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1. Introduction

After the groundbreaking work of Ax-Kochen [2] and ErSov [25] in the sixties and of Denef
[16] in the eighties, a wide array of applications of model theory of valued fields is now
flourishing, ranging over topics as diverse as counting subgroups, the Langlands program
and singularity theory. In all these applications the concept of definability in first order logic
is central. In this survey, we shall focus on three such applications, each using the notion of
definability in the context of valued fields in an essential way.

We start by presenting several transfer theorems for p-adic integrals. Such results al-
low to transfer statements over Q,, to statements over F,((t)) and vice versa. A first result,
obtained in collaboration with R. Cluckers deals with identities between integrals with pa-
rameters. In work with R. Cluckers and T. Hales it was shown how it can used for the
integrals occuring in the fundamental lemma. We shall also present more recent results
obtained by R. Cluckers, J. Gordon and I. Halupczok on transfering local integrability or
uniform boundedeness statements and some of their applications to p-adic harmonic anal-
ysis. In the next section, we shall explain how by working in a definable setting one can
deduce global bounds from local bounds on differentials, despite the totally disconnected
nature of non-archimedean valued fields and present some diophantine applications. This is
recent joint work with R. Cluckers and G. Comte. The last section is about the topology of
non-archimedean spaces. We shall present our work with E. Hrushovski on stable comple-
tion of algebraic varieties over a valued field, a model-theoretic analogue of the Berkovich
analytification. A fundamental statement is that the stable completion of an algebraic vari-
ety is pro-definable. We shall explain how using this approach one can prove new tameness
results for the topology of Berkovich spaces.

The present overview is far from being exhaustive, for instance it completely leaves out
important work of Hrushovski and Kazhdan on motivic integration [29, 30], and some of its
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recent applications [32, 35].

2. Debnability and integration

2.1. Debnable setsA languagecL is a set consisting of symbols for constants(-ary
functions), n-ary functions andn-ary relations. Basic examples are the ring language
{0,1,+,—, x,=}, the order languagd<,=}, or the ordered abelian group language
{<,0,+,—,=}.

An L-structure consists of a s&f together with interpretations for symbols4h One
requires that= is interpreted by equality id/. A subset ofM™ is said to be debnable if it
is of the form

{(a1,++ ,an) € M™ : p(a1,- - ,ay)holds}

with ¢ a Prst-order formula it with n-free variables. When the formulainvolves pa-
rameters running over somé C M, one says the subset isdebnable. A map between
A-debnable sets is said to Bedebnable if its graph is. In this way one debnes the category
Def 4 of A-dePnable sets. All these notions extend naturally to many-sorted languages.

2.2. p-adic integrals. In his breakthrough paper [16] on the rationality of the PoincarZ
series associated to theadic points on a variety, Denef proved the following general ratio-
nality result forp-adic integrals:

Theorem 2.3. Let X be a definable subset of Q) and g : X — Qy, be a bounded definable
function. Then the integral
[ lotlas]
X

Here debnability refers to the ring language with paramete@,ifor, which amounts
to the same here, any standard valued ring language, for instaneeonsidered in 4.8).
The proof relies on MacintyreOs quantiPer elimination theorem [36],for

For X a debnable subset @, denote byC, (X ) theQ-algebra generated by functions
of the form |g| andval(g) with ¢ : X — Q, debnable. In the paper [17] in which he
extended his rationality result to the setting of integrals with parameters, Denef proved the
following result about stability under integration for function<in

is a rational function of p~*.

Theorem 2.4. Let X be a definable subset of Q. Let p € Cp(X x Qp'). Assume for any
x € X, the function @, : X — p(x, ) is integrable. Then the function x — ij Oz |dA|
p

belongs to C,,(X).

In [18], Denef proved a general cell decomposition theorenQiipidebnable sets, pro-
viding direct proofs of Theorems 2.3 and 2.4 and also of MacintyreOs quantiber elimination
theorem. The natural question of uniformityiin DenefOs Theorem 2.3 has been addressed
by Pas in [39] and by Macintyre in [37]. In the paper [39] a three sorted language has been
introduced, nowadays called the Denef-Pas language In this language, there are three
sorts of variables:

¥ variables running over the valued beld for which the language is the ring language
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« variables running over the residue beld sort for which the language is the ring language

« Vvariables running over the value group sort for which the language is the language of
ordered groups.

and two additional symbolsc andval from the valued Peld sort to the residue beld and
value group sort, respectively. FQx, or k((t)) the angular component map is interpreted

as the brst non zero ciieient in thep-adic, respz-adic, expansion anchl as the valuation.

In this setting, Pas proved a cell decomposition theorem which is unifoprin39]. In
particular, this provides a new elementary proof of the following version of the classical
result of Ax-Kochen-Eov.

Theorem 2.5. Let & be a sentence (that is, a formula with no free variable) in the language
L pp. For all but finitely prime numbers p, § is satisfied in F,,(t)) if and only if it is satisfied
in Q.

