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Abstract. We will discuss recent progress by many people in the program of representing
motivic cohomology with torsion coefficients of arithmetic schemes by various arithmetic
p-adic cohomologies: étale, logarithmic de Rham–Witt, and syntomic. To illustrate possi-
ble applications in arithmetic geometry we will sketch proofs of the absolute purity conjecture
in étale cohomology and comparison theorems of p-adic Hodge theory.
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1. Introduction

In this report, we will survey results about the relationship between motivic coho-
mology and p-adic cohomologies of arithmetic schemes. We will concentrate on
the stable ranges where the motivic cohomology with torsion coefficients tends to
be represented by various cohomologies of arithmetic type. Much has happened in
that subject in the last few years and a detailed survey can be found in [10]. For
us motivic cohomology will mean Bloch higher Chow groups and its approxima-
tion – the gamma gradings of algebraic K-theory. They are defined using algebraic
cycles and vector bundles, respectively, and are connected via an Atiyah–Hirzebruch
spectral sequence. By inverting the Bott element or in some stable ranges motivic
cohomology becomes isomorphic to its (étale) topological version. That is the content
of the Beilinson–Lichtenbaum and Quillen–Lichtenbaum conjectures both of which
follow (over fields) from the Bloch–Kato conjecture (now proved at least for mod 2
coefficients). Torsion étale motivic cohomology has a direct relationship with vari-
ous arithmetic cohomologies: logarithmic de Rham–Witt (an arithmetic version of
crystalline cohomology in positive characteristic), syntomic cohomology (an arith-
metic version of crystalline cohomology in mixed characteristic), and arithmetic étale
cohomology. As a result we can represent p-adic cohomology classes as algebraic
cycle classes in a way reminiscent of the classical situation. This turns out to be –
both conceptually and technically – a powerful tool. We present two applications: a
proof of the absolute purity conjecture in étale cohomology and proofs of comparison
theorems in p-adic Hodge theory.
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2. K-theory

2.1. Milnor K-theory. For a field k, the Milnor K-groups KM
∗ (k) are defined to

be the quotient of the tensor algebra of the multiplicative group k∗ of k by the ideal
generated by the Steinberg relation x ⊗ (1 − x) for x ̸= 0, 1. This rather simple
construction turns out to be a fundamental object in the subject.

If m is relatively prime to the characteristic of k, Kummer theory gives that
KM

1 (k)/m ≃ k∗/k∗m
∼−−→ H 1(két, µm). Using cup product on Galois cohomology

we get the Galois symbol map

KM
n (k)/m→ Hn(két, µ

⊗n
m ).

Conjecture 2.1 (Bloch–Kato). The above symbol map is an isomorphism.

Voevodsky proved [40] the Bloch–Kato conjecture for m a power of 2 (Milnor
conjecture) and has recently announced a proof for general m [41].

If p > 0 is equal to the characteristic of k, the Bloch–Kato conjecture could be
interpreted as the theorem of Bloch–Gabber–Kato [3] giving an isomorphism

dlog : KM
n (k)/pr ∼−−→ H 0(két, ν

n
r ),

where νn
r = Wr"

n
X,log is the logarithmic de Rham–Witt sheaf. It is a subsheaf of

the de Rham–Witt sheaf Wr"
n
X generated locally for the étale topology by dlog x1 ∧

· · ·∧ dlog xn, where x ∈ WrOX are the Teichmüller lifts of units. It fits into the short
exact sequence of pro-sheaves (F is the Frobenius)

0→ νn
· → W·"n

X

F−1−−−→ W·"n
X → 0.

2.2. Algebraic K-theory. For a noetherian scheme X, let M(X) and P(X) de-
note the categories of coherent and locally free sheaves on X, respectively. The
higher algebraic K and K ′ groups of X are defined as homotopy groups of cer-
tain simplicial spaces associated to the above categories: Ki(X) = πi (K(X)),
K ′i (X) = πi (K ′(X)). For i = 0, K0(X) and K ′0(X) are the Grothendieck groups of
vector bundles and coherent sheaves, respectively. For a field k, the product structure
on K-theory gives a natural homomorphism KM

n (k)→ Kn(k) that is an isomorphism
for n ≤ 2.

