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Abstract. We present an overview of the theory of “Operator Spaces”
(sometimes called “non-commutative Banach spaces”), recently devel-
oped by Effros, Ruan, Blecher, Paulsen and others. We describe several
applications of this new ideology to operator algebras and to various
similarity problems.
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1 The Theory of Operator Spaces

The notion of “operator space” is intermediate between “Banach space” and “C∗-
algebra”. An operator space (o.s. in short) is simply a Banach space E (or a
normed space before completion) given with an isometric embedding j : E →
B(H) into the space B(H) of bounded operators on some Hilbert space H . By
a slight abuse, we will often identify E with j(E). We can then say that an o.s.
is simply a (closed) subspace of B(H), or equivalently a (closed) subspace of a
C∗-algebra (since, by Gelfand’s theorem, C∗-algebras are themselves embedded
into some B(H)).

Although this notion had appeared earlier, the theory itself really took off
only after Z.J. Ruan’s thesis [Ru1] circulated. His “abstract” characterization of
operator spaces (see below) plays a crucial rôle to construct new operator spaces
from known ones. In particular, immediately after this, Blecher-Paulsen [BP1]
and Effros-Ruan [ER3] independently discovered that the latter characterization
allows to introduce a duality in the category of operator spaces (see §1.4 below)
and they developed the theory much further (cf. [ER2]–[ER6], [B1, B3, P2]).

The definition of operator spaces is a bit disappointing: every Banach space
E embeds isometrically into B(H) for a suitable H , hence every such space can be
viewed (in at least one way, and actually in many) as an operator space. But the
novelty is in the morphisms (or the isomorphisms) which are no longer those of
the category of Banach spaces: instead of bounded linear maps, we use completely
bounded (in short c.b.) ones, defined in §1.1 below. Those emerged as a powerful
tool in the early 80’s in works of Haagerup, Wittstock, Paulsen (see [P1]). Their
definition was somewhat implicit in the earlier works of Stinespring (1955) and
Arveson (1969) on completely positive maps.
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430 Gilles Pisier

Actually, the theory has been also considerably influenced by several contri-
butions made before Ruan’s thesis, as will be seen below. We should also mention
that operator spaces were preceded by “operator systems” (these are self-adjoint
operator spaces containing the unit): inspired by Kadison’s ideas on “function
systems” and by Arveson’s extension theorem (1969), Choi and Effros developed
in the 70’s an extensive program to study operator systems with unital completely
positive maps as morphisms. In particular, the ideas of duality and quotient spaces
already appeared in this context (see [CE]). There, the additional order structure
dims the parallelism with Banach spaces, but the overall influence of this program
can still be seen throughout the theory.

One of the great advantages of operator spaces over C∗-algebras is that they
allow the use of finite dimensional tools and isomorphic invariants (as in the so-
called “local theory” of Banach spaces) in operator algebra theory (see §1.9 below):
we can work with a distance dcb(E,F ) which measures the degree of isomorphism
of two isomorphic operator spaces E,F (see §1.1 below). In sharp contrast, C∗-
algebras are much more rigid: there, all morphisms are automatically contractive,
all isomorphisms are isometric and C∗-algebras have unique C∗-norms. As illus-
trated below, operator space theory has opened the door to a massive transfer of
technology coming from Banach space theory. This process (the “quantization”
of Banach space theory, according to the terminology in [E]) is bound to find
applications for Banach spaces too. Up to now however, this has mostly benefit-
ted operator algebra theory by leading to the solutions of some old problems (for
instance, the Halmos similarity problem for polynomially bounded operators, see
Example 2.1) while opening broad new directions of research, making many points
of contact with other fields.

The main motivation for operator space theory is roughly this: very often,
a C∗-algebra A comes equipped with a distinguished system of generators, some-
times finite. Call E the linear span of these generators. Then, while the normed
space structure of E reveals little about A, it turns out that the operator space
structure of E carries a lot of information about A, and the specific morphisms
of o.s. theory allow to keep track of the correspondence E ↔ A. However, many
constructions which are natural within operator spaces (such as duality or inter-
polation) do not make sense for C∗-algebras, yet the systematic investigation of
properties of E leads to a “new” frame of mind, say a new intuition which ulti-
mately can be applied to A. A good illustration of the fruitfulness of this approach
is furnished by the main result in [JP]: by producing an uncountable collection
of finite dimensional operator spaces (Ei) which are mutually separated, i.e. such
that inf{dcb(Ei, Ej) | i ≠ j} > 1, one obtains as a corollary that the tensor prod-
uct B(ℓ2)⊗B(ℓ2) admits more than one C∗-norm, thus answering a long standing
open question (see §1.10). This is a good case study: an investigation that the
“new ideology” would surely pursue for its own sake (whether the set of finite
dimensional operator spaces is separable), for which the best estimates turn out
to depend on deep results of number theory (“Ramanujan graphs”) and which
happens to lead to the solution of a well known C∗-algebraic problem, a priori not
involving operator spaces. Of course, it is the firm belief that more situations like
this one will come up which keeps the field blooming.
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Much of the research from the intensive development of the last ten years is
surveyed below. However, we found the directions currently being explored too
diverse to be all duly recorded here, for lack of space. For instance, the reader
should consult other sources for an account of Effros and Ruan’s work on quantum
groups (see [ER8]) and Ruan’s work on amenability and Kac algebras ([Ru3, Ru4]).

Notation. We denote by ℓn2 the n-dimensional complex Hilbert space. The space
B(ℓn2 ) can be identified with the space Mn of all n × n matrices with complex
entries. Let H1, H2 be two Hilbert spaces. We denote by H1⊗2H2 their Hilbertian
tensor product. We denote by B(H1, H2) the space of all bounded operators
T : H1 → H2, equipped with its usual norm. When H1 = H2 = H we denote
it simply by B(H). The same notation is used below when H1, H2 or H are
Banach spaces. When T has ∥T ∥ ≤ 1, we call it “contractive” and refer to it as “a
contraction”. Given two vector spaces V1, V2, we denote by V1⊗V2 their algebraic
tensor product. All the vector spaces considered here are over the complex scalars.
We will denote by H the complex conjugate of a (complex) Hilbert space H and by
h → h the canonical antilinear isometry fromH toH . We will use the abbreviation
o.s. either for “operator space” or for “operator spaces” depending on the context.