2.6. Motivic integrals. In the series of papers [10] and [11] in collaboration with Raf
Cluckers we have developed a general framework for motivic integration on debnable sets
in the Denef-Pas language. More preciselyHddie a beld of characteristic zero and set

K = k((t)). We considerK as a structure for the Denef-Pas language. For any debnable
subsetS of K™ (or more generally of{™! k™! Z"), we dePne in [10] an algeb@(.S) of
Oconstructible motivic functionsO §n For such functions one debnes inductively the no-
tion of being integrable and the value of the integral, using the cell decomposition theorem
of Pas [39], and one proves an analogue of Theorem 2.4 in this context. Working in a relative
setting is essential here. One of the main advantage of working in the debPnable setting over
previous constructions as those in [19] or [20], is that there is no need anymore to consider
completions of Grothendieck rings. Also, we are able to state and prove Fubini and change
of variables theorems in full generality, and to deal with integrals with parameters. For more
detailed, though accessible, presentations of this theory, we refer to the introduction of [10]
and to the paper [12].

2.7. Transfer theorems for constructible motivic functions. Let F be a number peld
with ring of integersO. Let C» denote the collection of tripleg, 1, ), whereF' is non-
archimedean local Peld,: O " F a ring homomorphism and a uniformizer inF'. We
denote byt the residue peld of’ and bygr the cardinality ofk. For M > 0, we denote
by Co, s the subcollection of triple§F, 1, ) with F' of residue characteristis M.

Assume nowt = F, and Px a debPnable subsebf K. For someM large enough,
for any (F,1, ) in Co, as one may consider the specializatiS of S in F™ obtained by
specializing the formulas debnir§ usingt and sending to . Similarly, for M large
enough, a functiod in C(.S) may be specialized to a function & which we shall denote
by ¢ .

In [11], we prove the following:

Theorem 2.8. Let Y # C(S! K™) and @' # C(S'! K™ ). Then, there exists M > 0 such
that, for every F1 and F5 in Co ar such that kp, $ kg,
! !
(l‘lJFl)l'Id)\l = (qJIF1 )mld)\!l

Fp '
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for everyx ! Sg, if and only if
! !

(e xld' = (pxld™]
Fo'!

F
foreveryx ! Sg,.

In particular, wher- = Q, we get that, for almost ap, the identity
! !

(P xld" 1= (1 g)xld"]
Q7 b
holds for everyx ! Sq, if and only if
! !
(! Fpqy )xld” | = (e o)xld|
Fo(t)™ Fo()™

holds for everyx ! Sg (v). Note that Theorem 2.5 can be viewed as a special case of
Theorem 2.8 whem = m' = 0 andS is the debnable subsetk debned by the sentence
#.

In work with Cluckers and Hales [12] we have shown that Theorem 2.8 applies in par-
ticular to the integrals occurring in the fundamental lemma, both in the unweighted and
weighted case. This is performed by representing all the data entering into the fundamental
lemma within the general framework of identities of motivic integrals of constructible func-
tions. This provides alternative proofs of results of Waldspurger in [46] and [47] and is of
special interest in view of Ng™Os proof of the fundamental lemma over local belds of positive
characteristic [38]. One advantage of our approach is that it may be applied quite directly to
other versions of the fundamental lemma, as in [50].

Another important property of motivic constructible functions is that they satisfy strong
uniform boundedness statements, as proved by Cluckers, Gordon, Halupczok in the appendix
B of [44]:

Theorem 2.9. LetS be a debnable set and let! C(S" zZ").

(1) There exist integera andb, M, such that for ever§ in G v , if there exists a set-
theoretical functiors : Z" # R such thatj#r(s,")|r $ $(") onSg " Z", then

e (s, )Ir S o 1 onse » 20 with||" | = 1"
ven mtegersa andb, there exist , such that whether the boun
2) Gi i db, th istdvl h th hether the b d

e (s,")r $ &Pl

holds or not on the whole & " Z" depends only okg, forF in Gy u .

In the same paper they show this result may be applied to provide uniform bounds for
orbitals integrals that are used in an essential way in the paper [44].

2.10. Transfer theorems for exponential constructible motivic functions.In [11], we
extend the construction of algebras constructible motivic funcii®fg, to take in account
motivic versions of exponential functions, by constructing the alg€bta(S) of exponen-
tial constructible motivic functions o8 for any debnable s&. The formalism developed
in [10] for C(S) carries over t&C**P (S).
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Given an non-archimedean béld one denotes bpr the set of additive characters on
F that are trivial on the maximal ideal and nontrivial on the valuation ring. Now, givén
C*P(S), for anyF in Co m and any charactetrin Dg, one may specialize to a function
©E,1 ON Sk.

In this setting, Theorem 2.8 may be generalized as follows:

Theorem2.11.Lety) ! C¥P(S" K™)andy' ! CP(S" K m!). Then, there existd > 0
such that, for ever§; andF;, in Co m such thake, # kg,
! !

(Yr,, )xldA] = (YR, xldX]
Fp Fr
foreveryx ! Sg, andanyd ! Dg, if and only if
! !
(Vry 1 )x|dA] = (W, xldN|
Fm Fm!

for everyx ! Sg, and anyd ! Dg,.

In the paper [13], Cluckers, Gordon, Halupczok prove the following remarkable transfer
theorem for (local) integrability and boundedness:

Theorem 2.12.LetS be a debnable subsetlof" and letp ! C**P (S). There existd! > 0
such that, for Pelds in Co m , the validity of the statement that | is (locally) integrable,
resp. (locally) bounded, forall! Dg depends only on the isomorphism claskpof

Using Theorem 2.12, Cluckers, Gordon, Halupczok have been able in [14] to transfer
Harish-ChandraOs theorems on local integrability of characters of irreducible admissible rep-
resentations of connected reductpradic groups from characteristic zero to (large) positive
characteristic. An important ingredient in their approach is the debnability of the Moy-
Prasad Plration subgroups, which they have proved in a number of important special cases.

