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GILLES PISIER

Finite Rank Projections on Banach Spaces and
a Conjecture of Grothendieck

In this report we discuss several recent results concerning the existence
or non-existence of well behaved finite rank projections on a Banach space.
We will be interested in projections with large ranks and norms as small
a§ possible.

0. Standard noiations

‘We remind the definition of the Banach~Mazur distance d(Z, I') between
two Banach spaces:

a(B, F) = it {|T |T},

where the infimum is over all isomorphisms 7' from # onto #. If ¥ and I
are not isomorphie, we set d(#, F') = -}oo. As usual, we will denote by
Iy the space R" equipped with the norm

n

el = (3 lagt?)™.

1

1. The finiie-dimensional basjs problem

Since Enflo’s example [4], we know that there are Banach spaces which
fail the approximation property and, a foriiori, fail to have a basis.

By definition, a Banach space X has the approzimation properly (in
short A.P.) if the identity is approximable by finite rank operators uni-
formly on every compact subset of X.

The space X has a basis if (and only if) there is a sequence {P,} of finite
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rank projections on X such that

P, (X) < P,(X) for all n >1; (1)
rank P, = n; (2)
UP,(X) = X; (3)
sup |P, |l < oo. (4)

If we then select a sequence {,} sueh that 2, # 0 and x, eP,(X)n
NnKerP,_,, we obtain a basis of X in the usual sense.

One defines the basis constani of X as b(X) = inf{sup||P,|]} where
the infimum runs over all possible sequences {P,} as above. Clearly, this
makes sense also when X is of finite dimension d, by restricting (1) and
(2) to all n< d (and P, = Idx for all n > d).

We now examine b(X) for a finite-dimensional space X. Although
this is surprising at first glance, the result of Enflo does nof imply (and
is mot implied by !) the existence of a sequence {X,} of finite-dimensional
spaces with basis constants b(X,) tending to infinity with n. In fact, until
recently, the following question was still open:

Question 1. Is there a universal bound for 5(X) when X runs over all
finite-dimensional (in short f.d.) spaces ?

The only known upper bound for b(X) is b(X) < (dimX)"?, which
follows immediately from a classical result of F. John: on every n-dimen-
sional space there is an inner product norm which is Vn equivalent to
the original one (cf. [14]). Recently, Gluskin and Szarek gave the expected
negative answer to Question 1, (cf. [8], [32]). More precisely, we have

TarOREM 1 ([32]). There is an absolute constant & > 0 with the following
property: for each integer n, there is an n-dimensional space X, such that, for

every projection P: X, —X, with rank [—g—], we have |P|| > ¢ Vn. In partic-
ular, we have b(X,)> 6Vn.

‘We refer to [32] for the rather long and delicate proof of this result.
It should be mentioned that Szarek’s construction relies on probabilistic
ideas: the spaces X, are selected “at random” in a clever way so that the
property in Theorem 1 occurs actually with large probability. Szarek’s
methods were directly inspired by a previous (quite remarkable) paper
of Gluskin [7], where the latter proved the existence (with positive prob-
ability, in some sense) for each n of two m-dimensional spaces X,, ¥,
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satisfying

infn~'d(X,, ¥,) >0.

n
Later, Gluskin pushed his methods to answer Question 1 with a weaker
form of Theorem 1 (cf. [8]), while Szarek proved independently the essen-
tially sharp version of Theorem 1 quoted above.

2. The complemented 7} problem

Enflo’s example tells us that there exist Banach spaces which do not have
“enough” finite rank projections of uniformly bounded norms to appro-
ximate the identity operator in the pointwise topology.

This leaves open the following question, which can be roughly formu-
lated as follows: are there non-trivial finite rank projections at all on
a general space?

Question 2. Let X be an infinite-dimensional Banach space. Does there
exist a sequence {P,} of finite rank projections on X with uniformly
bounded norms and unbounded ranks?

Of course, this is much weaker than saying that X has a basis, since
{P,} is not required to satisfy (1) or (3); and, quite obviously, there are
spaces without the A.P. which possess the above property. In [20], Lin-
denstrauss reformulated the preceding question, in a stronger formulation:

Question 3. Let k, = rankP,. Can one find P,’s as in Question 2 with
t’Pe additional property that, for some p in [1, o], we have sup a(P,(X),
1)) < oo?