1.1 The “norm” of an operator space. Complete boundedness

Let E ⊂ B(H) be an operator space. Then Mn⊗E can be identified with the space
of all n × n matrices with entries in E, which we will denote by Mn(E). Clearly
Mn(E) can be viewed as an operator space naturally embedded into B(Hn), where
Hn = H ⊕ · · · ⊕H (n times). Let us denote by ∥ ∥n the norm of Mn(E) (i.e.
the norm induced by B(Hn)). Of course, when n = 1, we recover the ordinary
norm of E. We have a natural embedding Mn(E) → Mn+1(E) taking x to ( x 0

0 0 ) ,
with which we can view Mn(E) as included in Mn+1(E), and ∥ ∥n as induced by
∥ ∥n+1. Thus, we may consider the union

⋃
n Mn(E) as a normed space equipped

with its natural norm denoted by ∥ ∥∞ and we denote by K[E] its completion.
We also denote K0 =

⋃
Mn. Our notation here is motivated by the fact that if

E = C, the completion of K0 =
⋃
Mn coincides isometrically with the C∗-algebra

K of all compact operators on the Hilbert space ℓ2. It is easy to check that the
union

⋃
n Mn(E) can be identified isometrically with K0 ⊗ E, and if we denote

by {eij} the classical system of matrix units in K, then any matrix x = (xij) in
Mn(E) can be identified with

∑n
ij=1 eij ⊗ xij ∈ K ⊗ E ⊂ K[E]. The basic idea of

o.s. theory is that the Banach space norm on E should be replaced by the sequence
of norms (∥ ∥n) on the spaces (Mn(E)), or better by the single norm ∥ ∥∞ on
the space K[E] (we sometimes refer to the latter as the o.s.-norm of E), so that the
unit ball of E should be replaced by that of K[E], as illustrated in the following.

Definition. Let E1 ⊂ B(H1) and E2 ⊂ B(H2) be operator spaces, let u : E1 →
E2 be a linear map, and let un : Mn(E1) → Mn(E2) be the mapping taking (xij)
to (u(xij)). Then u is called completely bounded (c.b. in short) if supn ∥un∥ < ∞
and we define ∥u∥cb = supn ∥un∥. Equivalently, u is c.b. iff the mappings un

extend to a single bounded map u∞ : K[E1] → K[E2] and we have ∥u∥cb = ∥u∞∥.
We denote by cb(E1, E2) the space of all c.b. maps u : E1 → E2, equipped with
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the cb-norm. Thus, the o.s. analog of the identity ∥u∥ = sup{∥u(x)∥ | ∥x∥ ≤ 1}
can be written as

∥u∥cb = sup{∥u∞(x)∥ | x ∈ K[E], ∥x∥ ≤ 1}.

Now that we have the “right” morphisms, of course we also have the isomor-
phisms: we say that two operator spaces E1, E2 are completely isomorphic (resp.
completely isometric) if there is an isomorphism u : E1 → E2 which is c.b. as well
as its inverse (resp. and moreover such that ∥u∥cb = ∥u−1∥cb = 1). We say that an
isometry u : E1 → E2 is a complete isometry if ∥u∥cb = ∥u−1

|u(E)∥cb = 1. We say

that u is a complete contraction (or is completely contractive) if ∥u∥cb ≤ 1. Note
that the preceding properties correspond respectively to the cases when u∞ is an
isomorphism, an isometry or a contraction.

Let E1, E2 be two completely isomorphic operator spaces, we define

dcb(E1, E2) = inf{∥u∥cb ∥u−1∥cb}

where the infimum runs over all possible complete isomorphisms u : E1 → E2.
This is of course analogous to the “Banach-Mazur distance” between two Banach
spacesE1, E2 defined classically by d(E1, E2) = inf{∥u∥ ∥u−1∥}, the infimum being
this time over all isomorphisms u : E1 → E2. By convention, we set d(E1, E2) = ∞
(or dcb(E1, E2) = ∞) when no (complete) isomorphism exists.

We take this opportunity to correct a slight abuse in the definition of
an operator space: consider two (isometric) embeddings j1 : E → B(H1) and
j2 : E → B(H2) of the same Banach space into some B(H). We will say (ac-
tually we rarely use this) that these are “equivalent” (or define “equivalent o.s.
structures”) if j2(j1)−1 : j1(E) → j2(E) is a complete isometry. Then, by an o.s.
structure on a Banach space B what we really mean is an equivalence class with
respect to this relation. As often, we will frequently abusively identify an equiva-
lence class with one of its representative, i.e. with a “concrete” operator subspace
E ⊂ B(H).

Consider for instance a C∗-algebra A. Then any two isometric ∗-
representations j1 : A → B(H1) and j2 : A → B(H2) are necessarily “equivalent”
in the above sense. (Recall that C∗-algebras such as A and Mn(A) have unique
C∗-norms). We will call the resulting operator space structure on A the “natural”
one, (this applies a fortiori to von Neumann algebras). Note that, throughout this
text, whenever a C∗-algebra is viewed as an o.s., it always means in the “natural”
way (unless explicitly stated otherwise).

We end this section by a brief review of the factorization properties of c.b. (or
c.p.) maps. The following statement (due to Wittstock, Haagerup and Paulsen
independently) plays a very important role throughout the theory.
Fundamental Factorization Theorem of c.b. maps. For any c.b. map
u : E1 → E2 (Ei ⊂ B(Hi), i = 1, 2) between operator spaces, there are a Hilbert
space H, a ∗-representation π : B(H1) → B(H) and operators V : H → H2

and W : H2 → H with ∥V ∥ ∥W∥ ≤ ∥u∥cb such that, for any x in E1, we have
u(x) = V π(x)W.
We say that u : E1 → E2 is completely positive (c.p. in short) if for any n and
any x in Mn(E1) ∩Mn(B(H1))+ we have un(x) ∈ Mn(E2) ∩Mn(B(H2))+. (Here
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Mn(B(H))+ denotes the positive cone of the C∗-algebra Mn(B(H)).) Actually,
c.p. maps are of interest only when E1 is a C∗-algebra or an operator system.
When, say, E1 is a C∗-algebra, E2 = B(H2), then u is c.p. iff the above fac-
torization actually holds with V = W ∗ (Stinespring). In that case, it is known
(Hadwin-Wittstock) that a map u : E1 → B(H2) is c.b. iff it is a linear combi-
nation of c.p. maps. Moreover, when E2 = B(H2), any c.b. map u : E1 → E2,
defined on an arbitrary o.s. E1 ⊂ B(H1), extends with the same c.b. norm to
the whole of B(H1). This property of B(H) plays the same role for o.s. as the
Hahn-Banach extension theorem for Banach spaces. The o.s. which possess this
extension property (like E2 = B(H2) above) are called injective, they are all of
the form E = pAq, where A is an injective C∗-algebra and p, q are two projections
in A ([Ru2]), moreover (R. Smith, unpublished) when E is finite dimensional, A
also can be chosen finite dimensional. In the isomorphic theory of Banach spaces,
the separable injectivity of c0 is classical (Sobczyk), and Zippin proved the deep
fact that this characterizes c0 up to isomorphism; the analogous o.s. questions are
studied in [Ro]. Of course, there is a parallel notion of projective o.s. in terms of
lifting property, see [B2, ER9] for more on this theme.

We refer the reader to [P1] for more information and for precise references on
c.b. maps. See the last chapter in [Pi7] for the notion of p-complete boundedness
in the case when H1, H2 are replaced by two Banach spaces; see also [LM1] for the
multilinear case.