K-groups mod m, Ki(X, Z/m), are defined by taking homotopy groups with Z/m

coefficients of the above spaces. They are related to K∗(X) by a universal coef-
ficient sequence. Exterior powers of vector bundles induce a descending filtration
F ∗γ K∗(X, Z/m) (γ -filtration) and the graded pieces gr∗γ K∗(X, Z/m) can be consid-
ered an approximation to motivic cohomology groups.

Similarly, we get groups K ′i (X, Z/m). The natural homomorphism

Ki(X, Z/m)→ K ′i (X, Z/m)
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is an isomorphism if X is regular (“Poincaré duality”), because every coherent sheaf
has a finite resolution by locally free sheaves. For Z a closed subscheme of X with
open complement U , there is a localization sequence in K ′-theory

→ K ′i+ 1(U, Z/m)→ K ′i (Z, Z/m)→ K ′i (X, Z/m)→ K ′i (U, Z/m)→
It is relatively easy to derive in this generality and (in arithmetic applications) it
gives K-theory great technical advantage over other motivic cohomologies. The other
important technical advantage is the ease with which one can define higher Chern
classes into various cohomologies. To be able to follow Gillet’s construction [17] all
one really needs is that the cohomology of the classifying simplicial scheme BGL
(and some of its variants) is the expected one.

VaryingX, one can viewK(X) as a presheaf of simplicial spaces. LetK/mdenote
the presheaf of corresponding spaces mod m. Assume that X is regular. Then the
Mayer–Vietoris property of K-theory gives that K∗(X, Z/m) ≃ H−∗(XZar, K/m).

If m is invertible on X, under some additional technical assumptions on X, the
étale K-theory of Dwyer–Friedlander [5] can be computed using presheaves K/m:
Két

j (X, Z/m) ≃ H−j (Xét, K/m), for j ≥ 0.

Conjecture 2.2 (Quillen–Lichtenbaum). The change of topology map

ρj : Kj(X, Z/m)→ Két
j (X, Z/m)

is an isomorphism for j ≥ cdm Xét (the étale cohomological dimension of X).

Here and below we will review the current status of the Quillen–Lichtenbaum
conjecture. Recall that Thomason [37] proved that the map ρj induces an isomorphism

ρ̃j : Kj(X, Z/m)[β−1
m ] ∼−−→ Két

j (X, Z/m),

where Kj(X, Z/m)[β−1
m ] denotes the j ’th graded piece of the ring obtained by invert-

ing the action of the Bott element βm on K∗(X, Z/m). If µm ⊂ '(X, OX), then βm is
defined as an element in K2(X, Z/m) canonically lifting a chosen primitive m’th root
of unity in K1(X). A refined version of the proof of this theorem [38] allowed him to
show that for a variety of schemes (not necessarily over an algebraically closed fields)
the map ρj is surjective for j larger than (roughly) N = (dim X)3 and its kernel is
annihilated by βN

m . Over an algebraically closed field and for quasi-projective X we
can do better: Walker shows [42] that in that case ρj is split surjective for j ≥ 2d and
its kernel is annihilated by βd

m, d = dim X (see also [12]).
Étale K-theory has a direct relationship to étale cohomology. Namely Gabber’s

rigidity and Suslin’s computation of K-theory of algebraically closed fields imply that
the sheaves of fundamental groups π̃i (K/m) are isomorphic to µ

⊗i/2
m for i even and

are 0 for i odd. Then the local to global spectral sequence becomes

E
p,q
2 =

{
Hp(Xét, µ

q/2
m ) for q even,

0 for q odd
⇒ Két

q−p(X, Z/m).
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Action of Adams operations shows that this spectral sequence degenerates at E2
modulo torsion of a bounded order depending only on cdm Xét. In particular, the
Chern classes

cét
i,j : griγ Két

j (X, Z/m)→ H 2i−j (Xét, µ
⊗i
m )

are isomorphisms modulo small torsion.
If X is smooth over a perfect field of characteristic p > 0, Geisser–Levine [15]

using motivic cohomology (see below) prove the isomorphism π̃n(K/pr) ≃ νn
r .