In that case, we can as well assume that &, = n and we then say that
X contains uniformly complemented I;’s. Moreover, it is easy to see thatb
the problem reduces to the cases p = 1,2 and oo,

In several special cases, positive answers were given in [34], [15]
and in [35]. To motivate Question 3, let us recall a fundamental theorem
of Dvoretzky (cf. [6]): for every infinite-dimensional space X, for every =
and s >0, we can find a subspace X, of X such that d(X,,1}) <1l+e
Roughly, this means that X reproduces somewhere the structure of Tucli-
dean spaces almost isometrically. For various reasons, mainly in operator
theorctic considerations, it is of interest to decide when we can find sub-
spaces X, as above together with projections P,: XX, such that
sup [P, |l < co. It is rather simple to check that IL” spaces or I, spaces
have this property for 1 < p < oo and not for p = 1 or oo. In L?, we even
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have complemented infinite-dimensional Hilbertian subspaces (take the
span of Gaussian variables, or Rademacher functions); but, in I,, this
is no longer true, so that, in general, we must restrict our attention to
the finite-dimensional -subspaces.

Unfortunately, in general, the answer to Question 2 is negative:

THEOREM 2 ([30]). There is an infinite-dimensional Banach space X
and a constant 8 >0 such thai all finite rank projections P: X—X satisfy

P> 8 (rankP)'".

In particular, X is & counterexample to the property in Question 1.

Remark. Let F be an n-dimensional subspace of a general space X.

Then there is a projection P: X—¥H with ||P] <lfﬁ. This is a classical
result (originally due to Kadeé—Snobar). Therefore, in the above space X,
this general upper bound cannot be improved (at least asymptotically)-
regardless of how F is chosen in X.

The space constructed for Theorem 2 also fails the A. P. We will rel
turn to this in the next section.

There is however a major difference here from the approximation prob-
lem. Indeed, now we know that there are extremely “nice” spaces, e.g.
uniformly convex spaces, which fail the A.P. (see [31] for examples of
subspaces of 1,, p # 2, failing the A.P.). However, it turns out that, in
all uniformly convex spaces, Question 3 (and a fortiori Question 2) has
a positive answer, so that the “optimistic” conjecture is correct for these
spaces. (See the corollary of Theorem 5). To state this in full generality,
we will need some terminology. We will say that a Banach space X con-
tains 13’s uniformly if, for some A >1, there i3 a sequence of subspaces
X, of X such that d(X,,?;) < A. It is known (cf. [13] [17]) that, if this
property holds for some A >1, it also holds for all 4 > 1. In particular,
a uniformly convex space cannot contain I7’s uniformly (consider the case
n = 2 and let 1 tend to 1).

With this terminology, Dvoretzky’s theorem says that any infinite-di-
mensional space contains 73’s uniformly.

The study of the I7-subspaces of a Banach space is intimately connected
with the notions of type and cotype, which are defined as follows. Let
D = {—1,1}, let p be the uniform probability on D and let
g,: D—{—1, +1} be the n-th coordinate on D. We will denote the space
I*(D, p; X) simply by L*(X). N
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DrrFINITION. Let 1 <p<2<¢< oo. A space X is of type p (resp.
of colype q) if there is a constant O such that, for all finite sequen-
ces (@y,...,2,) in X, we have

|3 ol < 03t
(resp. “2 S 0 > (2 I l”q)/q

We will denote by T,(X) (resp. 0,(X)) the smallest constant O satis-
fying this. HEvery normed space is of type 1 and of cotype oo. We refer
to [22] for more details. We should mention that these notions are used
frequently in the current study of probability on Banach spaces (cf. e.g.
[12]). In the latter area, the spaces which do not contain I}’s uniformly are
called B-convex; this class of spaces was introduced by A. Beck, in the
early sixties, to invegtigate the strong law of large numbers for vector
valued random variables.

The results of [22] and [17] combined together, yield the following
theorem, which relates these analytic notions with the more geometric
concept of “containing I3’s”.

TEEOREM 3 ([22] [17]). For an infinite-dimensional space X, let

p(X) = sup{p|X is of type p}
and
¢(X) = inf{g|X is of cotype g¢}.

Then, X contains 13’s uniformly for p = p(X) and also for p = q(X).

This implies that p(X) (resp. ¢(X)) coincides with the smallest (resp.
largest) p such that X contains I}’s uniformly.