3. Debnability and non-archimedean diophantine geometry

3.1. Lipschitz functions. A C-function on an interval ifR which has bounded derivative
is automatically Lipschitz continuous. It is well known that such a result cannot hold for
generalC!-functions over thep-adics sinceQ),, is total disconnectedness. However, under
some debnability conditions it is still possible to get results of this kind, as we shall explain
now.

Let K be a beld endowed with a discrete valuation for which it is complete. In this
section, by debnable we shall mean debnable in the ring landuagéth parameters i
(in this case debnable sets are also called semi-algebraic sets), or in the analytic language
L&" which is obtained by adding thx a symbol for each restricted power serfesn
K{X1,...,Xm},form $ 1. Such a symbol is interpreted as the functiof % K which
is zero outsid®' and given byx & f (x) forx | Og'. In this case dePnable sets are also
called subanalytic sets.

Let X be a subset dk ™. We say a functiori : X % K is C-Lipschitz if for everyx
andyin X, |f (x)' f(y)|( C|x"' y|. We say itis locallyC-Lipschitz if for each poinkg
in X, the restriction of to some neighborhood af, is C-Lipschitz.

In the paper [7] with Cluckers and Comte we prove the following:
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Theorem 3.2. Let X be a definable subset of Qg‘ and letf : X — Qp be a definable map.
Assume f is locally C-Lipschitz. Then there exists a finite partition of X into definable sets
Xi and C' such that the restriction of f to each X; is C'-Lipschitz.

This statement is @-adic analogue of a theorem of Kurdyka for real subanalytic sets
[34]. In [9] Cluckers and Halupczok proved that it is in fact always possible toGike C.

3.3. A p-adic analogue of the Yomdin-Gromov lemma. A very eficient tool in diophan-

tine geometry is the so-called determinant method which was developed by Bombieri and
Pila in the inBuential paper [6] about the number of integral points of bounded height on
affine algebraic and transcendental plane curves. Basically, the method consists in using a
determinant of a suitable set of monomials evaluated at the integral points, in order to con-
struct a family of auxiliary polynomials vanishing at all integral points on the curve within

a small enough box. Building on the estimates in [6] for algebraic curves, Pila proved in
[40] bounds on the number of integral (resp. rational) points of bounded heighfine a
(resp. projective) algebraic varieties of any dimension, improving on previous results by S.
D. Cohen using the large sieve method [15].

In [41], Pila and Wilkie proved a general estimate for the number of rational points on
the transcendental part of sets debPnable in an o-minimal structure; this has been used in a
spectacular way by Pila to provide an unconditional proof of some cases of the AndrZ-Oort
Conjecture [42]. Lying at the heart of Pila and WilkieOs approach is the possibility of having
uniform - in terms of number of parametrizations and in terms of bounds on the partial
derivatives -CK-parametrizations. These parametrizations are provided by an o-minimal
version of GromovOs algebraic parametrization Lemma [26], itself a rebnement of a previous
result of Yomdin [48],[49]. SuctCk-parametrizations enter the determinant method via
Taylor approximation.

In the work [8] with Cluckers and Comte we provide a version of the Yomdin-Gromov
lemma and the Pila-Wilkie theorem valid ov@p. At brst sight one may have doubts such
a statement could exist, since there seem there is no way for a global Taylor formula to
make sense in this framework. However Theorem 3.2 which provides a version of brst-order
Taylor approximation, piecewise globally, in the dePnakkadic setting is an encouraging
sign. In [8], instead of generalizing this result to higher order, we show directly the existence
of uniform CX-parametrizations that do satisfy Taylor approximation, which is enough for
our purpose.

Our p-adic analogue of the Yomdin-Gromov lemma is the following statement:

Theorem 3.4. Letn > O, m > Oandr > O be integers and let X C ZB be a sub-
analytic set of dimension M. Then there exists a finite collection of subanalytic functions
g : Pi C Z7 — X such that the union of the @ (Pi) equals X, the g have C" norm
bounded by 1, and the §; may be approximated by Taylor polynomials of degree r — 1 with
remainder of order 1, globally on P;.

For the precise debnition of tH&' norm and of approximation by Taylor polynomials
of certain degree and with certain error we refer to [8].

3.5. A p-adic analogue of the Pila-Wilkie theorem. For X a subset ofQp andT > 1a

real number, writ&X (Q, T) for the set consisting of poin{s1, ad ax,) in X NQ" such that

one can writex; asa;/b;j wherea; andh # 0 are integers withaj|[r < T and|h|r < T.
For X a subset ofQ?, write X 29 for the subset oK consisting of pointx such that
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there exists an algebraic cure! Agp such thatC(Q,) " X is locally atx of dimension
1
We prove in [8] the followingp-adic analogue of the Pila-Wilkie theorem:

Theorem 3.6. Let X ! Qp be a subanalytic set of dimension withm < n. Let
I > 0 be given. Then there exist an integér= C(!,X) > 0 and a semialgebraic set
W = W(!,X)! QpsuchthaW " X lies insideX alg and such that for eachi, one has

#(X \ W)(Q,T) # CT=.