Since νn
r vanishes for n > dim X, the local to global spectral sequence

Hk(X, π̃n(K/pr))⇒ Kn−k(X, Z/pr)

gives the important vanishing result: Kn(X, Z/pr) = 0 for n > dim X.

2.3. Application: the absolute purity conjecture. The relationship between alge-
braic K-theory and étale cohomology just described was used by Thomason [36] and
Gabber [13] to prove the absolute purity conjecture in étale cohomology. Thomason
derived it (up to small torsion) from absolute purity in K-theory and Gabber – after
some reductions – from vanishing results in K-theory.

Conjecture 2.3. Let i : Y ↪→ X be a closed immersion of noetherian, regular schemes
of pure codimension d. Let n be an integer invertible on X. Then

Hq
Y (Xét, Z/n) ≃

{
0 for q ̸= 2d,

Z/n(−d) for q = 2d.

Proof. Thomason’s proof works (for example) for schemes of finite type over Z and m

all of whose prime divisors are at least dim X+1. Localization sequence immediately
gives absolute purity in K-theory: one defines K-theory with support KY (X) to be
the homotopy fiber of the restriction K(X) → K(X \ Y ) and by localization and
Poincaré duality we get the isomorphism KY,∗(X) ≃ K∗(Y ). Inverting the Bott
element yields absolute cohomological purity in étale K-theory: Két

Y,∗(X) ≃ Két
∗ (Y ).

This can be now easily transferred to étale cohomology via the Atiyah–Hirzebruch
spectral sequence. Namely, we have the sheafification of the Atiyah–Hirzebruch
spectral sequence with support

E
p,q
2 =

{
Hp

Y (Xét, µ
⊗i
m ) for q = 2i,

0 for q ̸= 2i

strongly converging to the sheaf associated to Két
Y,q−p(−, Z/m) ≃ Két

q−p(−Y , Z/m).
Evoking once more the Atiyah–Hirzebruch spectral sequence (this time on Y ) one
computes that this sheaf is periodic (of period two) and Z/m for q = p and trivial
for q − p = 1. Action of Adams operations shows that the above spectral sequence
degenerates modulo a constant (depending on étale cohomological dimension of X)
and that the same constant kills E

2j,2j
∞ for j ̸= q.
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To prove absolute purity in general Gabber appeals to the Atiyah–Hirzebruch
spectral sequence only in the situation where it does in fact degenerate. First, he
defines a well-behaved global cycle class c(Y ) ∈ H 2d

Y (Xét, µ
⊗d
m ) that allows him

to reduce absolute purity to a punctual one: for a regular strict local ring O of
dimension d with closed point ix : x → Spec O the cycle class gives an isomor-
phism cl(x) : µm,x ≃ i!xµ

⊗d
m [2d]. Induction now reduces it to a vanishing result:

Hp(O[f−1]ét, µm) = 0 for p ̸= 0, 1, where f ∈ m \ m2 for the maximal ideal
m ⊂O. Here he can assume Oto be of arithmetic type.

Next, he considers the following Atiyah–Hirzebruch spectral sequence

E
p,q
2 =

{
Hp(O[f−1]ét, µ

q/2
m ) for q even,

0 for q odd
⇒ Két

q−p(O[f−1], Z/m)

where the étale K-groups Két
q−p(O[f−1], Z/m) are equal to K0(O[f−1], Z/m)(q/2)

for q even and K1(O[f−1], Z/m)((q−1)/2) for q odd. Inductively, using local affine
Lefschetz and duality he gets vanishing of Hp(O[f−1]ét, µm) = 0 for p ̸= 0, 1,
d− 1, d . That kills some colums in the above spectral sequence and the degeneration
at E2 follows. Now, vanishing of level 2 of the filtration on K-groups implies that
E

p,q
2 = E

p,q
∞ = 0 for p ≥ 2 yielding Hp(O[f−1]ét, µm) = 0 for p ̸= 0, 1, as

wanted. ✷

3. Motivic cohomology

3.1. Motivic cohomology over a field. For a separated scheme X over a field,
Bloch higher Chow groups [1] are the cohomology groups of a certain complex
of abelian groups. To define this complex, denote by △n the algebraic n-simplex
Spec Z[t0, . . . , tn]/