In particular, p(X) is non-trivial, i.e. p(X) > 1, iff X does not contain
g uniformly; while ¢(X) is non-trivial, i.e. ¢(X) < oo, iff X does not
contain I%’s uniformly.

In the concluding remarks of [22], it was asked whether there is a
“duality” between p(X) and q(X*), when p(X)>1.

The key to solve this problem is the notion of “K-convexity”; a Banach
space X is called K-convex if the orthogonal projection R from L*(D, u)
onto the span of the sequence {z,} induces a bounded operator, denoted

13 — Proceedings..., t. II
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by R, on I?(X). Whenever it is bounded, B is a projection onto the

space of all series ) &,2,, with ®, in X, which econverge in I*(X).
n=1
It is rather striking that the boundedness of this single projection on
I?(X) implies the boundedness of many projections on X, as the following

result of Figiel and Tomezak-Jaegermann shows:

THEOREM 4 ([6]). Any K-conver space X is locally m-Euclidean, which
means that there is a constant C and, for each n and & > 0, there is an integer
N = N (e, n) satisfying the following property:

for every subspace E <= X with dimE > N, there is a subspaeeﬂli’ c F of
dimension n and a projection P: X—>F such that d(F,13) <1l+& and

IPl<C

The proof uses the same isoperimetric inequality as in [5]; the space F
and the projection P are obtained by a suitable random choice. For a dif-
ferent approach using random matrices, see [1].

Fortunately, it turns out that K—convemty a,dmlts a simple “geome-
tric” characterization:

THEOREM b ([28]). A Banach space is K-oowvew off it does not contain l“
uniformly.

It is the “if” part which is non-trivial. This shows that the converse to
Theorem 4 is true:

COROLLARY. The properties “X does not contain Z"’s uniformly”, “p(X)>1",
“X 18 K-convex” and “X is locally m-Buclidean” are all equwalcmt

Several special cages were already known, in particular, for Banach
lattices, ef. [34] [15]. Moreover, if X is K-convex, then X is of type p
iff X* is of cotype p’ (cf. [22], remark 2.10); hence if p(X) > 1, we have:

' 1 + i1 n 1 1
p(X) X T p X wX®
We should mention that the proof of Theorem 5 relies heavily on some
results from the theory of holomorphic semi-groups.
We refer to [28] for more details.

Remark. The results of [29] suggest the following conjecture.

CONJECTURE. In any space X in which Question 2 has an affirmative
answer, the same is true for Question 3.
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Indeed, this is verified in [29] if ¢(X) = 2, and there is still some hope
that the approach of [29] will prove the conjecture in genecral (cf. [29],
p. 143).

3. A conjecture of Grothendieck

n
Let X, Y be Banach spaces and let v = > #;®y, be an element of the

i=1
algebraic tensor product X® Y (2; € X, y; € ¥). Let By be the unit ball
of X. Grothendieck defined the injective and projective norms as

n
lully = sup { D' @* (@)y* (9:) 2* € Bxs; y* € By}
1
and

hully = int { 3oy},

where the infimum runs over all possible representations of #. He denoted
by X® Y and X® Y the completions of X ® ¥ with respect to the cor-
responding norms (cf. [10] [11]).

Obviously, |lull, < |lu|l;, so that there is a natural norm decreasing map
from XY into X® Y. At the end of [10], Grothendieck listed six open
questions, which are now (essentially) all solved. The first (and main)
one was the A.P. problem. The last one was the following:

Question 4 If XY = X® Y, is it true that either X or ¥ must be
finite-dimensional ¢

In view of the fact that || ||, and || ||, are, respectively, the smallest
and the greatest reasonable tensor norm, it is natural to ask if they can
happen to be equivalent on X® Y in any other case than the trivial one
when one of the dimensions is finite. This is precisely the content of Ques-
tion 4. Let us consider the case when X and Y are in duality. Then X*® X
can be identified with the closure of the finite rank operators in the space
Z(X, X) of all bounded operators on X.

