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GILLES PISIEB 

Finite Rank Projections on Banach Spaces and 
a Conjecture of Grotliendieck 

In this report we discuss several recent results concerning the existence 
or non-existence of well behaved finite rank projections on a Banach space. 
We will be interested in projections with large ranks and norms as small 
as possible. 

0. Standard notations 

We remind the definition of the Banach-Mazur distance d(E, F) between 
two Banach spaces: 

d(E,F) =inf{||T|| \\T-l\\}, 

where the infimum is over all isomorphisms T from E onto F. If E and F 
are not isomorphic, we set d(E, F) = +oo. As usual, we will denote by 
Ç the space Rn equipped with the norm 

IIKOII-I^KI35) ii? 

1. The finite-dimensional basis problem 

Since Enflo's example [4], we know that there are Banach spaces which 
fail the approximation property and, a fortiori, fail to have a basis. 

By definition, a Banach space X has the approximation properly (in 
short A.P.) if the identity is approximable by finite rank operators uni-
formly on every compact subset of X. 

The »space X has a basis if (and only if) there is a sequence {Pn} of finite 

[1027] 
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rank projections on X such that 

Pn_x(X) a Pn(X) for aU n > 1 ; (1) 

rankPTO = n\ (2) 

UPn(X) = X9 (3) 
sup l lPJK oo. (4) 

If we then select a sequence {xn} such that xn ^ 0 and xn ePn(X)n 
riKerPn_19 we obtain a basis of X in the usual sense. 

One defines the basis constant of X as 6(X) = inf{sup[|PJ|} where 
the infimum runs over all possible sequences {Pn} as above. Clearly, this 
makes sense also when X is of finite dimension d9 by restricting (1) and 
(2) to all n < d (and Pn = I d x for all n > d). 

We now examine b(X) for a finite-dimensional space X. Although 
this is surprising at first glance, the result of Enfio does not imply (and 
is not implied by !) the existence of a sequence {Xn} of finite-dimensional 
spaces with basis constants b (Xn) tending to infinity with n. In fact, until 
recently, the following question was still open: 

Question 1. Is there a universal bound for b(X) when X runs over all 
finite-dimensional (in short f.d.) spaces ? 

The only known upper bound for b(X) is 6(JC)< (dimX)1/2, which 
follows immediately from a classical result of E. John: on every w-dimen-
sional space there is an inner product norm which is Vn equivalent to 
the original one (cf. [14]). Becently, Gluskin and Szarek gave the expected 
negative answer to Question 1, (cf. [8], [32]). More precisely, we have 

THEOREM 1 ([32]). There is an absolute constant ô > 0 with the following 
property: for each integer n, there is an n-dimensional space Xn such that, for 

every projection P: Xn->Xn with rank — , we have ||P|| > <5 Vn. In partic-

ular, we have b(Xn)^ bVn. 

We refer to [32] for the rather long and delicate proof of this result. 
I t should be mentioned that Szarek's construction relies on probabilistic 
ideas: the spaces Xn are selected "at random" in a clever way so that the 
property in Theorem 1 occurs actually with large probability. Szarek's 
methods were directly inspired by a previous (quite remarkable) paper 
of Gluskin [7], where the latter proved the existence (with positive prob-
ability, in some sense) for each n of two ^-dimensional spaces Xn, Yn 
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satisfying 
mtvrlä(Xn9 7n)>0. 
n 

Later, Gluskin pushed his methods to answer Question 1 with a weaker 
form of Theorem 1 (cf. [8]), while Szarek proved independently the essen-
tially sharp version of Theorem 1 quoted above. 

2. The complemented l™ problem 

Enflo's example tells us that there exist Banach spaces which do not have 
"enough" finite rank projections of uniformly bounded norms to appro-
ximate the identity operator in the pointwise topology. 

This leaves open the following question, which can be roughly formu-
lated as follows: are there non-trivial finite rank projections at all on 
a general space? 

Question 2. Let X be an infinite-dimensional Banach space. Does there 
exist a sequence {Pn} of finite rank projections on X with uniformly 
bounded norms and unbounded ranks? 

Of course, this is much weaker than saying that X has a basis, since 
{Pn} is not required to satisfy (1) or (3); and, quite obviously, there are 
spaces without the A.P. which possess the above property. In [20], Lin-
denstrauss reformulated the preceding question, in a stronger formulation : 

3. Let \ = rankPTC. Can one find Pw's as in Question 2 with 
the additional property that, for some p in [1, oo], we have Bwpd(Pn(X), 
tp

n) < oo ? 
In that case, we can as well assume that lcn = n and we then say that 

X contains uniformly complemented Z '̂s. Moreover, it is easy to see that 
the problem reduces to the cases p = 1, 2 and oo. 