( ∑
ti − 1

)
. Let zr(X, i) denote the free abelian group generated

by irreducible codimension r subvarieties of X ×△i meeting all faces properly. Let
zr(X, ∗) be the chain complex thus defined with boundaries given by pullbacks of
cycles along face maps. Denote by Hi(X, Z(r)) the cohomology of the complex
Z(r) := zr(X, 2r−∗) in degree i. The motivic cohomology with coefficients Z/m is
the cohomology of the complex Z/m(r) = Z(r)⊗Z/m. It fits into the usual universal
coefficient sequence.

Remark 3.1. There is another commonly used construction of motivic cohomology
due to Suslin–Voevodsky [9]. It works well in characteristic zero but it is not well
suited for studying mod p-phenomena in positive characteristic p.

Motivic cohomology groups are trivial for i > 2n and i > n+ dim X for dimension
reasons. The Beilinson–Soulé conjecture (still open) postulates that they vanish for
i < 0. We have H 2n(X, Z(n)) ≃ CHn(X), the classical Chow group. For a field k,
Hi(k, Z(n)) are trivial for i > n and agree with the Milnor group KM

n (k) for i = n.
In particular, Hn(k, Z/m(n)) ≃ KM

n (k)/m.
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For Z a closed subcheme of X of codimension c with open complement U , there
is a localization sequence

→Hi−2c(Z, Z(n− c))→Hi(X, Z(n))→Hi(U, Z(n))→Hi+ 1−2c(Z, Z(n− c))→

It is a difficult theorem to prove. It is also rather difficult in general to construct higher
cycle classes ci,n : Hi(X, Z(n))→ Hi(X, n) into various bigraded cohomology the-
ories relevant to arithmetic. The original method of Bloch [2] requires weak purity
as well as homotopy property both of which fail for some commonly used p-adic
cohomologies. In particular, we are still missing a definition of cycle classes into
syntomic cohomology independent of the theory of p-adic periods.

It is even more difficult to show that the higher Chow groups and K ′-theory are
related by an Atiyah–Hirzebruch spectral sequence

Es,t
2 = Hs−t (X, Z(−t))⇒ K ′−s−t (X). (3.1)

This sequence was first constructed for fields by Bloch–Lichtenbaum [4], then gener-
alized to quasi-projective varieties by Friedlander–Suslin [11], and finally to schemes
of finite type by Levine [25],[23]. By different methods, it was also constructed by
Grayson–Suslin [18], [34] and Levine [26]. If X is regular, the action of Adams op-
erations shows that this sequence degenerates modulo small torsion and the resulting
filtration differs from the γ -filtration by a small torsion. In particular, we get that

griγ Kj(X)⊗Q ≃ H 2i−j (X, Q(i)).

Varying X, one gets a sheaf Z(n) := zn(−, 2n − ∗) in the étale topology. We
have Z(0) ≃ Z on a normal scheme and Z(1) ≃ Gm[−1] on a smooth scheme.
For a separated, noetherian scheme X of finite Krull dimension, the Mayer–Vietoris
property yields the isomorphism Hi(X, Z(n)) ≃ Hi(XZar, Z(n)). For X smooth,
filtering z∗(X, ∗) by codimension, we get the very useful Gersten resolution

0→Hp(Z(n))→
⊕

x∈X(0)

(ix)∗Hp(k(x), Z(n))→
⊕

x∈X(1)

(ix)∗Hp−1(k(x), Z(n− 1))→

Here X(s) denotes the set of points in X of codimension s.
For X smooth and m invertible on X, rigidity in higher Chow groups and étale

cohomology and the vanishing of Hi(két, Z/m(n)) for an algebraically closed field k

[33] imply that Z/m(n)ét
∼−−→ µ⊗n

m . We get the isomorphism

cét
i,n : Hi(Xét, Z/m(n))

∼−−→ Hi(Xét, µ
⊗n
m ).