On the other hand, the elements % in X*® X which are in the image
of the natural map J: X*Q X—-X® X are exactly those which can be
written as

u(@) = D o) (a)a, (5)
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for all # in X, with #, in X* and @, in X, such that > || |lo,l < oo.
1
These are called nuclear operators and their “nuclear norm?” is defined as
N(u) = inf > o]l |lo,]l where the infimum runs over all representations
< .

satisfying (5). Grothendieck showed that X has the A. P, iff J: X*® X
—~X® X is injective; in that case the trace of a nuclear operator is well
defined, and it is then easy to prove that J is an isomorphism only if the
dimension of X is finite. However, until recently it was not known whether
X must be £.d. when J is merely assumed to be surjective. This question
belongs to the same family as Question 2. Roughly formulated, it reads:
if the dimension of X is infinite, is there any non-trivial operator at all
in X*® X ? Indeed, the nuclear operators are trivial in the sense that they
are just absolutely convergent series of rank one operators.

We should mention that a positive answer to each of the preceding
questions was given in [3] if X does not contain I}’s uniformly (this can
now be derived easily from the more recent Theorems 4 and 5). Moreover,
the following finite-dimensional version of Grothendieck’s conjecture
was proved in [25].

THEOREM 6. Let {X,} be a sequence of f.d. Banach spaces and let Y be
a Banach space. Assume that for some constant C, we have ||lu|, < Clul,,
forhall uin X, ® Y and for all n. Then either supdim X, < coor dimY < oo.

. n

In particular, if either X or Y has a basis (or merely the property in
Question 2), then the answer to Question 4 in “yes”. However, in general,
the answer to both of these questions is negative:

THEOREM 7. Let H be any Banach space of cotype 2. (For instance H =1,
or B = 1,.) Then there exists & Banach space X which contains H isometrically
and is such that:

(i) XX =X®X

(i) The map J from X*®X into X*® X is surjective. Hquivalenily,
1here is a constant O such that every finite rank operator w on X satisfies
N (u) < Ollul.

Moreover, if B is separable, we can obiain a separable space X as above.

We do not know, however, if there is a reflexive space X (or merely
not containing I,) which possesses any of the properties (i) and (ii). Sim-
ilarly, Question 2 is still open for reflexive spaces. Also, we could not con-
struet a space X such that every compact operator on X is nuclear.
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Note that if P: XX is a finite rank projection, then it is well known
that N (P) > (rank.P)"?, therefore Theorem 2 is a corollary of Theorem 7

1 . oy iy s
with 6 = nk To deseribe the proof of Theorem 7, we focus on (i) ((ii) is

obtained as a consequence of (i) by the results of [25]).

The basic idea is to construet a sequence of Banach spaces H, = H,
clyc..B,cB,,,c..., with H, isometrically embedded in %,
with B, = H, and such that, for some constant K, we have for all » and
all  in H,®FH,

Ml 418841 < Ml 813, (6)

Once the sequence {#, } is obtained, it is quite easy to check that X = (JH,
satisfies the above property (i).

The difficulty in the construction of the sequence {#,} lics in the fact
that (6) can hold for some H, ., containing H,, only if B, satisfies a certain
restrictive condition; therefore, to carry on the construction, we must
make sure, at each step, that ¥, ., satisfies not only (6) but also this con-
dition, which we now make more explicit.

Let w: E—I be an operator between Banach spaces, we say that
factors through a Hilbert space H if there are operators 4: E—H and
B: H—I" such that w = BA; this property is “controlled” by the follow-
ing norm: y.(#) = ini(||B| ||4]l), where the infimum is over all possible
factorizations of 4. If % is an element of H® F, we will denote by y,(u)
the above norm computed for the operator from H* into K associated to u.
It is then easy to see that y,(u) < |lullzgz for any v in @ H. Therefore,
if (6) holds, then the space H, must satisfy

Vuel,®8,, 7(u)<Klul,. (7)

This strongly indicates that, in order to prove Theorem 7, we must {first
investigate this condition (7). This was done in [25].

THROREM 8. [25] Leét H and I be Banach spaces such that both B* and T
are of eotype 2. Then there exists a constant I (depending only on the cotype 2
constamis of B* and I') such that every finite rank operator w: BT satisfies

v2(%) < K.

CoRrROLLARY. If morcover Il or F has the A.P., then any bounded oper-
ator w: H—T faclors through o Hilbert space.

Applied to the identity operator, this yields
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COROLLARY. If a Banach space E and its dual E* are of cotype 2, aml
if B possesses the A.P., then H is isomorphic to a Hilbert space.