In several special cases, positive answers were given in [34], [15] 
and in [35]. To motivate Question 3, let us recall a fundamental theorem 
of Dvoretzky (cf. [5]): for every infinite-dimensional space X, for every n 
and e > 0, we can find a subspace Xn of X such that d(Xn, VI) < 1 + e. 
Boughly, this means that X reproduces somewhere the structure of Eucli-
dean spaces almost isometrically. Eor various reasons, mainly in operator 
theoretic considerations, it is of interest to decide when we can find sub-
spaces Xn as above together with projections Pn: X->Xn such that 
sup ||PJ| < oo. I t is rather simple to check that Lp spaces or lp spaces 
have this property for 1 < p < oo and not for p = 1 or oo. In Lv, we even 
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have complemented w/w^e-dimensional Hilbertian subspaces (take the 
span of Gaussian variables, or Bademacher functions); but, in lp9 this 
is no longer true, so that, in general, we must restrict our attention to 
the finite-dimensional subspaces. 

Unfortunately, in general, the answer to Question 2 is negative: 

THEOREM 2 ([30]). There is an infinite-dimensional Banach space X 
and a constant <5 > 0 such that all finite rank projections P: X->X satisfy 

\\P\\>0 (rankP)1'2. 

In particular, X is a counterexample to the property in Question 1. 

Remark. Let E be an ^-dimensional subspace of a general space X. 
Then there is a projection P: X->E with ||P||<j/w. This is a classical 
result (originally due to Kadec-Snobar). Therefore, in the above space X9 
this general upper bound cannot be improved (at least asymptotically)-
regardless of how E is chosen in X. 

The space constructed for Theorem 2 also fails the A. P. We will rei 
turn to this in the next section. 

There is however a major difference here from the approximation prob-
lem. Indeed, now we know that there are extremely "nice" spaces, e.g. 
uniformly convex spaces, which fail the A.P. (see [31] for examples of 
subspaces of lp,p ^ 2, failing the A.P.). However, it turns out that, in 
all uniformly convex spaces, Question 3 (and a fortiori Question 2) has 
a positive answer, so that the "optimistic" conjecture is correct for these 
spaces. (See the corollary of* Theorem 5). To state this in full generality, 
we will need some terminology. We will say that a Banach space X con-
tains Z£'s uniformly if, for some I > 1, there is a sequence of subspaces 
Xn of X such that d(Xn, Z£) < l. It is known (cf. [13] [17]) that, if this 
property holds for some % > 1, it also holds for all X > 1. In particular, 
a uniformly convex space cannot contain Zj's uniformly (consider the case 
n = 2 and let % tend to 1). 

With this terminology, Dvoretzky's theorem says that any infinite-di-
mensional space contains ZîJ's uniformly. 

The study of the Z -̂subspaces of a Banach space is intimately connected 
with the notions of type and cotype, which are defined as follows. Let 
D = { — 1,1}^, let [i be the uniform probability on B and let 
en: D->{—1, +1} be the w-th coordinate on D. We will denote the space 
L2(B9 p-, X) simply by L2(X). 
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DEFINITION. Let l < ^ < 2 < g < oo. A space X is of type p (resp. 
of cotype q) if there is a constant G such that, for all finite sequen-
ces (xl9 ...,xn) in X9 we have 

l|v.|U*«0(I><»,P 
(r«p. |J;V(| >i(2iw«)"Y 

1 

We will denote by TP(X) (resp. Gq(X)) the smallest constant 0 satis-
fying this. Every normed space is of type 1 and of cotype oo. We refer 
to [22] for more details. We should mention that these notions are used 
frequently in the current study of probability on Banach spaces (of. e.g. 
[12]). In the latter area, the spaces whieh do not contain Z£'s uniformly are 
called B-convex) this class of spaces was introduced by A. Beck, in the 
early sixties, to investigate the strong law of large numbers for vector 
valued random variables. 

The results of [22] and [17] combined together, yield the following 
theorem, which relates these analytic notions with the more geometric 
concept of "containing Z£'s". 

THEOREM 3 ([22] [17]). For an infinite-dimensional space X, let 

p(X) = sup{j)|X is of type %} 

q(X) = inf {q\X is of cotype q}. 

Then, X contains l™s uniformly for p = p(X) and also for p = q(X). 