Conjecture 3.2 (Beilinson–Lichtenbaum). The canonical map

ρi,n : Hi(XZar, Z/m(n))→ Hi(Xét, Z/m(n))

is an isomorphism for i ≤ n.
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It is clear that the Bloch–Kato conjecture is a special case of the above conjecture.
What is not obvious is that it also implies it.

Theorem 3.3 (Suslin–Voevodsky [35], Geisser–Levine [16]). The Bloch–Kato con-
jecture implies the Beilinson–Lichtenbaum conjecture.

To prove this result via Gersten resolution one passes to the following state-
ment for fields: the Bloch–Kato isomorphism Hn(F, Z/m(n)) ≃ KM

n (F )/n
∼−−→

Hn(Fét, µ
⊗n
m ) for all fields F that are finitely generated over the base field implies

that ρi,n : Hi(F, Z/m(n)) → Hi(Fét, Z/m(n)) is an isomorphism for all such F

and i ≤ n. This is proved by descending induction on the degree of cohomology
by “bootstrapping” the Bloch–Kato isomorphism into relative cohomology of cubical
complexes.

Unconditionally, we have two important results

Theorem 3.4 (Levine [24]). If µm ∈ '(X, OX), inverting the Bott element βm ∈
H 0(XZar, Z/m(1)) gives an isomorphism

ρ̃i,n : Hi(XZar, Z/m(n))[β−1
m ] ∼−−→ Hi(Xét, Z/m(n)).

Theorem 3.5 (Suslin [33]). The map ρi,n is an isomorphism for X smooth over an
algebraically closed field and n ≥ dim X.

We can now use the Atiyah–Hirzebruch spectral sequence (3.1) and its étale ana-
logue

Es,t
2 = Hs−t (Xét, Z/m(−t))⇒ Két

−s−t (X, Z/m)

constructed by Levine to pass from motivic cohomology to K-theory and to conclude
that

Theorem 3.6 (Levine [23]). The Beilinson–Lichtenbaum conjecture implies the
Quillen–Lichtenbaum conjecture.

For X smooth over a perfect field of characteristic p > 0, Geisser–Levine [15]
have shown that there is a quasi-isomorphism (in the Zariski and étale topology)
Z/pr(n)

∼−−→ νn
r [−n]. They derive it from the fact that for any field k of characteris-

tic p, Hi(k, Z/pr(n)) = 0 for i ̸= n, which in turn they induce from the Bloch–Kato
isomorphism Hn(k, Z/pr(n))

∼←−− KM
n (k)/pr ∼−−→ νn

r (k). As a result we get

Hi+ n(X, Z/pr(n)) ≃ Hi(XZar, ν
n
r ), H i+ n(Xét, Z/pr(n)) ≃ Hi(Xét, ν

n
r ).

The above implies that π̃n(K/pr) ≃ νn
r : via the Bloch–Lichtenbaum spectral se-

quence Hs−t (k, Z/pr(−t))⇒ K−s−t (k, Z/pr), the computation of Hi(k, Z/pr(n))

yields the isomorphism KM
n (k)/pr → Kn(k, Z/pr); having that it suffices now to

evoke Gersten resolution.
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3.2. Motivic cohomology over Dedekind domains. The construction of Bloch
higher Chow groups and some of its basic properties (most notably the localiza-
tion exact sequence and the Atiyah–Hirzebruch spectral sequence) as well as some
computations of motivic sheaves can be extended to schemes of finite type over a
Dedekind scheme ([25], [23], [14]). Here is an example. Let X be a smooth scheme
over a complete discrete valuation ring V of mixed characteristic (0, p) with a perfect
residue field k. Denote by i : Y ↪→ X and j : U ↪→ X the special and generic fibers,
respectively. We will sketch how assuming the Bloch–Kato conjecture mod p we get
a quasi-isomorphism [14]

i∗Z/pn(r)ét → Sn(r) for r < p − 1.