1.2 Minimal tensor product. Examples

Let E1 ⊂ B(H1) and E2 ⊂ B(H2) be two operator spaces. There is an obvious
embedding j : E1⊗E2 → B(H1⊗2H2) characterized by the identity j(x1⊗x2)(h1⊗
h2) = x1(h1) ⊗ x2(h2). We denote by E1 ⊗min E2 the completion of E1 ⊗ E2 for
the norm x → ∥j(x)∥. Clearly j extends to an isometric embedding, which allows
us to view E1 ⊗min E2 as an operator space embedded into B(H1 ⊗2 H2). This
is called the minimal (= spatial) tensor product of E1 and E2. For example, let
E ⊂ B(H) be an operator space. Then Mn⊗minE can be identified with the space
Mn(E), and K[E] can be identified isometrically with K ⊗min E. Thus, for any
linear map u : E1 → E2, we have ∥u∥cb = ∥I ⊗ u : K ⊗min E1 → K ⊗min E2∥ =
∥I ⊗ u : K ⊗min E1 → K ⊗min E2∥cb. More generally, it can be shown that, for
any operator space F ⊂ B(K) (K Hilbert), we have ∥IF ⊗ u : F ⊗min E1 →
F ⊗min E2∥ ≤ ∥u∥cb. Consequently, if v : F1 → F2 is another c.b. map between
operator spaces, we have ∥v⊗u : F1⊗minE1 → F2⊗minE2∥cb ≤ ∥v∥cb∥u∥cb. Thus
c.b. maps can also be characterized as the ones which “tensorize” with respect to
the minimal tensor product.

Remark. When E1, E2 are C∗-subalgebras in B(H1) and B(H2), then E1 ⊗minE2

is a C∗-subalgebra of B(H1 ⊗2 H2). By a classical theorem of Takesaki (see also
§1.10 below), the norm ∥ ∥min is the smallest C∗-norm on the tensor product of
two C∗-algebras (and it does not depend on the particular realizationsEi ⊂ B(Hi),
i = 1, 2). For Banach spaces, Grothendieck [G] showed that the injective tensor
product of two Banach spaces corresponds to the smallest reasonable tensor norm
on B1⊗B2. The analogous result for operator spaces is proved in [BP1]: E1⊗minE2
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is indeed characterized by a certain minimality among the “reasonable” operator
space structures on E1 ⊗ E2.

Just like in the C∗-case, the minimal tensor product is “injective” in the o.s.
category: this means that, given o.s. E1, E2, if Fi ⊂ Ei (i = 1, 2) are further closed
subspaces, then F1⊗minF2 can be identified with a closed subspace of E1⊗minE2.
Moreover, this tensor product is “commutative” (this means that E1⊗minE2 can be
identified with E2⊗minE1) and “associative” (this means that given Ei i = 1, 2, 3,
we have

(E1 ⊗min E2)⊗min E3 ≃ E1 ⊗min (E2 ⊗min E3)).

We will meet below several other tensor products enjoying these properties.

1.3 Ruan’s theorem. Examples

It is customary to describe a Banach space before completion, simply as a vector
space equipped with a norm. Ruan’s theorem allows to take a similar viewpoint
for operator spaces. Let V be a (complex) vector space and, for each n ≥ 1, let
∥ ∥n be a norm on Mn(V ) = Mn ⊗V . For convenience, if x ∈ Mn(V ), a, b ∈ Mn

we denote by a · x · b the “matrix product” defined in the obvious way. Consider
the following two properties:

(R1) ∀n ≥ 1 ∀a, b ∈ Mn ∀x ∈ Mn(V ) ∥a · x · b∥n ≤ ∥a∥Mn
∥x∥n∥b∥Mn

(R2) ∀n,m ≥ 1∀x ∈ Mn(V )∀y ∈ Mm(V )

∥∥∥∥

(
x 0
0 y

)∥∥∥∥
n+m

= max{∥x∥n, ∥y∥m}.

It is easy to check that the sequence of norms associated to any operator space
structure on V does satisfy this. We can now state Ruan’s theorem, which is
precisely the converse (a simplified proof appears in [ER5]).

Theorem ([Ru1]). Let V be a complex vector space equipped with a sequence
of norms (∥ ∥n)n≥1, where, for each n ≥ 1, ∥ ∥n is a norm on Mn(V ).
Then this sequence of norms satisfies (R1) and (R2) iff there is a Hilbert space
H and a linear embedding j : V → B(H) such that, for each n ≥ 1, the map
IMn

⊗ j : Mn(V ) → Mn(B(H)) is isometric, in other words, iff the sequence
(∥ ∥n) “comes” from an operator space structure on V .

Some examples. Let C ⊂ B(ℓ2) and R ⊂ B(ℓ2) be the “column” and “row”
Hilbert spaces defined by C = span[ei1 | i ≥ 1] and R = span[e1j | j ≥ 1]. Then,
we have (completely isometrically) K ≃ C ⊗min R. Moreover, the o.s.-norm for
these two examples can be easily computed as follows: for any finitely supported
sequence (ai)i≥1 of elements of K we have:

∥∥∥
∑

ai ⊗ ei1
∥∥∥
K[C]

=
∥∥∥
∑

a∗i ai
∥∥∥
1/2

K
and

∥∥∥
∑

aj ⊗ e1j
∥∥∥
K[R]

=
∥∥∥
∑

aja
∗
j

∥∥∥
1/2

K
.

Thus even though these spaces are clearly isometric (as Banach spaces) to ℓ2, their
(o.s. sense)-norm is quite different, and actually it can be shown that R and C
are not completely isomorphic. More precisely, let Cn = span[ei1 | 1 ≤ i ≤ n]
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and Rn = span[e1j | 1 ≤ j ≤ n]. Then it can be shown that dcb(Rn, Cn) = n,
which is the maximum value of dcb(E,F ) over all pairs E,F of n-dimensional op-
erator spaces (see §1.9 below). Thus Rn, Cn (although they are mutually isometric
and isometric to ℓn2 ) are “extremally” far apart as operator spaces. Some simple
questions about them can be quite tricky. For instance, consider the direct sum
R ⊕ C ⊂ B(ℓ2 ⊕ ℓ2) (with the induced o.s. structure) and an operator subspace
E ⊂ R ⊕ C such that there is a c.b. projection from R ⊕ C onto E. By [Oi], we
have then E ≃ E1 ⊕ E2 (completely isomorphically) with E1 ⊂ R and E2 ⊂ C.