3.7. Results overC[t]. In the paper [8] we also obtain results whikn = C((t)). For
instance a version of Theorem 3.2 still holds o@t) (with C' = C), if one replaces Oa
Pnite partition oiX O by Oa partition parametrized®y for somer O. For this to make sense
one has to enlarge the language to have (higher) angular components maps ~ la Denef-Pas,
see [8] for more details. Similarly, a version of Theorem 3.4 @4gr) is also proved in [8].
We end this section by stating a diophantine application of this result.

For each positive integar one denotes b[t]., the set of complex polynomials of
degree< r . WhenA is a subset o€((t)", one denotes b#, the setA " (C[t]«, )" and by
n; (A) the dimension of the Zariski closure Af in (C[t]«, )" $ C™.

Let X be an algebraic subvariety Af&m of dimensionm. One can prove that for any
r> 0,n,(X)# rm. WhenX is linear this OtrivialO estimate is the best possible. However,
we prove in [8] that as soon & has degred % 2, the following non-trivial bound holds:

Theorem 3.8. Let X be an irreducible subvariety oAg, of dimensionm and degree
d % 2. Then, for every positive integer one has
[
ne(X) # r(mé& 1)+ % .
This result is a geometric analogue of a result of Pila in [40] on the number of integral
(resp. rational) poin}s of bounded height dnree (resp. projective) algebraic varieties of
any dimension. PilaOs proof proceeds by reducing to the case of curves which was considered

by Bombieri and Pila in [6].

4. Debnability and topology

In this section we present a model-theoretic approach to proving topological tameness prop-
erties in non-archimedean geometry which we developed in collaboration with Ehud Hru-
shovski [31].

4.1. o-minimality. It is by now quite well known that o-minimal geometry provides an

el cient framework for the study of topology arising from an ordered structure, in particular
in the context of ordered Pelds. Let us recall that an inPnite strublurghich is totally
ordered by a binary relation is said to be o-minimal if every debnable subXet M,

with parameters itM , is a Pnite union of intervals and points. Sets debnable in a o-minimal
structure have nice topological properties. For instance, for o-minimal expansions of the peld
R of real numbers, and ' N, debnable subsets B" have a bPnite number of connected
components which furthermore are debnable, they are locally contractible and triangulable;
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in particular they have the homotopy type of a bnite simplicial complex. Classical examples
of subsets oR" debnable in a o-minimal structure include semi-algebraic sets, subanalytic
sets, or sets debnable in the language of ordered rings with an exponential function. Another
class of examples of o-minimal structures, playing an important role in our work, is provided
by divisible ordered abelian groups In this last setting debPnable subset$ bfessentially
correspond to piecewise linear sets. An important feature of this model-theoretic framework
for tameness is that it is particularly well adapted to proving uniformity statements for the
topology of debnable sets varying in debnable families, for instance pniteness of homotopy
types occuring in a given such family.

4.2. Valued belds.By a valued beld we mean a bédd, together with a surjective mul-
tiplicative mapval : K' — !, with! = (!,0,+,<) an ordered abelian group such that
val(x + y) > min(val(x), val(y)). We extendval to a mapval : K — !+ | with!. the
disjoint union of! with a distinguished elemenb which is larger than any element bf
and absorbing for the addition. We shall denotely the valuation ring oK and by My

the maximal ideal oK .

4.3. Berkovich spaces.Let K be a valued Peld such thiatis a subgroup ofR, +) . Then
X — |x| = € v2IX) dePnes an absolute vallig| : K — Rg (. One sayX is ultrametric if
it is complete for this norm.

In [3], Berkovich introduced a general notion of analytic spaces over an ultrametric beld
K . In particular, for any algebraic variety overK one may consider its Berkovich analyti-
pcationVa". In caseV is afine with ring of regular functionk [V], let us debPn& 2" as a
topological space. As a s¥t?" is the set of multiplicative seminorms ¢0[V] extending
the absolute value o . There is a natural embeddivg®” < RX V] and one endows "
with the topology induced by the product topology®f V1. For an arbitrary algebraic va-
riety V overK , one debne¥ 2" by glueing. This construction is functorial: any morphism
of algebraic varietyf : V — W gives rise to a morphish?” : V& — W2a" Note that
V (K) may be naturally identibed with a subset\6f". WhenV is afine, this is done by
assigning to a poirain V (K) the seminornf — |f (a)].

4.4. Some previously known topological properties of Berkovich spacesAlready in [3]
Berkovich proved that general analytic spaces (including analytibcations of algebraic vari-
eties) have excellent general topological properties, in particular they are locally compact
and locally path-connected.

More recently, in his paper [4], Berkovich proved that the general Pbre of any polystable
formal scheme admits a strong deformation retraction to a bnite polyhedron, and using de
JongOs results on alterations he deduced that any smooth analytic space is locally contractible.

On the other hand, Ducros proved in [21] that semi-algebraic subs€é®'of.e. subsets
which are Zariski locally boolean combinations of subsets dePned by inequidljtiesi|g|
with f, gin K[V] and X € Rg(, wherexe {<,>, <,>}, have only a bnite number of
connected components, each of them semi-algebraic.

Another statement with an o-minimal Bavour us the following. Ketbe a compact
analytic space and Idt be an analytic function oX . For everye > 0, let X. denote
the set of points< in X such that|f (x)| > . According to Abbes and Saito under the
assumption thdt is invertible [1] and to Poineau in general [43], there is a Pnite partition of
Rg o into intervals such that on each of these intervals the naturalag@p..) — mo(X.)