Here Sn(r) is the syntomic complex of Fontaine–Messing [8] (philosophically) de-

fined as the mapping cone of the map Ru∗J
[r]
Xn/Wn(k)

1−φr

→ Ru∗OXn/Wn(k), where
W(k) is the ring of Witt vectors of k, OXn/Wn(k) is the crystalline structure sheaf,
JXn/Wn(k) = ker(OXn/Wn(k)) → OXn), u : Xn/Wn(k)cr,ét → Xn,ét is the natural
projection, and φr = φ/pr is the divided Frobenius. We always get the long exact
sequence

→ Hi(Xn, Sn(r))→ Hi
cr(Xn/Wn(k), J [r])

1−φr

−−−→ Hi
cr(Xn/Wn(k))→

By the theory of p-adic periods [21] we have the distinguished triangle

→ Sn(r)→ τ≤ni
∗Rj∗µ⊗r

pn → νr−1
n [−r]→

This triangle can be seen as a realization of the “localization” sequence for the étale
motivic sheaves: we apply the above computations of motivic sheaves over fields
and a purity result Z(r−1)ét[−2] ∼−−→ τ≤r+ 1Ri!Z(r)ét (contingent on the Beilinson–
Lichtenbaum conjecture mod p) to the localization sequence and get the distinguished
triangle

→ i∗Z/pn(r)ét → τ≤r i
∗Rj∗µ⊗r

pn → νr−1
n [−r]→ .

Comparing the above two triangles, we get that the cycle class map i∗Z/pn(r)ét →
Sn(r) is a quasi-isomorphism inducing a cycle map (an isomorphism for X proper)

c
syn
i,r : Hi(Xét, Z/pn(r))→ Hi(X, Sn(r)), r < p − 1.

4. Application: p-adic Hodge theory

In p-adic Hodge theory we attempt to understand p-adic Galois representations com-
ing from the étale cohomology of varieties over p-adic fields via the de Rham coho-
mology of these varieties. The maps relating étale and de Rham cohomology groups
are called p-adic period morphisms. Just as in the classical case, we would like to see
them as integration of differential forms. Motivic cohomology allows us to do that
[30], [31]. We will sketch briefly how.
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Remark 4.1. The main comparison theorems of p-adic Hodge theory were proved
earlier by two different methods: by Fontaine–Messing–Kato [8], [20], Kato [19],
and Tsuji [39] via a study of p-adic nearby cycles and by Faltings [6], [7] using the
theory of almost étale extensions.

4.1. The good reduction case. Let k be a perfect field of positive characteristic p,
W(k) the corresponding ring of Witt vectors and K its field of fractions. Let K be
an algebraic closure of K and let Gal(K/K) denote its Galois group. Let X be a
smooth proper scheme over V = W(k) of relative dimension d. We have a functor
which carries the crystalline cohomology groups of X with all their structures into
representations of Gal(K/K). For p − 2 ≥ r ≥ i, set

L(H i
cr(Xn/Vn){−r}) := (F 0(H i

cr(Xn/Vn){−r}⊗ B +
cr,n))

1= φ0
.

Here B +
cr,n = H ∗cr(Spec(Vn)/Wn(k)) is one of Fontaine’s rings of periods. It is

equipped with a decreasing filtration F iB +
cr,n, Frobenius, and an action of the group

Gal(K/K). The crystalline cohomology groups Hi
cr(Xn/Vn) ≃ Hi

dR(Xn/Vn) have
a natural Hodge filtration and φ0 comes from the tensor of divided Frobeniuses φj =
φ/pj . The twist {−r} refers to twisting the Hodge filtration and the Frobenius.

Conjecture 4.2 (Crystalline conjecture). For p large enough, there exists a canonical
Galois equivariant period isomorphism

αcr : Hi(X
K

, µ⊗r
n )

∼−−→ L(H i
cr(Xn/Vn){−r}).

The proof using K-theory we sketch here works for r ≥ 2d , p − 2 ≥ 2r + d (or
rationally with no restriction on p and the degree of the finite extension V/W(k)).

Since B +
cr,n ≃ H ∗cr(Vn/Vn), by the Künneth formula H ∗cr(Xn/Vn) ⊗ B +

cr ≃
H ∗cr(XV,n

/Vn), where V is the integral closure of V in K . The defining property
of syntomic cohomology yields a natural map (in fact an isomorphism)

Hi(X
V
, Sn(r))→ L(H i

cr(Xn/Vn){−r}).