Another source of basic but very useful examples is given by the operator
spaces min(B) and max(B) associated to a given Banach space B (cf. [BP1, P3]).
These can be described as follows: consider the set of all norms α on K0 ⊗ B
satisfying (R1) and (R2) and respecting the norm of B, i.e. such that α(e11⊗x) =
∥x∥ ∀x ∈ B. Then this set admits a minimal element αmin and a maximal one
αmax, corresponding to the two o.s. min(B) and max(B). If B is given to us
as an operator space, then min(B) or max(B) is the same Banach space but in
general a different o.s. The space min(B) can be realized completely isometrically
by any isometric embedding of B into a commutative C∗-algebra. While the spaces
min(B) are rather simple, they explain why operator spaces are viewed as “non-
commutative Banach spaces”.

1.4 Duality. Quotient. Interpolation

Let E ⊂ B(H) be an operator space. The dual E∗ is a quotient of B(H)∗, so,
a priori, it does not seem to be an o.s. However, it admits a very fruitful o.s.
structure introduced (independently) in [BP1] and [ER3] as follows.

Let F be another operator space and let V = cb(E,F ). By identifying Mn(V )
with cb(E,Mn(F )) equipped with its c.b. norm, we obtain a sequence of norms
satisfying (R1) and (R2). Therefore there is a specific operator space structure
on cb(E,F ) for which the identification Mn(cb(E,F )) = cb(E,Mn(F )) becomes
isometric for all n ≥ 1. We call this the “natural” o.s. structure on cb(E,F ). In
particular, when F = C we obtain an operator space structure on E∗ = cb(E,C)
(it is easy to see that for any linear form ξ ∈ E∗ we have ∥ξ∥ = ∥ξ∥cb and as
mentioned above there is only one reasonable way to equip C with an operator
space structure). Thus, the dual Banach space E∗ is now equipped with an o.s.
structure which we call the “dual o.s. structure” (the resulting o.s. is called the
standard dual in [BP1]). It is characterized by the property that for any o.s. F ,
the natural mapping u → ũ from F ⊗ E∗ (resp. E∗ ⊗ F ) into cb(E,F ) defines an
isometry from F ⊗min E∗ (resp. E∗ ⊗min F ) into cb(E,F ). When dim(F ) < ∞,
this is onto, whence an isometric identity F ⊗min E∗ = cb(E,F )(= E∗ ⊗min F ).
Note that, for any o.s. F and any u : E → F we have ∥u∥cb = ∥u∗∥cb. Moreover,
the inclusion E ⊂ E∗∗ = (E∗)∗ is completely isometric ([B2]) and E is the o.s.
dual of an o.s. iff it admits a completely isometric “realization” as a weak-∗ closed
subspace of B(H) (cf. [ER2, B2]). To illustrate this with some examples, we
have completely isometric identities (cf. [BP1, ER4, B2]) R∗ ≃ C, C∗ ≃ R and
min(B)∗ ≃ max(B∗), max(B)∗ ≃ min(B∗) for any Banach space B.

Let M be a von Neumann algebra with predual M∗. The “natural” o.s. struc-
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ture just defined on M∗ induces a fortiori an o.s. structure on M∗ ⊂ M∗ which,
once more, we call the “natural” one. At this point, a problem of “coherence”
of the various duals of M∗ arises, but (fortunately) Blecher [B2] showed that ev-
erything “ticks”: if we equip M∗ with the o.s. structure just defined, its o.s. dual
coincides completely isometrically with M equipped with its natural o.s. structure.
In sharp contrast, this is no longer true for general operator spaces: Le Merdy (cf.
[LM1]) has shown that there is an o.s. structure on B(H)∗ which is not the dual
of any o.s. structure on B(H).

The principle we just used to define the o.s. duality is valid in numerous other
situations, such as quotients ([Ru1]) or interpolation spaces [Pi1]. Let E2 ⊂ E1 ⊂
B(H) be operator spaces and let ∥ ∥n be the norm on Mn(E1/E2) naturally
associated to Mn(E1)/Mn(E2) equipped with the quotient norm. Again it turns
out that these norms verify (R1) and (R2), whence they yield an o.s. structure
on E1/E2, characterized by the isometric identity K[E1/E2] = K[E1]/K[E2]. We
thus obtain a notion of quotient of operator spaces satisfying the usual rules of
the Banach space duality, namely (E1/E2)∗ ≃ E⊥

2 and E∗
2 ≃ E∗

1/E
⊥
2 (completely

isometrically). We will say that a surjective linear map u : E → F is a complete
surjection (resp. a complete metric surjection) if the associated map E/ker(u) → F
is a complete (resp. a completely isometric) isomorphism. Equivalently, that means
that u∗ is a completely isomorphic (resp. completely isometric) embedding of F ∗

into E∗.
We now turn briefly to the complex interpolation method, introduced for Ba-

nach spaces around 1960 by A. Calderón and J. L. Lions independently, cf. [BL].
Assume given a pair of operator spaces E0, E1 together with continuous linear
injections E0 → X , E1 → X into a topological vector space (actually a Banach
space if we wish). Then, for any 0 < θ < 1, the complex interpolation method
produces an “intermediate Banach space” (E0, E1)θ. Then again Ruan’s theorem
allows us to equip (E0, E1)θ with an o.s. structure characterized by the isometric
identity K[(E0, E1)θ] = (K[E0],K[E1])θ. The fact that the functor of interpola-
tion essentially commutes with duality, which is well known for Banach spaces,
is extended to o.s. in [Pi1], but the proof requires rather delicate factorization
properties of operator valued analytic functions.

1.5 Projective tensor product. Approximation property (OAP)

Since the minimal tensor product is the o.s. analog of Grothendieck’s injective
tensor product, it is tempting to look for the o.s. analog of the projective tensor
product. This question is treated independently in [BP1] and [ER3]. Effros and
Ruan pursued further: they introduced analogs of Grothendieck’s approximation
property ([ER2]), of integral or nuclear operators, of the Dvoretzky-Rogers theo-
rem (characterizing finite dimensional spaces by the coincidence of unconditional
and absolute convergence of series) and more. Their program meets several in-
teresting obstacles (due mainly to the lack of local reflexivity, see §1.11 below),
but roughly goes through (see [ER6, ER7]). For related work, see also [EWi] on
“non-commutative convexity” and a paper by E. Effros and C. Webster in [Ka]
devoted to “Operator analogues of locally convex spaces”.
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For lack of space, we refer to the original papers for precise definitions, and merely
summarize the main results. Let us denote by E1 ⊗ ∧E2 the o.s. version of
the projective tensor product. Note that the norm of this o.s. is different from
Grothendieck’s projective tensor norm ∥ ∥∧ and the Banach space projective
tensor product E1⊗̂E2 is not the underlying Banach space to E1 ⊗ ∧E2. Never-
theless, it is shown in [BP1] that, in some sense, this corresponds to the largest
o.s.-norm on K0 ⊗ E1 ⊗ E2.
The projective operator space tensor product E1 ⊗ ∧E2 is characterized by the
isometric (actually completely isometric) identities (E1 ⊗ ∧E2)∗ ≃ cb(E1, E∗

2 ) ≃
cb(E2, E∗

1 ). Moreover, the natural map E1 ⊗ ∧E2 → E1 ⊗min E2 is a complete
contraction. The projective tensor product is commutative and associative, but in
general not injective. However, it is, of course “projective”, i.e. if u1 : E1 → F1 and
u2 : E2 → F2 are complete metric surjections then u1⊗u2 also defines a complete
metric surjection from E1 ⊗ ∧E2 onto F1 ⊗ ∧F2. Another important property from
[ER2] is as follows: let M,N be two von Neumann algebras with preduals M∗, N∗.
Let M⊗N denote their von Neumann algebra tensor product. Then we have a
completely isometric identity (M⊗N)∗ ≃ M∗ ⊗ ∧N∗. This is a non-commutative
analog of Grothendieck’s classical isometric identity L1(µ′)⊗̂L1(µ′′) ≃ L1(µ′×µ′′)
relative to a pair of measure spaces (Ω′, µ′), (Ω′′, µ′′).