This implies that p(X) (resp. q(X)) coincides with the smallest (resp. 
largest) p such that X contains Z£'s uniformly. 

In particular, p(X) is non-trivial, i.e. p(X) > 1, iff X does not contain 
ZJ's uniformly; while q(X) is non-trivial, i.e. q(X) < oo, iff X does not 
contain Z '̂s uniformly. 

In the concluding remarks of [22], it was asked whether there is a 
"duality" between p(X) and q(X*)9 when p(X) > 1 . 

The key to solve this problem is the notion of "JT-convexity"; a Banach 
space X is called IT-convex if the orthogonal projection JS from L2(D9 p) 
onto the span of the sequence {en} induces a bounded operator, denoted 

13 — Proceedings.,., t. II 
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by JB, on L2(X). Whenever it is bounded, Ê is a projection onto the 

space of all series J* snxn, with xn in X, which converge in L2(X). 
7 1 = 1 

I t is rather striking that the boundedness of this single projection on 
L2(X) implies the boundedness of many projections on X, as the following 
result of Eigiel and Tomczak-Jaegermann shows: 

THEOEEM 4 ([6]). Any K-convex space X is locally n-Euclidean, which 
means that there is a constant G and, for each n and e>0, there is an integer 
N = N(e,n) satisfying the following property: 

for every subspace E cz X with dimE > N9 there is a subspace F cz E of 
dimension n and a projection P: X->F such that d(F9l%) <l + e and 

WW «J. 
The proof uses the same isoperimetric inequality as in [5] ; the space F 

and the projection P are obtained by a suitable random choice. For a dif-
ferent approach using random matrices, see [1]. 

Fortunately, it turns out that JT-convexity admits a simple "geome-
tric" characterization: • • 4 

THEOEEM 5 ([28]). A Banach space is K-convex iff it does not contain If s 
uniformly. 

I t is the "if" part which is non-trivial. This showâ that the conversero 
Theorem 4 is true: 

COEOLLAEY. The properties "X does not contain V?s uniformly", "p (X) > 1", 
"X is K-convex" and "X is locally n-Euclidean" are all equivalent. 

Several special cases were already known, in particular, for Banach 
lattices, cf. [34] [15]. Moreover, if X is IT-convex, then X is of type p 
iff Z* is of cotype p1 (cf. [22], remark 2.10); hence if p(X) > 1, we have: 

1 1 1 1 
p(X) q(X*) p(JT) q(X) = 1. 

We should mention that the proof of Theorem 5 relies heavily on some 
results from the theory of holomorphic semi-groups. 

We refer to [28] for more details-

Remark. The results of [29] suggest the following conjecture. 

CONJECTUEE. In any space X in which Question 2 has an affirmative 
anstoer, the same is true for Question 3. 
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Indeed, this is verified in [29] if q(X) = 2, and there is still some hope 
that the approach of [29] will prove the conjecture in general (cf. [29], 
p. 143). 

3 . A conjecture of Grothendieck 

n 
Let X, Y be Banach spaces and let u = £ xi ® yi be an element of the 
algebraic tensor product X® Y (xi eX, yx e Y). Let Bx be the unit ball 
of X. Grothendieck defined the injective and projective norms as 

and 
J 

n 

M A =îBi{^IWIIIy<ll}, 

where the infimum runs over all possible representations of u. He denoted 
by X<& Y and Xg» Y the completions of X® Y with respect to the cor-
responding norms (cf. [10] [11]). 

Obviously, ||«||v < IN|A, so that there is a natural norm decreasing map 
from X& Y into X® Y. At the end of [10], Grothendieck listed six open 
questions, which are now (essentially) all solved. The first (and main) 
one was the A.P. problem. The last one was the following: 

Question 4 If X ^ Y = X® Y, is it true that either X or Y must be 
finite-dimensional ? 

In view of the fact that || ||v and || ||A are, respectively, the smallest 
and the greatest reasonable tensor norm, it is natural to ask if they can 
happen to be equivalent on X® Y in any other case than the trivial one 
when one of the dimensions is finite. This is precisely the content of Ques-
tion 4. Let us consider the case when X and Y are in duality. Then X* ® X 
can be identified with the closure of the finite rank operators in the space 
&(X, X) of all bounded operators on X. 

