized intervals, that is spaces obtained by
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concatening a Þnite number of closed intevals in! ! either with the order from! ! or with
the reverse order.

We denote byI = [ i I , eI ] such a generalized interval. A path! : I ! !V " ! m
! is a

continuous (pro)-deÞnable map.
Let V be an algebraic variety over some valued Þeld. We say a strict pro-deÞnable subset

Z of !V is deÞnably connected if it contains no clopen strict pro-deÞnable subsets other than
# andZ . We say thatZ is deÞnably path connected if for any two pointsa andbof Z there
exists a deÞnable path inZ connectinga andb. Clearly deÞnable path connectedness implies
deÞnable connectedness. WhenV is quasi-projective andZ = !X with X a deÞnable subset
of V , the reverse implication will eventually follow from Theorem 4.32.

We have the following GAGA type theorem:

Theorem 4.28. Let V be an algebraic variety over some valued Þeld. Then!V is deÞnably
connected if and only ifV is geometrically connected.

4.29. Strong retractions for curves. Let I = [ i I , eI ] be a generalized interval. A contin-
uous pro-deÞnable mapH : I " !X ! !Y is called a deÞnable homotopy between the maps
Hi = H|{ i I } " !X andHe = H|{ eI } " !X , viewed as maps!X ! !Y . A deÞnable homotopy

H : I " !X ! !X is called a strong deformation retraction onto the set" $ !X if H i = Id !X ,
H (t, x ) = x for everyt %I and everyx %" andHe( !X ) = " .

There is a canonical strong deformation retraction of"P1 onto the pointpO which is
described as follows. Using the two standards a! ne charts, one may write each point of"P1

aspB (a, ! ) with a %P1(U) and" & 0. The homotopy is given by takingI = [ ! , 0] (thus
i I = ! andeI = 0 ) and setting# (t, pB (a, ! ) ) = pB (a,min( t, ! )) .

More generally, given any Þnite subsetD in P1(U), letCD be the image ofI " (D ' pO )
under# . The setCD is a closed! -internal subset of"P1. Set! (a)=max { t %I ; # (t, a) %CD} .
Then#D : I " "P1 ! "P1 sending(t, a) to # (max(! (a), t), a) is a strong deformation retrac-
tion of "P1 ontoCD .

Theorem 4.30. Let C be an algebraic curve over a valued ÞeldK . There exists a strong
deformation retraction, deÞned overK , H : [0, ! ] " !C ! !C onto a! -internal subset of!C.

Let us sketch the proof. A standard outward path on"A1 at x = pB (a, ! ) is given by
t (! pB (a,t ) for t %($, " ] for some$ < " . Now if g : C ! A1 is Þnite, withC a curve,
by an outward path starting atx % !C, we mean a continuous deÞnable lifting of a standard
outward path starting atg(x). One proves that for anyx % !C there exists at least one outward
path starting atx and one says thatx is branching if there is more than one outward path
starting atx. A key lemma states that the number of such branching points is Þnite. For the
proof of the theorem we may assumeC is projective and considerf : C ! P1 Þnite and
generically Žtale. One considers a Þnite setD $ P1, deÞned overK , such thatf is Žtale
above the complement ofD andCD contains all the branching points, with respect to the
restriction ofg over both standards a! ne charts. One concludes the proof by showing that
#D lifts to the strong deformation retraction we are looking for.

4.31. The main theorem. We may now state the main result from [31]:
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Theorem 4.32. Let K be a valued Þeld andA = ( K, G ) with G a subset of! containing
val(K ). Let V a quasi-projective variety deÞned overK , X an A-deÞnable subset ofV .
Assume given Þnitely manyA-deÞnable functions! i : X → ! ∞ and an action of a Þnite
algebraic group overK onV leavingX globally invariant. Then there exists anA-deÞnable
strong deformationH : I × X̂ → X̂ onto a! -internal subset" of X̂ such that:

(1) The set" embeds homeomorphically into! w
∞ for some ÞniteA-deÞnable set.

(2) H respects the functions! i and is equivariant with respect to the group action.

The structure of the proof goes as follows. One uses induction on the dimension of V .
One start by reducing to the case where X = V is projective equidimensional. One fixes
an hypersurface D0 ⊂ V containing the singular locus of V and such that there exists an
equivariant étale morphism V \ D0 → An. Some further geometric considerations allow to
reduce to the case when there is a morphism u : V → U = Pn−1, whose restriction to D0

is finite, and a Zariski dense open subset U0 of U such that, setting V0 = u−1(U0), u|V0

factorizes as q ◦ f with f : V0 → E0 = U0 × P1 a finite morphism and q : E0 → U0 the
projection.

Over U0 the situation is that of a relative curve. Performing the curve construction in this
relative setting provides a strong deformation retraction

H curves : [0,∞] × V̂0 ∪ D0 −→ V̂0 ∪ D0

fixing pointwise D̂0 and with image a relatively ! -internal set " curves. By using the induc-
tion hypothesis (note that even if one starts with V without group action and no ! i’s, they
are needed at this stage of this induction), one constructs a definable homotopy I × Û → Û
whose restriction lifts to a strong deformation retraction

H base : I × " curves −→ " curves.

A third homotopy, which we call “inflation” is used to get out of of the complement of
V̂0 ∪ D0. On Ân one may consider the standard homotopy given by “increasing the polyra-
dius”. Using an appopriate stopping time function one gets another homotopy which we may
lift, via the étale map V \ D0 → An, to an homotopy

H inf : [0,∞] × V̂ −→ V̂0 ∪ D0

fixing pointwise D̂0.
After composing these three homotopies, one gets an homotopy H ′ : I ′ × V̂ → V̂ that

almost does the job, except that because of the use of inflation, we cannot insure that the
points of the image of H ′ are all kept pointwise fixed by H ′ for all time values. To remedy
this issue, we have to construct a fourth homotopy, H! whose construction lies purely in
the tropical ! -internal world, so that the composition H = H! ◦ H ′ finally satisfies the
conclusion of the theorem.

4.33. Back to Berkovich spaces.A type p = tp( c/A ) is said to be almost orthogonal to !
is ! (Ac) = ! (A).

Let F be a valued field with val(F×) ⊂ R. We consider the structure F = ( F, R), where
R belongs to the ! -sort. Let V be a variety defined over F and X an F-definable subset of
V .



74 François Loeser

One defines BX (F) as the set of types over F lying on X and almost orthogonal to ! .
Similarly as for the Berkovich analytification and the stable completion, one endows BX (F)
with a topology coming from the topology on R. When F is complete, BV (F) and V an are
canonically homeomorphic.

By a result of Kaplansky, there exists a unique field Fmax , up to F-automorphism, which
is a maximally complete algebraically closed non trivially valued field containing F , and has
value group R and residue field the algebraic closure of the residue field of F .

The following proposition provides the link allowing to deduce the results about Berkovich
spaces stated in Theorem 4.6 from Theorem 4.32 and its relative variants.

Proposition 4.34. Let X be anF-deÞnable subset of someF -variety. Restriction of types
induces a continuous, surjective and closed map! : !X(Fmax ) ! BX (F).

(1) Let f : !X ! !Y be a continuousF-pro-deÞnable map, withY an F-deÞnable subset
of someF -variety. Then there exists a unique continuous map÷f : BX (F) ! BY (F)
such that! " f = ÷f " ! .

(2) LetH : I # !X ! !X be a deÞnable strong deformation retraction. Then÷H : I(R! ) #
BX (F) ! BX (F) is a strong deformation retraction.

(3) BX (F) is compact if and only if!X is deÞnably compact.
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