Following [ER2], an o.s. E is said to have the OAP if there is a net of finite
rank (c.b.) maps ui : E → E such that the net I ⊗ ui converges pointwise to the
identity on K[E]. This is the o.s. analog of Grothendieck’s approximation property
(AP) for Banach spaces. When the net (ui) is bounded in cb(E,E), we say that E
has the CBAP (this is analogous to the BAP for Banach spaces). To quote a sample
result from [ER2]: E has the OAP iff the natural map E∗ ⊗ ∧E → E∗ ⊗min E is
injective. The class of groups G for which the reduced C∗-algebra of G has the
OAP is studied in [HK] (see also §9 in [Ki1]). The ideas revolving around the OAP
or the CBAP are likely to lead to a simpler and more conceptual proof of the main
result of [Sz], but unfortunately this challenge has resisted all attempts so far.

1.6 The Haagerup tensor product

Curiously, the category of operator spaces admits a tensor product which (at least
in the author’s opinion) has no true counterpart for Banach spaces, namely the
Haagerup tensor product introduced by Effros and Kishimoto (inspired by some
unpublished work of Haagerup). But, while these authors originally considered
only the resulting Banach space, it is the operator space case which turned out to
be the most fruitful, through the fundamental works of Christensen and Sinclair
[CS1] (see also [CS2]) and its extension by Paulsen and Smith [PS]. See also [BS]
for the “weak-∗ Haagerup tensor product” of dual o.s.

Let E1, E2 be two operator spaces. Consider xi ∈ K⊗Ei (i = 1, 2). We denote
by (x1, x2) → x1⊙x2 the bilinear form fromK⊗E1×K⊗E2 to K⊗(E1⊗E2) defined
on elementary tensors by setting (k1 ⊗ e1)⊙ (k2⊗ e2) = (k1k2)⊗ (e1⊗ e2). We set
αi(xi) = ∥xi∥K⊗minEi

(i = 1, 2). Then, for any x ∈ K⊗E1⊗E2, we define αh(x) =
inf{α1(x1)α2(x2)}, where the infimum runs over all possible decompositions of x
of the form x = x1 ⊙ x2 with x1 ∈ K ⊗ E1, x2 ∈ K ⊗ E2. Once again it can be
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shown (by Ruan’s theorem) that this defines an o.s. structure on E1 ⊗E2, so that
we obtain, after completion, an operator space denoted by E1 ⊗h E2 and called
the Haagerup tensor product.

This definition can be extended to an arbitrary number of factors
E1, E2, . . . , EN and the result is denoted by E1 ⊗h · · · ⊗h EN . In [CES],
the following very useful “realization” of E1 ⊗h · · ·⊗h EN is presented: assume Ei

given as a subspace of a C∗-algebra Ai, then E1 ⊗h · · · ⊗h EN can be identified
with a subspace of the (C∗-algebraic) “free product” A1 ∗ A2 ∗ · · · ∗ AN . More
precisely the linear mapping j : E1 ⊗h · · · ⊗h EN → A1 ∗ · · · ∗ AN defined by
j(x1 ⊗ · · · ⊗ xN ) = x1x2 . . . xN is a completely isometric embedding. This is
closely related to the fundamental factorization of c.b. multilinear maps, obtained
in [CS1] for C∗-algebras and in [PS] in full generality, as follows:
An N -linear map ϕ : E1 ×E2 × · · ·×EN → B(H) defines a complete contraction
from E1 ⊗h · · · ⊗h EN to B(H) iff there are a Hilbert space Ĥ, completely con-
tractive maps σi : Ei → B(Ĥ) and operators V : Ĥ → H and W : H → Ĥ with
∥V ∥ ∥W∥ ≤ 1 such that ϕ(x1, . . . , xN ) = V σ1(x1) . . .σN (xN )W.

The preceding result has many important applications notably to the
Hochschild cohomology of operator algebras (see [E] [CES] and [SSm]).

The Haagerup tensor product enjoys unusually nice properties: it is associa-
tive, and both injective and projective (which is quite rare!), but it is not commu-
tative: the spaces E1⊗hE2 and E2⊗hE1 can be very different. However, there is a
symmetrized version of the Haagerup tensor product, introduced recently in [OiP]
and denoted there by E1 ⊗µ E2, which has proved fruitful. For instance, in the
situation of the preceding theorem, the paper [OiP] contains a characterization (up
to a numerical factor when N > 2) of the N -linear maps ϕ : E1×· · ·×EN → B(H)
which admit a factorization as above but with the additional condition that the
ranges of σ1, . . . ,σN mutually commute.

Another very striking property of the Haagerup tensor product is its self-
duality (which explains of course its being both injective and projective), for which
we refer to [ER4] (according to [ER4], the first point below is due to Blecher):
Let E1, E2 be operator spaces. Then if E1 and E2 are finite dimensional we have
(E1 ⊗h E2)∗ ≃ E∗

1 ⊗h E∗
2 completely isometrically. Moreover, in the general case

we have a completely isometric embedding E∗
1 ⊗h E∗

2 ⊂ (E1 ⊗h E2)∗.
Here are sample results from [ER4] or [B1]. For every operator space E, we

have a completely isometric isomorphism Mn(E) ≃ Cn⊗hE⊗hRn taking (xij) to∑
ei1 ⊗ xij ⊗ e1j . In particular Cn ⊗h Rn ≃ Mn and C ⊗h R ≃ K, R⊗h C ≃ K∗.

If H is an arbitrary Hilbert space, let Hr and Hc be the o.s. defined by setting
Hr = B(H,C) and Hc = B(C, H). Then if K is another Hilbert space, we have
(completely isometrically) Hc ⊗h Kc = (H ⊗2 K)c and Hr ⊗h Kr = (H ⊗2 K)r.