Definability in non-archimedean geometry 67

is a bijection whenever € < ¢’

4.5. Statement of results. The results recalled in 4.4 provide rather strong evidence that
there should exist general tameness results for the topology of non-archimedean spaces,
quite analogous to the ones available in the o-minimal world. In the paper [31], we prove the
following general statements on the topology of analytifications of algebraic varieties:

Theorem 4.6. Let K be an ultrametriclfield. Let V' be a quasi-projective variety over K
and let X be a semi-algebraic subset of V3" .

(1) There exists a strong homotopy retraction h : [0,1] x X — X onto a closed subset of
X which is homeomorphic to a compact finite polyhedral complex.

(2) The space X is locally contractible (one may drop the assumption I quasi-projective
here).

(3) Letf : V — W be a morphism of algebraic varieties over K. Then the set of
homotopy types of fibers of the map f 3" |x : X — W2 s finite.

@) Letf :V — A& a morphism. For every € > 0, let X, denote the set of points X in
X such that |t (X)| > O. Then there exists a finite partition of R>g into intervals such
that the natural map X, — X, is a homotopy equivalence whenever ¢ < &’ belong
to the same interval.

4.7. Model-theoretic preliminaries. We shall deal with a complete theory T having quan-
tifier elimination and work in a fixed universe U, by which we mean a large very saturated
and homogeneous model. All models M (and parameter sets A) we shall consider will be
small substructures (resp. subsets) of U.

If A is a small subset of U, the definable closure dcl(A) is the set of all elements € in U
such that there exists a formula ¢(X) with one free variable and parameters in A such that
C is the only element of U such that ¢(C) holds. If X is a C-definable set and C C A, we
write X (A) for X (U) Ndcl(A).

A basic notion we shall use is that of a definable type. Let assume for simplicity of
notation that there is only one sort. Let B be a set of parameters. Let ¢ = (¢, adac,) be
a finite tuple of elements of U. The set of all B -formulas satisfied by € in some model of
T containing the ¢;’s is denoted by tp(c/B ) and called the type of ¢ over B. Such a set
of formulas is called an n-type over B. In the special case where all ¢;’s already belong to
B one says the type is realized (over B). Let A C M. We say an n-type p over M is A-
definable if for every formula o(X1, 488Xy, Y1, a44yn) without parameters, there exists
a formula p(y1, 84 8ym) with parameters in A, such that for any (b;,488b,) in M ™,
o(X1,a88xn, b, 84 8by) belongs to p if and only if ¢p(bi, 48 8by) holds in M. The
mapping ¢ > ¢y is called a defining scheme for p. If p is such an A-definable type over M,
for any model M’ containing M one can extend p to an A-definable type over M, by using
the same defining scheme. Thus, we will not care about a specific M anymore when dealing
A-definable types. Note that a realized type over A is always A-definable. These definitions
extend naturally to many-sorted languages.

Let X be a C-definable set with C C A. We say that an A-definable type p is on
X if the formula expressing that X € X belongs to the type p. We denote by Sx ger (A)
the set of A-definable types on X and set Sx gqet = Ua Sx det (A). Any C-definable map

In fact the completeness hypothesis on K plays no role here.
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f : X ! Y betweernC-debnable sets induces a natural push-forward maps
fi o Sxdet (A)! Syder (A) andf, @ Sxger ! Svgef -

4.8. The language.Classically, to study valued Pelds one considers a 3-sorted language
Lk r (or one of its variants) with sortgF, I" andk for the valued Peld, value group and
residue beld sorts, with respectively the ring, ordered abelian group and ring language, and
additional symbols for the valuatioral and the magRes : VF* |k sending(x, y) to the
residue ofxy” ! if val(x) " val(y) andy # 0 and toO otherwise. We considekCVF ,

the theory of algebraically closed Pelds with non trivial valuation suchvhlas surjective

in this language. This theory become complete once the characteristic of the valued beld
and of its residue peld are both bxed. It is a classical result of A. RobinsoA@h4E

admits quantiber elimination. Note that this result has already nice consequences in non-
archimedean geometry. For instance in the paper of Ducros [23] it is used to give an alternate
proof of the Bieri-Groves theorem [5].

We shall use an expansidry of this language introduced by Haskell, Hrushovski and
Macpherson in [27]. It has additional soi®s and T, for n " 1, coding respectively
n-dimensional lattices over the valuation ring, and elements in the reduction modulo the
maximal ideal of such lattices. The main result of [27] is tA&VF has elimination of
imaginaries in the languadeg (which was not the case in the original languager). A
theory T is said to have elimination of imaginaries in a given language if all quotients of
debnable sets by debPnable equivalence relations are representable by debnable sets. It is
also proved in [27] thaACVF still has elimination of quantibers Ing.

One should note that expanding the language ftgm to L ¢ does not create new de-
Pnable sets in the sontd~, I" andk. If V is an algebraic variety over a valued beld, we
may debne debPnable subset¥dby requiring that their intersection with anffiae open is
a debnable set.

Given a valued bel@, ain F anda in val(F), resp. « in val(F#), one denotes by
B(a,a) andB°(a, «) respectively the closed and open ball of cersteand valuative ra-
diusa. They are debnable sets debPned respectively by the formallas$ a) " « and
val(x $ a) > «. If B is a ball debned over a mod€l of ACVF, the type expressing that
X %B andx % B®for everyK -debnable balB ® strictly contained irB is aK -debnable
type, called the generic type Bf, and denoted bpg .