Thege results were conjectured in [21] (without the A.P.). Up to now,
they cover all the known couples of Banach spaces F and F such that every
bounded operator u: EH—I factors through a Hilbert space. They can be
viewed as an “abstract” form of a cla.ssma.l theorem of Grothendieck, who
proved this for # = L* and F = I'. His result was extended in many
ways. Maurey (cf. [21]) discovered the relation with the notion of cotype
and proved this result for # = L and I" any space of cotype 2. The main
examples of cotype 2 spaces are L' spaces and their subspaces. More ge-
nerally, the dual or the predual of a O*-algebra is of cotype 2 [33], as well
as the quotients I'/R when R is a reflexive subspace of L' ([16], [24]).
Recently, Bourgain [2] proved that L'/H! is of cotype 2. Actually, the
last two examples play an important role in the proof of Theorem 7.
It is conceivable that the assumptions of Theorem 8 are necessary if nei-
ther E nor ¥ is isomorphic to a Hilbert space (see [25], remark 2.4). How-
ever, the A.P. cannot be removed from the preceding two corollaries.
Indeed, in the proof of Theorem 7, we actually construct a sequence {#,}
verifying (6) and also such that

sup Oy (#,) < oo. (8)

This last property implies by Theorem 8 that for some constant K (inde-
pendent of ») we have (7) and this enables us to carry on the inductive
process. Finally, the space X constructed for Theorem 7 is of cotype 2,
as well as its dual, but it cannot be isomorphic to a Hilbert space; in fact,
this space X fails the A.P. and this shows that both corollaries would
be false without the A.P.

4. Upper bounds for the projection constants

Let X be a Banach space.
In this section we estimate the projection constant of an n-dimensional
subspace E of X when n tends to infinity. 'We can define

ix(B) =inf||P] and ux(H) = inf{y,(P)}

where the infimum runs over all possible projections P: X »H. Ax(H) is
called the projection constant of H relative to X. We have clearly Ay (H)

< pux(H).
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‘We then let
eﬂ(x) = Sup.u’X(E)

where the supremum runs over all n-dimensional subspaces B < X. For
such an 7, we have d(H, I}) < ¢, (X) and there exists a projection P: X—H
such that |P|| < e,(X). The asymptotic behaviour of e,(X) when n—>oco
has attracted a lot of attention in recent years. For a general space, we

have ¢, (X) < l/o_z, and the “worst” cases are attained (at least asymptot-
ically) for X = L' or X = L™. But if a space is “far” from these extreme
cages, this can be improved. In [19], Lewis proved that

e, (L*) < fn| _%I

Following Lewis, this was generalized by many authors (Lewis, Tomeczak-
Jaegermann, ...). For instance, it was proved in [18] (cf. also [37] for a
better proof and other results) that if X is”of type » >1 and of cotype
g < oo, then e, (X) < On® for some constant 0 and a = 1/p— 1/q. The ques-
tion whether this can be improved to ¢ = max(l/p—3i,i—1/q) (or any
a < 5, when1/p —1/q > 3)is still open. It was (essentially) verified for Banach
lattices in [27].

Although the “right” exponent is still in doubt, we do know that
n~Y2%,, (X)->0 when n—oo iff X does not contain I*’s uniformly (cf. [23]
and [26]), which means that p(X)>1 and ¢(X) < oo.

B

5. Open problems

In this section, we mention two important open questions. First, the in-
finite-dimensional analogue of Theorem 1 or 2 is not known:

Problem 1. Let X be an arbitrary infinite-dimensional space. Is there
a bounded projection P: X—X such that both P and I —P have infinite-
dimensional ranges? In other words, can any X be split into a non-trivial
direct sum?

For an interesting particular case, see [9], page 226. More generally,
although there are spaces with few finite rank operators (cf. Section 3),
it is not known whether there is a space which admits few bounded ope-
rators. Precisely, the following is open: -

Problem 2. Is there an infinite-dimensional space X such that every
bounded operator #: X —+X is of the form AIdy-v with 4 scalar and v
nuclear?
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Actually, this is unknown even if we only ask for a compact v». A re-
lated example (X non-separable and v’s of separable ranges) is con-
structed in [36], using special axioms.

Of course, a positive answer to Problem 2 implies a negative one to
Problem 1. Moreover, a separable space X as'in Problem 2 would be the first
example of a separable Banach space on which every bounded ope-
rator has a non-trivial invariant subspace.
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