1.7 Characterizations of operator algebras and operator modules

In the Banach algebra literature, an operator algebra is defined as a closed subal-
gebra of B(H), for some Hilbert space H , or equivalently a closed subalgebra of
a C∗-algebra C ⊂ B(H). When C is commutative, A is called a uniform algebra.
Now consider an operator algebra A ⊂ B(H) and let I ⊂ A be a closed (two-
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sided) ideal. Then, curiously, the quotient A/I is still an operator algebra (due to
B. Cole for uniform algebras and to G. Lumer and A. Bernard in general): there
is (for some suitable H) an isometric homomorphism j : A/I → B(H). In the
70’s several authors (Craw, Davie, Varopoulos, Charpentier, Tonge, Carne) tried
to characterize operator algebras by certain continuity properties of the product
map p : A⊗A → A. Although this chain of thoughts lead to a negative result (see
[Ca]), it turns out that, in the operator space framework, the same things work!
More precisely:

Theorem ([BRS]). Let A be a Banach algebra with a normalized unit element
and equipped with an o.s. structure. Then the product map p : A⊗A → A extends
completely contractively to A ⊗h A iff there exists, for H suitable, a unital and
completely isometric homomorphism j : A → B(H). Equivalently, this holds iff
the natural matrix product f.g of any two elements f, g in K[A] satisfies ∥f.g∥ ≤
∥f∥∥g∥. In other words, A is an operator algebra (completely isometrically) iff
K[A] is a Banach algebra.

Of course it is natural to wonder whether the mere complete boundedness
of the product p : A ⊗h A → A characterizes operator algebras up to complete
isomorphism. This resisted for a few years, until Blecher [B3] proved that indeed
this is true. The original proofs of [BRS, B3] did not use the earlier Cole-Lumer-
Bernard results (and actually obtained them as corollaries), but it is also possible
to go in the converse direction, with some extra work (see [Pi5]). We refer the
reader to [LM2] for an extension of the Cole-Lumer-Bernard theorem to quotients
of subalgebras of B(X) when X is a Banach space, and to [BLM] and [LM5]
for a detailed study of the operator algebra structures on ℓp, or the Schatten p-
classes. See also [LM6] for a version of the above theorem adapted to dual operator
algebras.

Operator spaces which are also modules over an operator algebra (in other
words “operator modules”) can also be characterized in a similar way (see [CES]
and [ER1], see also [Ma] for dual modules) and suitably modified versions of the
Haagerup tensor product are available for them. Operator modules play a cen-
tral rôle in [BMP] where the foundations of a Morita theory for non self-adjoint
operator algebras are laid. There Blecher, Muhly and Paulsen show that opera-
tor modules are an appropriate “metric” context for the C∗-algebraic theory of
strong Morita equivalence, and the related theory of C∗-modules. For example,
Rieffel’s C∗-module tensor product is exactly the Haagerup module tensor product
of the C∗-modules with their natural operator space structures. See [BMP], [B4],
Blecher’s survey in [Ka] and references contained therein for more on this.

1.8 The operator Hilbert space OH and non-commutative Lp-spaces

Let us say that an operator space is Hilbertian if the underlying Banach space is
isometric to a Hilbert space. Examples of this are in abundance, but apparently
none of them is self-dual, which induces one to believe that operator spaces do not
admit a true analog of Hilbert spaces. Therefore, the next result which contradicts
this impression, comes somewhat as a surprise. (Notation: if E is an operator
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space, say E ⊂ B(H), then E is the complex conjugate of E equipped with the
o.s. structure corresponding to the embedding E ⊂ B(H) = B(H).)

Theorem ([Pi1]). Let H be an arbitrary Hilbert space. There exists, for a suitable
H, a Hilbertian operator space EH ⊂ B(H) such that the canonical identification
(derived from the scalar product) E∗

H → EH is completely isometric. Moreover,
the space EH is unique up to complete isometry. Let (Ti)i∈I be an orthonor-
mal basis in EH . Then, for any finitely supported family (ai)i∈I in K, we have

∥
∑

ai ⊗ Ti∥K[EH ] = ∥
∑

ai ⊗ ai∥1/2min.

When H = ℓ2, we denote the space EH by OH and we call it the “operator
Hilbert space”. Similarly, we denote it by OHn when H = ℓn2 and by OH(I)
when H = ℓ2(I). The preceding result suggests to systematically explore all the
situations of Banach space theory where Hilbert space plays a central rôle (there
are many!) and to investigate their analog for operator spaces. This program
is pursued in [Pi1, Pi6]. The space OH has rather striking complex interpola-
tion properties (see [Pi1]). For instance, we have completely isometric identities
(min(ℓ2),max(ℓ2)) 1

2

≃ OH and (R,C) 1

2

≃ OH . (In the latter case, we should

mention that the pair (R,C) is viewed as “compatible” using the transposition
map x → tx from R to C which allows to view both R and C as continuously
injected into X = C.) Concerning the Haagerup tensor product, for any sets I
and J , we have a completely isometric identity OH(I) ⊗h OH(J) ≃ OH(I × J).

Finally, we should mention that OH is “homogeneous” (an o.s. E is called
homogeneous if any linear map u : E → E satisfies ∥u∥ = ∥u∥cb). While OH is
unique, the class of homogeneous Hilbertian operator spaces (which also includes
R,C, min(ℓ2) and max(ℓ2)) is very rich and provides a very fruitful source of
examples (see e.g. [Pi1, Pi6, Oi, Z]).

Since operator spaces behave well under interpolation (see §1.4), it is natural
to investigate what happens to Lp-spaces, either scalar or vector valued. While
in classical Lebesgue-Bochner theory, the Banach space valued Lp-spaces have
been around for a long time, in the non-commutative case there seemed to be no
systematic analogous “vector valued” theory. It turns out that operator spaces
provide apparently the “right” framework for such a theory and a large part of
[Pi2] tries to demonstrate it. Note however that the space of “values” E has to be
an operator space, (not “only” a Banach space) and moreover we need to assume
M hyperfinite for this theory to run “smoothly”.

Many natural questions arise when one tries to “transfer” the Banach space
theory of Lp-spaces to the o.s. framework. For instance, it is open whether OH
embeds completely isomorphically into the predual of a von Neumann algebra
(i.e. into a so-called “non-commutative L1-space”). The natural candidates (ei-
ther Gaussian variables, Rademacher functions or free semi-circular systems in
Voiculescu’s sense) span in L1 (commutative or not) an operator space denoted by
R+C in [Pi1, Pi2] and extensively studied there. Note that, in sharp contrast to
the Banach analogue, the o.s. spanned by the Rademacher functions in Lp([0, 1])
(meaning classical Lp with the “interpolated” o.s. structure) depends on p and it
coincides with OH only when p = 2. Its dependence on p is entirely elucidated by
F. Lust-Piquard’s non-commutative Khintchine inequalities (see [Pi2]).
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In another direction, very recently Marius Junge found a notion of “non-
commutative p-stable process”, which allowed him to prove that if 1 < p < 2
any space Lp(ϕ) (relative to a von Neumann algebra M equipped with a faithful
normal semi-finite trace ϕ) embeds isometrically into a non-commutative L1-space.
This striking result was clearly inspired by o.s. considerations, even though the
completely isomorphic version is still unclear.