It follows that to prove the conjecture, by a standard argument, it suffices to construct
a Galois equivariant map

αi,r : Hi(X
K

, µ⊗r
pn )→ Hi(X

V
, Sn(r))

compatible with Poincaré duality and some cycle classes. To construct this map as
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an integration we will use the following diagram

F r
γ /F r+ 1

γ K2r−i (XV
, Z/pn)

∼
j∗

!!

ρ2r−i

""

F r
γ /F r+ 1

γ K2r−i (XK
, Z/pn)

ρ2r−i

""

F r
γ /F r+ 1

γ Két
2r−i (XV

, Z/pn)
j∗

!!

c
syn
r,2r−i

""

F r
γ /F r+ 1

γ Két
2r−i (XK

, Z/pn)

cét
r,2r−i

""

Hi(X
V
, Sn(r)) H i(X

K
, µ⊗r

pn ).
αi,r

##

The right-hand side allows us to represent étale classes by higher algebraic cycle
classes on X

K
. Those can be lifted (via j∗) to the integral model X

V
and we can

integrate differential forms along them to get the period map αi,r . Specifically, by
Quillen–Lichtenbaum conjecture or by Suslin the map ρ2r−i is an isomorphism for
2r − i ≥ cdp Xét = 2d. The degeneration of the étale Atiyah–Hirzebruch spectral
sequence gives that cét

r,2r−i is an isomorphism modulo small torsion. Also the restric-
tion j∗ is an isomorphism: since the scheme X

V
is smooth we can pass to K ′-theory;

by localization, the kernel and cokernel of j∗ is controlled by mod pn K ′-groups of
special fibers and those can be killed by totally ramified extensions of V of degree pn.
For p and r as above, we define the map αi,r to make this diagram commute.

Corollary 4.3. For r ≥ d + i/2, p − 2 ≥ r + d/2, there exists a unique period
map αi,r : Hi(X

K
, µ⊗r

pn )→ Hi(X
V
, Sn(r)) compatible with the étale and syntomic

higher Chern classes from K-theory mod pn of X
K

and X
V

.

Based on [29], [28] we expect all the existing constructions of the period maps to
be compatible with higher Chern classes hence equal.

Assume that we are able to define syntomic higher cycle maps without using p-
adic periods. Then a construction of the period map αi,r as an integral can be done in
a more precise way by the following diagram.

Hi(X
V
, Z/pn(r))

j∗
∼ !!

ρi,r

""

Hi(X
K

, Z/pn(r))

ρi,r

""

Hi(X
V,ét, Z/pn(r))

j∗ !!

c
syn
i,r

""

Hi(X
K,ét, Z/pn(r))

cét
i,r

""

Hi(X
V
, Sn(r)) H i(X

K
, µ⊗r

pn )
αi,r

##

(4.1)

Arguing as above, we see that the restriction map j∗ is an isomorphism. The map ρi,r

on the right is an isomorphism for r ≥ i by the Beilinson–Lichtenbaum conjecture or
for r ≥ d by Suslin. That gives the definition of αi,r in these two cases and a proof
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of the Crystalline conjecture for all i and 2d ≤ r ≤ p − 2. Notice that then all the
maps in the above diagram are isomorphisms.

Remark 4.4. Our period map αi,r goes in the opposite direction than the period maps
constructed by other methods. This implies that one can simply use Poincaré duality
to prove that the map is an isomorphism. Rationally that works well but integrally it
doubles the lower bound on p.

4.2. The semistable reduction case. Let now K be a complete discrete valuation
field of mixed characteristic (0, p) with ring of integers V and a perfect residue field k.
Let X× be a fine and saturated log-smooth proper V ×-scheme, where V is equipped
with the log-structure associated to the closed point, such that the generic fiber XK is
smooth over K and the special fiber X×0 is of Cartier type. A standard example would
be a scheme X with simple semistable reduction.

Conjecture 4.5 (Semistable conjecture). There exists a natural period isomorphism

αst : H ∗(X
K

, Qp)⊗Qp Bst ≃ H ∗cr(X
×
0 /W(k)0)⊗W(k) Bst

preservings Galois action, monodromy, filtration and Frobenius.