Remark 4.9. Note that the set of all closed balls f&r running over all models cACVF
(contained inU) is debnable i g (without parameters). Indeed, itffiges to prove that
the set of all closed balls of pnite valuative radius is dePnableginand this follows
from the following observation: given, a®in K andb, ¥ in K#, the ballsB (a, val(b))

andB (a® val(b) are equal if and only if the two-dimension@l -lattices generated by
((b,0), (a, b)) and by((k® 0), (a® b)) are equal. More precisely, there exists a dePnable set
D in Lg such that for an)A & U, D(A) is in natural bijection with the set @t-debPnable
closed balls.

4.10. Stably dominated types.In [28], Haskell, Hrushovski and Macpherson introduced
within a general model-theoretic framework the notion of stably dominated types. Roughly
speaking, a stably dominated type is a dePnable type which is Ocontrolled by its stable partO.
In ACVF, stable domination is equivalent to being orthogondr o the following sense.

Let X be aC-debnable set and Ipt%Sx qef (A), for C & A. We shall say thab is orthog-
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onal to I if for every model M of ACVF containing A, every tuple c such that tp = tp(e/M),
and every M-definable map f : X — I', f(c) € Val(M) We denote by X(A) the set of
A-definable types on X that are orthogonal to I" and by X the union of all the sets X (A),

for A C U. We call X the stable completion of X.

Examples 4.11.

1. Realized types are stably dominated, i.e. for any definable set X there is a natural
inclusion ¢ : X — X.

2. A type over I', is stably dominated if and only it is realized, i.e. ¢ : I'h — fgz isa
bijection.

3. The generic type of a ball is stably dominated if and only if the ball is closed.

It follows from Remark 4.9 and Example 4.11 (3) that, given a valued field F, there is a
natural bijection ¥ between AL and a definable set D, inducing, for any A C U, a bijection

between AL (A) and D(A). This is a special case of Theorem 4.14, but before going any
further, we should introduce the notion of a pro-definable set. One defines the category
ProDef ¢ of pro-definable sets over C' as the category of pro-objects in the category of C-
definable sets indexed by a small directed partially ordered set. Thus, if X = (X;);c; and
Y = (Y})ies are two such pro-objects

HomProDefc X Y LﬂHomDefc (XMY])

Elements of Hompyopet,. (X, Y') will be called C-pro-definable morphisms between X and
Y. By aresult of Kamensky [33], the functor of “taking U-points” induces an equivalence of
categories between the category ProDef ¢ and the sub-category of the category of sets whose
objects and morphisms are inverse limits of U-points of definable sets indexed by a small
directed partially ordered set. By pro-definable, we mean pro-definable over some C'. We
shall thus freely identify a pro-definable set X = (X );cs with the set X (U) = (h_ml X, (U)

For any set B with C C B C U, we set X(B) = X (U) Nndcl(B LX
Definition 4.12. Let X be a pro-definable set.
(1) X is called strict pro-definable if it can be written as a pro-definable set with surjective
transition morphisms.
(2) X is called iso-definable if it is in pro-definable bijection with a definable set.
(3) Y C X is called relatively definable if there exists ¢ € I and a definable subset W of
X, such that Y = mr; (W), with ; the canonical projection X — X;.

Theorem 4.13. Let X be a B-definable set. Then X may be canonically endowed with the
structure of a strict B-pro-definable set. In particular, there exists a strict B-pro-definable
set E such that for any B C A, there is a canonical identification X (A) = D(A).

For curves we have the following stronger statement:

Theorem 4.14. Let C be an algebraic curve over a valued field K and let X be a definable
subset of C. Then X is iso-definable.
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For C' = P! the result follows from the description of Al in terms of closed balls given
above. The proof in the general case uses Riemann-Roch and Theorem 4.13.

Remark 4.15. The previous statement is optimal since one can show that, for X a definable
subset of K", X is iso-definable if and only the dimension of the Zariski closure of X is
(I

Lemma-Debnition 4.16.Let f : X " Y be a map between B-definable sets. Then the
map fi : Sxdef " Svy,der restricts to a B-pro-definable map f : X " Y. In this way we
have a functor from the category of B-definable sets to the category of B-pro-definable sets.

Let X be a deﬁllable subset. If Y is a deﬁnalzle subset of X, then Y is a relatively
definable subset of X. The set of realized types in X, which can be identified with X (U) is
iso-definable and relatively definable in X. Its points are called simple points of X.

4.17.V as a topological space.We endow AN with the coarsest topology such that for
every polynomial F' # Uz, 444z ], the map val $F : AR " 1. s continuous, where
the topology on ! - is the order topology. For any definable subset X of A", we endow X
with the induced topology. If V' is an algebraic variety over a valued field K, we define the
topology on V by gluing: it is the unique topology inducing the previous topology on U for
U an a!Ane open in V. If X is a definable subset of V', we endow the relatively definable
subset X with the induced topology.
We have the following basic properties:

Proposition 4.18. Let V' be an algebraic variety debPned over a valued B¢ldrhen:

(1) The topology o/ is pro-dePnable in the following sense: there exists a small set
I, and for eachi # I, a K-debnable family/i = (Uip )pxu Of relatively debnable
subsets of/, such that the set;,, for b # U andi # I generate the topology ow.

(2) The topology oV is Hausdot .
(3) The subset of simple points is densé&’in
(4) The induced topology on the set of simple points is the valuation topology.