On the other hand, the elements u in X* ® X which are in the image 
of the natural map J: X*gX->X® X are exactly those which can be 
written as 

oo 
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co 
for all x in X, with #* in X* and xn in X, such that JJ ||#*|| ||#J| < oo. 

i 
These are called nuclear operators and their "nuclear norm" is defined as 

oo 

N(u) = inf J£ \\a>*\\ \\xn\\ where the infimum runs over all representations 
i 

satisfying (5). Grothendieck-showed that X has the A. P. iff J : X * ® X 
- > X ® X is injective; in that case the trace of a nuclear operator is well 
defined, and it is then easy to prove that J is an isomorphism only if the 
dimension of X is finite. However, until recently it was not known whether 
X must be f.d. when J is merely assumed to be surjective. This question 
belongs to the same family as Question 2. Boughly formulated, it reads: 
if the dimension of X is infinite, is there any non-trivial operator at all 
in X*®X? Indeed, the nuclear operators are trivial in the sense that they 
are just absolutely convergent series of rank one operators. 

We should mention that a positive answer to each of the preceding 
questions was given in [3] if X does not contain Z '̂s uniformly (this can 
now be derived easily from the more recent Theorems 4 and 5). Moreover, 
the following finite-dimensional version of Grothendieck's conjecture 
was proved in [25]. 

THEOEEM 6. Let {Xn} be a sequence of f.d. Banach spaces and let Y be 
a Banach space. Assume that for some constant G9 we have ||w||A < ö[|«||v, 
for all uinXn®Y and for all n. Then either sup dim Xn < oo or dim Y < oo. 

n 

In particular, if either X or Y has a basis (or merely the property in 
Question 2), then the answer to Question 4 in "yes". However, in general, 
the answer to both of these questions is negative: 

THEOEEM 7. Let E be any Banach space of cotype 2. (For instance E =lx 
or E = Z2.) Then there exists a Banach space X which contains E isometrically 
and is such that: 

(i) X ® X = X ® X 
(ii) The map J from X*®X into X*®X is surjective. Equivalently, 

there is a constant G such that every finite rank operator u on X satisfies 
N(u) < G\\u\\. 

Moreover, if E is separable, we can obtain a separable space X as above. 

We do not know, however, if there is a reflexive space X (or merely 
not containing IJ which possesses any of the properties (i) and (ii). Sim-
ilarly, Question 2 is still open for reflexive spaces. Also, we could not con-
struct a space X such that every compact operator on X is nuclear. 
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Note that if P: X-»X is a finite rank projection, then it is well known 
that N(P) > (rankP)1'2, therefore Theorem 2 is a corollary of Theorem 7 

1 
with ô = —. To describe the proof of Theorem 7, we focus on (i) ((ii) is 

obtained as a consequence of (i) by the results of [25]). 
The basic idea is to construct a sequence of Banach spaces EQ cz Ex 

cz Ezcz ... Encz En+l cz ..., with En isometrically embedded in JEJn+1 
with E0 = E, and such that, for some constant K, we have for all n and 
all u in En®En 

Once the sequence {JEJn} is obtained, it is quite easy to check that X = U En 
satisfies the above property (i). 

The difficulty in the construction of the sequence {En} lies in the fact 
that (6) can hold for some En+1 containing En, only if En satisfies a certain 
restrictive condition; therefore, to carry on the construction, we must 
make sure, a.t each step, that En+1 satisfies not only (6) but also this con-
dition, which we now make more explicit. 

Let u: E->F be an operator between Banach spaces, we say that u 
factors through a Hilbert space JBf if there are operators A : E->M and 
B: H-+F such that u = BA\ this property is "controlled" by the follow-
ing norm: yz(u) = inf(||J5|| ||JL||), where the infimum is over all possible 
factorizations of u. If u is an element of E®E, we will denote by y%(u) 
the above norm computed for the operator from E* into E associated to u. 
It is then easy to see that y%(u) < IMI^^ for any u in E®E. Therefore, 
if (6) holds, then the space En must satisfy 

\fueEn®En, y2(u)^K\\u\\v. (7) 

This strongly indicates that, in order to prove Theorem 7, we must first 
investigate this condition (7). This was done in [25]. 

THEOREM 8. [25] Let E and F be Banach spaces such that both E* and F 
are ofwtype 2. Then there exists a constant K (depending only on the cotype 2 
constants of E* and F) such that every finite rank operator u: E-+F satisfies 

y2(u)^K\\u\\. 

COEOLLAEY. If moreover E or F has the A.P., then any bounded oper-
ator u : E->F factors through a Eilbert space. 

Applied to the identity operator, this yields 
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COEOLLAEY. If a Banach space E and its dual E* are of cotype 2, and 
if E possesses the A.P., then E is isomorphic to a Hilbert space. 