Here the period ring Bst is equipped with Galois action, Frobenius and monodromy
operators. It maps naturally into another ring of periods BdR , which is equipped with a
decreasing filtration. The log-crystalline cohomology groups H ∗cr(X

×/W(k)0)[1/p]
(analogues of limit Hodge structures) are also equipped with Frobenius and mon-
odromy operators. There is also a canonical isomorphismK⊗W(k)H

∗
cr(X

×
0 /W(k)0) ≃

H ∗dR(XK/K) via which Hodge filtration induces a descending filtration on these
groups. The period isomorphism and its base change to BdR should preserve all these
structures. As a corollary, one gets that the étale cohomology as a Galois representa-
tion can be recovered from the log-crystalline cohomology

H ∗(X
K

, Qp) ≃ (H ∗cr(X
×
0 /W(k)0)⊗W(k) Bst)

N= 0,φ= 1∩F 0(BdR⊗K H ∗dR(XK/K)).

In the above formula the kernel of the monodromy was computed by Kato to be
Q ⊗ proj limn H ∗cr(X

×
V,n

/Wn(k)). If we now take into account both Frobenius and

the filtration, we can pass to log-syntomic cohomology and we see that to prove the
conjecture it suffices to construct a Galois equivariant family of maps

αn
i,r : Hi(X

K
, µ⊗r

pn )→ Hi
cr(X

×
V

, Sn(r)),

at least for r large enough, that is compatible with Poincaré duality and the trace map.
The main problem with trying to carry over our motivic proof of the Crystalline

conjecture to this setting is that the integral model X
V

is in general singular. It
becomes then very difficult to control the kernel and cokernel of the restriction map j∗.
However the singularities are rather mild (they are of toric type) and we find [32]
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that every model X×V ′ , for a finite extension V ′/V , can be desingularized by a log-
blow-up Y× → X×V ′ . Since we are blowing up only strata this desingularization
does not change the log-syntomic cohomology. Obviously it does not change the
étale cohomology either, so to define the maps αn

i,r we can work with the regular
models Y×. We have the usual “integration” diagram

F r
γ /F r+ 1

γ K2r−i (Y, Z/pn)
j∗ !!

c
syn
r,2r−iρ2r−i

""

F r
γ /F r+ 1

γ K2r−i (YK, Z/pn)

cét
r,2r−iρ2r−i

""

Hi(Y×, Sn(r)) H i(YK, µpn(r)).
αn

i,r

##

The right-hand side of the diagram behaves like before. The restriction j∗ is an
isomorphism for 2r − i > dim XK + 1 because by the localization sequence its
kernel and cokernel are controlled by K ′j (Yk, Z/pn), which vanishes for j > dim XK

by Geisser–Levine. Hence we can integrate differential forms against higher cycles
(on the integral model Y ) to get the period maps αn

i,r . Again as a corollary we get a
uniqueness statement for semistable period maps.

Remark 4.6. Notice that the above vanishing result of Geisser–Levine and the result-
ing bijectivity of the restriction map j∗ are entirely p-adic phenomena. The analogous
statements mod l are false. This is in contrast with the good reduction case where j∗

is an isomorphism mod l as well.

Question 4.7. Is it possible to define log-motivic complexes and cohomology that
would specialize to log-syntomic cohomology? More precisely, one would like to
have a log-analogue of the motivic diagram (4.1) for a semistable scheme X× (with
logs everywhere in the left column). For that we need a good definition of log-motivic
complexes Z/pn(r)× and log-syntomic cycle classes

c
syn
i,r : Hi(X×, Z/pn(r)×)→ Hi(X×, Sn(r))

(isomorphisms for X proper and i ≤ r < p − 1). We would expect the restriction
map

j∗ : Hi(X×, Z/pn(r)×)→ Hi(XK, Z/pn(r))

to be an isomorphism.
This question is closely related to that of the existence of limit motivic cohomology

(see the recent work of Marc Levine [27] on that subject in the case of schemes over
a field).
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