In general, we shall call pro-definable sets with a pro-definable topology, pro-definable
spaces.

More generally, consider the map ! : V % A™ " V %! ™ which is the identity on the
V factor and val on the remaining ones. It induces a map ™ : % AM " 14191 M and we
endow V! %! M with the direct image topology, making it a pro-definable space. One shows
that the canonical map V1 %! I " Vo%lm =V %! M isan homeomorphism.

4.19. Debnable compactnessThe usual notion of compactness is not well suited to the
present setting as shown by the following example. Let K be a valued field with val(K® ) =Q.
Fix " # val(U® ) such that 0 < " < # for every positive # in Q. Let C be set defined by the
formulaO! val(xz)! 1.For# # Q&|[0,1]let U, bedefinedby #' " < val(z) <# +".
The family of open sets l/]u\ is a cover of C' with no finite subcover.

To remidy this we shall introduce the notion of definable compactness for pro-definable
spaces. Let us note that the definition we gave of a definable type still makes sense on
pro-definable set.
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DePnition 4.20. Let X be a pro-debnable space.

(1) Letp be a debnable type 0. We saya ! X is a limit of p if for every relatively
debPnable neighborhodd! of a, the formula expressing! W belongs to.

(2) We sayX is debnably compact if every debnable typeXohas a limit.

Note that ifX is Hausdak, limits are unique when they exist.

Let V be a closed subvariety &™. A subsetX " V is said to be bounded ¥ if
it is contained in a product of closed balls. For an arbitrary vatétya debnable subset
X " V is said to be bounded, if one may write = #., V; with V; open and ane and
X = #L; Xi, with X; bounded inV;. A subset ofv $ ! " will be said to be bounded if
its preimage iV $ A™ is. Finally, a pro-dePnable subset” V $ ! ™ will be said to be
bounded if there exists a bounded debnable subsetV $ ! " such thaiX " W.

Theorem 4.21. LetX be a pro-debnable subset¥f$ ! ™. ThenX is debnably compact
if and only if it is closed and bounded.

Corollary 4.22. A varietyV over a valued beld is complete if and onlyifis debnably
compact.

4.23.! -internality. We shall now debne an important class of subset 6f! " which
Olook like o-minimal setsO.

Debnition 4.24.A subseZ of V$ ! " is said to b -internal if it is iso-dePnable and there
is a debPnable subsBt of some! ' and a surjective pro-debnable mapb6 Z.

The iso-debnability condition is crucial here, and cannot be replaced by just requiring
pro-debnability. This debnition is purely dePnable and does not say anything a priori about
the topology ofZ. The following embedding result shows that beingnternal imposes
strong restrictions on the topology:

Theorem 4.25. Let Z be a! -internal subset o/ $ ! . Then there exists an injective
continuous debnable mép: Z % ! [' for somen. If Z is debnably compact, such &ris
an homeomorphism.

If V andZ are debPned over some set of paramefersne cannot in general expect such
anf to be debned, because it should be respect the Galois action. However the following
holds:

Proposition 4.26. Assumé&/ andZ are debned over some set of paramegeis theVF and
! sorts. Then there exists a PnkedePnable sa and an injective continuous-debnable
mapf :Z % !\,

4.27. Paths and debnable connectednes§he mappingO, co] % p1 sendingt to the
generic type of the baB (0, t) may be seen as a path connectingnd the generic typpo

of the closed unit ball. Similarly the mappiti@, co] % p1 sendingt to the generic type of

the ballB (1,t) connectsl andpn. By composing these paths one connects the fband

1. However a technical issue occurs here. Since multiplication is not part of the structure
'y, there is no way to identify the space obtained by gluing two copi¢8, of] at 0 with

an interval. We are thus led to consider generalized intervals, that is spaces obtained by
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concatening a Pnite number of closed intevalk,in either with the order fromh, or with
the reverse order.

We denote byt = [i;, e ] such a generalized interval. Apath: | | V" 1M isa
continuous (pro)-debnable map.

LetV be an algebraic variety over some valued beld. We say a strict pro-debPnable subset
Z of V is debnably connected if it contains no clopen strict pro-debPnable subsets other than
#andZ. We say tha¥ is debnably path connected if for any two poiatandb of Z there
exists a dePnable pathZzhconnectinga andb. Clearly debnable path connectedness implies
debnable connectedness. Wheis quasi-projective and = X with X a debnable subset
of V, the reverse implication will eventually follow from Theorem 4.32.

We have the following GAGA type theorem:

Theorem 4.28. LetV be an algebraic variety over some valued beld. THes debnably
connected if and only ¥ is geometrically connected.

4.29. Strong retractions for curves. Letl =[i,, ] be a generalized interval. A contin-
uous pro-debnable map : | * X ! Y is called a debnable homotopy between the maps
Hi = Hy,,.x andHe = H .y, viewed as mapX ! V. A debnable homotopy

H:1" X Xiscalled a strong deformation retraction onto the'sét X if H; = 1d 4,
H(t,x) = x for everyt %! and everyx %" andHe(X)= " .