These results were conjectured in [21] (without the A.P.). Up to now, 
they cover all the known couples of Banach spaces E and F such that every 
bounded operator u: E-+Ffactors through a Hilbert space. They can be 
viewed as an "abstract" form of a classical theorem of Grothendieck, who 
proved this for E = L00 and F = L . His result was extended in many 
ways. Maurey (cf. [21]) discovered the relation with the notion of cotype 
and proved this result for E = L^ and F any space of cotype 2. The main 
examples of cotype 2 spaces are L1 spaces and their subspaces. More ge-
nerally, the dual or the predual of a 0*-algebra is of cotype 2 [33], as well 
as the quotients J^/B when JB is a reflexive subspace of L1 ([16], [24]). 
Becently, Bourgain [2] proved that LXJE} is of cotype 2. Actually, the 
last two examples play an important role in the proof of Theorem 7. 
I t is conceivable that the assumptions of Theorem 8 are necessary if nei-
ther E nor F is isomorphic to a Hilbert space (see [25], remark 2.4). How-
ever, the A.P. cannot be removed from the preceding two corollaries. 
Indeed, in the proof of Theorem 7, we actually construct a sequence {En} 
verifying (6) and also such that 

sap(7a(JBfft)< oo. (8) 
n 

This last property implies by Theorem 8 that for some constant K (inde-
pendent of n) wa have (7) and this enables us to carry on the inductive 
process. Finally, the space X constructed for Theorem 7 is of cotype 2, 
as well as its dual, but it cannot be isomorphic to a Hilbert space; in fact, 
this space X fails the A.P. and this shows that both corollaries would 
be false without the A.P. 

4. Upper bounds for the projection constants 

Let X be a Banach space. 
In this section we estimate the projection constant of an w-dimensional 

subspace E of X when n tends to infinity. We can define 

XX(E) =inf | |P | | and px(E) = inf {y2(P)> 

where the infimum runs over all possible projections P: X-±E. lx(E) is 
called the projection constant of E relative to X. We have clearly AX(E) 
<ftr(J&). 
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We then let 
en(X) = mvfix(E) 

where the supremum runs over all n-dimensional subspaces E cz X. For 
such an E, we have d (E, Z£) < en (X) and there exists a projection P : X->E 
such that ||P||< en(X). The asymptotic behaviour of en(X) when n->oo 
has attracted a lot of attention in recent years. For a general space, we 
have en(X) < Vn, and the "worst" cases are attained (at least asymptot-
ically) for X =s L1 or X = L°°. But if a space is "far" from these extreme 
cases, this can be improved. In [19], Lewis proved that 

en(L»)^Jp *l 
Following Lewis, this was generalized by many authors (Lewis, Tomczak-
Jaegermann, ...). For instance, it was proved in [18] (cf. also [37] for a 
better proof and other results) that if X iŝ of type p > 1 and of cotype 
q < oo, then en(X) < Gna for some constant G and a = l/p — ljq. The ques-
tion whether this can be improved to a = inax(l/p —\, \— ljq) (or any 
a < \, when l/p —ljq > \) is still open. It was (essentially) verified for Banach 
lattices in [27]. 

Although the "right" exponent is still in doubt, we do know that 
n"ll2en(X)^0 when n-+oo iff X does not contain ZJ's uniformly (cf. [23] 
and [26]), which means that p(X) > 1 and q(X) < oo. 

5. Open problems 

In this section, we mention two important open questions. First, the in-
finite-dimensional analogue of Theorem 1 or 2 is not known: 

Problem 1. Let X be an arbitrary infinite-dimensional space. Is there 
a bounded projection P : X->X such that both P and I—P have infinite-
dimensional ranges ? In other words, can any X be split into a non-trivial 
direct sum? 

For an interesting particular case, see [9], page 226. More generally, 
although there are spaces with few finite rank operators (cf. Section 3), 
it is not known whether there is a space which admits few bounded ope-
rators. Precisely, the following is open: • 

Problem 2. Is there an infinite-dimensional space X such that every 
bounded operator u: X->X is of the form Hdx+v with % scalar and v 
nuclear? 
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Actually, this is unknown even if we only ask for a compact v. A re-
lated example (X non-separable and t>'s of separable ranges) is con-
structed in [36], using special axioms. 

Of course, a positive answer to Problem 2 implies a negative one to 
Problem 1. Moreover, a separable space X asv in Problem 2 would be the first 
example of a separable Banach space on which every bounded ope-
rator has a non-trivial invariant subspace. 
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