1.9 Local theory. Exactness. Finite dimensional operator spaces

Let E,F be two Banach (resp. operator) spaces. Recall that their “distance”
d(E,F ) (resp. dcb(E,F )) has been defined in §1.1. These are not really distances
in the usual sense, but we can replace them if we wish by δ(E,F ) = Log d(E,F )
(resp. δcb(E,F ) = Log dcb(E,F )). Still however it is customary to use d and
dcb instead of δ and δcb. Let n ≥ 1. Let OSn (resp. Bn) be the set of all n-
dimensional operator (resp. Banach) spaces, in which we agree to identify two
spaces whenever they are completely isometric (resp. isometric). Then, it is an
exercise to check that OSn (resp. Bn) equipped with the distance δcb (resp. δ) is
a complete metric space. In the Banach (= normed) space case, (Bn, δ) is even
compact , this is the celebrated “Banach-Mazur compactum”! However, (OSn, δcb)
is not compact, and furthermore (in answer to a question of Kirchberg, see [Ki2]) it
was proved in [JP] that it is not separable if n > 2 (n = 2 remains open). The paper
[JP] actually gives three different approaches to this fact. The best asymptotic
estimate uses Lubotzky-Phillips-Sarnak’s work (see [Lu]) on “Ramanujan graphs”.
(This improvement over our two other approaches was pointed out by A. Valette,
see his paper [Va] for more on this theme.) To state this estimate precisely, we
need the following notation: let δ(n) be the infimum of the numbers ε > 0 such
that (OSn, δcb) admits a countable Log(ε)-net. Then, the non-separability of OS3

means that δ(3) > 1. Moreover, if n = p + 1 with p prime ≥ 3 (or p equal to a
prime power, see [Va]), we have δ(n) ≥ n(2

√
n− 1)−1 ≥

√
n/2. On the other hand

we have δ(n) ≤
√
n for all n. Indeed, it can be shown (see [Pi1]) that for any E

in OSn we have dcb(E,OHn) ≤
√
n, from which δ(n) ≤

√
n follows trivially. Note

that the space OHn appears thus as a “center” for (OSn, δcb), in analogy with ℓn2
in the Banach space case. As a consequence we can estimate the “diameter” of
OSn: for any pair (E,F ) in OSn, we have dcb(E,F ) ≤ dcb(E,OHn)dcb(OHn, F ) ≤
n. These estimates are optimal since dcb(Rn, OHn) = dcb(Cn, OHn) = n1/2 and
dcb(Cn, Rn) = n. As in the “local theory” of Banach spaces (see e.g. [DJT]),
these ideas can be used to study an infinite dimensional C∗-algebra through the
collection of its finite dimensional subspaces. To illustrate this, let X be an o.s.
For any (finite dimensional) operator space E, we define dSX(E) = inf{dcb(E,F )}
where the infimum runs over all the subspaces F ⊂ X isomorphic to E (and
dSX(E) = ∞, say, if there is no such F ). In the Banach space case, if we take
X = c0 and replace dcb by d, then the resulting number is equal to 1 for any E in⋃

n Bn. In sharp contrast, there is no separable o.s. X such that dSX(E) = 1 for
any E in OS3, since this would contradict the non-separability of OS3.

Various choices of X lead to interesting estimates of the “growth” of dSX(E).
For instance, taking X = K we find, for any E in OSn, dSK(E) ≤

√
n (see Th.

Documenta Mathematica · Extra Volume ICM 1998 · I · 429–452



442 Gilles Pisier

9.6 in [Pi1]), but on the other hand if E = ℓn1 (= o.s. dual of ℓn∞) equipped with
its “natural” structure, we have dSK(ℓn1 ) ≥ an where an = n(2

√
n− 1)−1/2 ≥√

n/2. We also have n1/4 ≥ dSK(OHn) ≥ (an)1/2, for all n > 1. Inspired by
Kirchberg’s results on the C∗-case (cf. [Ki1, Wa]), we study in [Pi4] the notion of
“exact operator space”: an o.s. Y ⊂ B(H) is called exact if sup{dSK(E) | E ⊂
Y, dim(E) < ∞} < ∞. A C∗-algebra is exact in Kirchberg’s sense iff it is exact in
the preceding sense, so the reader can use this as the definition of an “exact C∗-
algebra” (but actually Kirchberg proved that a C∗-algebra is exact iff it embeds
into a nuclear one, see [Ki1]). Exact o.s. have surprisingly strong properties:
if E,F are both exact, then any c.b. map u : E → F ∗ factors boundedly through
a Hilbert space ([JP]). Although this is reminiscent of Grothendieck’s classical
factorization theorem, actually such a result has no Banach space counterpart!

Another very useful choice is X = C∗(F∞) the “full” C∗-algebra of the free
group on countably infinitely many generators; for lack of space, we refer the
reader to [JP] for more information on dSX(.) in this case.

1.10 Application to tensor products of C∗C∗C∗-algebras

Let A1, A2 be C∗-algebras. By classical results due respectively to Takesaki (1958)
and Guichardet (1965), there is a minimal C∗-norm and a maximal one, denoted
respectively by ∥ ∥min and ∥ ∥max on A1 ⊗A2. The resulting C∗-algebras (after
completion) are denoted respectively by A1 ⊗min A2 and A1 ⊗max A2. Thus, the
tensor product A1 ⊗ A2 admits a unique C∗-norm iff A1 ⊗min A2 = A1 ⊗max A2.
(Note: this holds for all A2 iff A1 is nuclear, or iff A∗∗

1 is injective, see [CE] for
precise references.) Kirchberg’s work [Ki2] highlights pairs A1, A2 satisfying this
unicity. In particular, he proved this holds if A1 = B(ℓ2) and A2 = C∗(F∞) (see
[Pi3] for a simple proof using o.s. theory). However, the results of the preceding
section imply that this does not hold when A1 = A2 = B(ℓ2) (see [JP]), thus
answering a long standing open question. Here is a brief sketch: let (Ei)i∈I be a
family of n-dimensional operator spaces and let ui ∈ E∗

i ⊗Ei be associated to the
identity map Ii on Ei. Using the dual o.s. structure on E∗

i , we have embeddings
Ei ⊂ B(ℓ2), E∗

i ⊂ B(ℓ2) so that we may consider ui as an element of B(ℓ2)⊗B(ℓ2)
and (by definition of the o.s. structure of E∗

i ) we have ∥ui∥min = ∥Ii∥cb = 1 ∀i ∈ I.
Then, (see [JP] for a proof) if ∥ui∥max = ∥ui∥min ∀i ∈ I, the family {Ei | i ∈ I} is
necessarily separable in (OSn, δcb). Thus the non-separability of (say) OS3 (see the
preceding section) implies B(ℓ2) ⊗min B(ℓ2) ≠ B(ℓ2) ⊗max B(ℓ2). More precisely,
let λ(n) = sup{∥u∥max} where the supremum runs over all u ∈ B(ℓ2)⊗B(ℓ2) with
∥u∥min = 1 and rank ≤ n. Then, the same idea (see [JP]) leads to δ(n) ≤ λ(n) ≤√
n for all n ≥ 1, hence, by the estimates of δ(n) given in §1.9, λ(n) grows like

√
n

(up to a constant factor) when n → ∞.
In sharp contrast, the question whether there is a unique C∗-norm on A1⊗A2

when A1 = A2 = C∗(F∞) remains an outstanding open problem, equivalent to
a number of fundamental questions, for instance this holds iff every separable
II1-factor embeds in a (von Neumann) ultraproduct of the hyperfinite II1 factor
or equivalently iff every non-commutative L1-space is finitely representable (see
below for the definition) in the Banach space of all trace class operators on ℓ2.
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(See the fascinating discussion at the end of [Ki2].)