There is a canonical strong deformation retractiorPbfonto the pointpo which is
described as follows. Using the two standarbsia charts, one may write each pointh#
aspg (a,1) With @ % P*(U) and" & 0. The homotopy is given by taking= [! ,0] (thus
ii =1 andg = 0) and settingi(t, PB (a,! )) = P (amin(t,!)) -

More generally, given any bnite sub&ein P*(U), letCp be the image of" (D' po)
under#. The seCp is a closed -internal subset d!. Set! (a)=max {t %l ; #(t,a) %Cp}.
Then#p : 1" P11 PL sending(t, a) to#(max(! (a),t), a) is a strong deformation retrac-
tion of P ontoCp, .

Theorem 4.30. Let C be an algebraic curve over a valued b&d There exists a strong
deformation retraction, debned owér, H : [0,! ]* €1 ¢ onto a! -internal subset of.

Let us sketch the proof. A standard outward patthatx = Pg(a) IS given by
t ( Pg(ar) fort %($,"]forsome$ < ". Nowif g: C! Alis Pnite, withC a curve,
by an outward path starting at% ¢, we mean a continuous dePnable lifting of a standard
outward path starting @&(x). One proves that for any % ¢ there exists at least one outward
path starting ak and one says that is branching if there is more than one outward path
starting atx. A key lemma states that the number of such branching points is Pnite. For the
proof of the theorem we may assur@ieis projective and considdr : C ! P! pnite and
generically Ztale. One considers a Pnitee$ P!, dePned oveK , such thaf is Ztale
above the complement & andCp contains all the branching points, with respect to the
restriction ofg over both standardd ane charts. One concludes the proof by showing that
#p lifts to the strong deformation retraction we are looking for.

4.31. The main theorem. We may now state the main result from [31]:
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Theorem 4.32. LetK be a valued beld and = (K, G) with G a subset of containing
val(K). LetV a quasi-projective variety debPned ow€r, X an A-debnable subset &f.
Assume given Pnitely maAydebnable functionk; : X — ! . and an action of a Pnite
algebraic group oveK onV leavingX globally invariant. Then there exists @rdePnable
strong deformatiomd : 1 x X — X onto a! -internal subset of X such that:

(1) The set' embeds homeomorphically int@, for some Pnité-debnable set.
(2) H respects the functiorlg and is equivariant with respect to the group action.

The structure of the proof goes as follows. One uses induction on the dimension of V.
One start by reducing to the case where X = V is projective equidimensional. One fixes
an hypersurface Dy C V containing the singular locus of V and such that there exists an
equivariant étale morphism V \ Dy — A". Some further geometric considerations allow to
reduce to the case when there is a morphism u : V. — U = P"~!, whose restriction to D
is finite, and a Zariski dense open subset Uy of U such that, setting Vo = u=%(Up), u|Vo
factorizes as o f withf :Vy — Eg = Uy x P! a finite morphism and g : Eq — Uy the
projection.

Over Uy the situation is that of a relative curve. Performing the curve construction in this
relative setting provides a strong deformation retraction

chrves : [0: OO] X Vmo — Vmo

fixing pointwise 6\0 and with image a relatively ! -internal set " ., ,.s. By using the induc-
tion hypothesis (note that even if one starts with V without group action and no !;’s, they
are needed at this stage of this induction), one constructs a definable homotopy | x U — U
whose restriction lifts to a strong deformation retraction

. n n
Hbase . I X Curves curves:-

A third homotopy, which we call “inflation” is used to get out of of the complement of
VO/U\DO. On A" one may consider the standard homotopy given by “increasing the polyra-
dius”. Using an appopriate stopping time function one gets another homotopy which we may
lift, via the étale map V \ Dy — A", to an homotopy

Hing 1 [0,00] x V. — Vg UDg

fixing pointwise ISB. R N

After composing these three homotopies, one gets an homotopy H' : |/ x V — V that
almost does the job, except that because of the use of inflation, we cannot insure that the
points of the image of H' are all kept pointwise fixed by H’ for all time values. To remedy
this issue, we have to construct a fourth homotopy, H, whose construction lies purely in
the tropical ! -internal world, so that the composition H = H, o H’ finally satisfies the
conclusion of the theorem.

4.33. Back to Berkovich spaces.A type p = tp( c/A) is said to be almost orthogonal to !
is! (Ac) = ! (A).

Let F be a valued field with val(F *) C R. We consider the structure IF = ( F, R), where
R belongs to the ! -sort. Let V be a variety defined over F and X an [F-definable subset of
V.
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One defines By (F) as the set of types over F lying on X and almost orthogonal to ! .
Similarly as for the Berkovich analytification and the stable completion, one endows By (F)
with a topology coming from the topology on R. When F' is complete, By (F) and V" are
canonically homeomorphic.

By a result of Kaplansky, there exists a unique field F™2* | up to F-automorphism, which
is a maximally complete algebraically closed non trivially valued field containing F', and has
value group R and residue field the algebraic closure of the residue field of F.

The following proposition provides the link allowing to deduce the results about Berkovich
spaces stated in Theorem 4.6 from Theorem 4.32 and its relative variants.

Proposition 4.34. Let X be anF-debnable subset of somievariety. Restriction of types
induces a continuous, surjective and closed mapX (F™) 1 By (F).

(1) Letf: X! ¥ be a continuoug-pro-debnable map, with an F-debnable subset
of someF'-variety. Then there exists a unique continuous rfiapBy (F) ! By (F)
suchthat " f= fF"1.

() LetH : I# X! X beadebnable strong deformation retraction. TREnI(R, )#
Bx (F) ! By (F) is a strong deformation retraction.

(3) By (F) is compact if and only if{ is dePnably compact.
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