Let X,Y be Banach spaces. We say that Y is finitely representable in X
if for every ϵ > 0 and every finite dimensional subspace E ⊂ Y there is a finite
dimensional subspace F ⊂ X such that d(E,F ) < 1 + ϵ. This notion was used
extensively by R. C. James in his theory of “super-reflexivity” (see e.g. [DJT]),
(but actually Grothendieck already considered it explicitly in the appendix to
his famous “Résumé”, see [G] page 108-109; his terminology was “Y a un type
métrique inférieur à celui de X”). Of course, this immediately extends to the o.s.
setting: when X,Y are o.s. we say that Y is o.s.-finitely representable in X if the
preceding property holds with dcb(E,F ) instead of d(E,F ). Equivalently, we have
dSX(E) = 1 for any finite dimensional E ⊂ Y .

1.11 Local reflexivity

In Banach space theory, the “principle of local reflexivity” says that every Banach
space B satisfies B(F,B)∗∗ = B(F,B∗∗) isometrically for any finite dimensional
(normed) space F . Consequently, B∗∗ is always finitely representable in B. This
useful principle goes back to Lindenstrauss-Rosenthal with roots in Grothendieck’s
and Schatten’s early work (see [DJT] p. 178 and references there). Similarly, an
o.s. E is called “locally reflexive” if we have cb(F,E)∗∗ = cb(F,E∗∗) isometrically
for any finite dimensional o.s. F (and when this holds for all F , it actually holds
completely isometrically). This property was “exported” first to C∗-algebra theory
by Archbold-Batty, then for operator spaces in [EH]. As the reader can guess, not
every o.s. is locally reflexive, so the “principle” now fails to be universal: as shown
in [EH], C∗(F∞) is not locally reflexive. Local reflexivity passes to subspaces (but
not to quotients) and is trivially satisfied by all reflexive o.s. (a puzzling fact since
reflexivity is a property of the underlying Banach space only!). It is known that
all nuclear C∗-algebras are locally reflexive (essentially due to Archbold-Batty, see
[EH]). More generally, by Kirchberg’s results, exactness ⇒ local reflexivity for
C∗-algebras (see [Ki1] or [Wa]), but the converse remains open. Actually, it might
be true that exact ⇒ locally reflexive for all o.s. but the converse is certainly false
since there are reflexive but non-exact o.s. (such as OH). All this shows that local
reflexivity is a rather rare property. Therefore, it came as a big surprise (at least
to the author) when, in 97, Effros, Junge and Ruan [EJR] managed to prove that
every predual of a von Neumann algebra (a fortiori the dual of any C∗-algebra) is
locally reflexive. This striking result is proved using a non standard application of
Kaplansky’s classical density theorem, together with a careful comparison of the
various notions of “integral operators” relevant to o.s. theory (see a very recent
preprint by M. Junge and C. Le Merdy for an alternate proof). Actually, [EJR]
contains a remarkable strengthening: for any von Neumann algebra M , the dual
M∗ = (M∗)∗∗ is o.s.-finitely representable in M∗. This is already nontrivial when
M = B(H)!
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2 Similarity problems

Let A,B be unital Banach algebras. By a “morphism” u : A → B, we mean a
unital homomorphism (i.e. u is a linear map satisfying u(1) = 1 and u(xy) =
u(x)u(y) for all x, y in A). Note that, since u(1) = 1, u contractive means here
∥u∥ = 1 (and of course u bounded means 1 ≤ ∥u∥ < ∞). We will be concerned
mainly with the case B = B(H) with H Hilbert. We then say that u is similar to
a contractive morphism (in short s.c.) if there is an invertible operator ξ : H → H
such that the “conjugate” morphism uξ defined by uξ(x) = ξ−1u(x)ξ is contractive.
Moreover, we denote Sim(u) = inf{∥ξ∥ ∥ξ−1∥ | ∥uξ∥ = 1}. For simplicity, we
discuss only the unital case, we denote by K1 the unitization of K and we set
K1[A] = K1 ⊗min A, so that K1[A] is a unital operator algebra whenever A is one.
We will be interested in the following.
General problem. Which unital Banach algebrasA have the following similarity
property: (SP) Every bounded morphism u : A → B(H) (H being here an
arbitrary Hilbert space) is similar to a contractive one (in short s.c.).

Complete boundedness is the key modern notion behind the advances made
recently on several instances of this general problem, some of them formulated
about fifty years ago. In most cases of interest, the above problem is equivalent
to the following. When is it true that all bounded morphisms u : A → B(H) are
“automatically” completely bounded? Before stating this precisely in Theorem
2.5, we prefer to discuss some examples.

Example 2.1 (Uniform algebras). Let A be the disc algebra A(D), formed
of all bounded analytic functions f : D → C on the open unit disc D ⊂ C which
extend continuously to D, equipped with the norm ∥f∥∞ = sup{|f(z)| | z ∈ D}.
Note that the set of all polynomials is dense in A(D). Let ϕ0 ∈ A(D) be the
element such that ϕ0(z) = z. Since this algebra is singly generated (by ϕ0) a
morphism u : A(D) → B(H) is entirely determined by the single operator T =
u(ϕ0). Moreover, u is bounded iff T is “polynomially bounded” which means that
there is a constant C such that for any polynomial P we have ∥P (T )∥ ≤ C∥P∥∞,
and in addition ∥u∥ is the best possible constantC. On the other hand, by a famous
1951 inequality of von Neumann, any contraction T satisfies ∥P (T )∥ ≤ ∥P∥∞
for any P , i.e. we have polynomial boundedness with C = 1. Therefore, u is
similar to a contractive morphism iff T = u(ϕ0) is similar to a contraction, i.e.
iff there is ξ invertible such that ∥ξ−1T ξ∥ ≤ 1. Thus, the problem whether the
disc algebra satisfies (SP ) coincides with a question raised in 1970 by Halmos:
is every polynomially bounded operator T : H → H similar to a contraction?
A counterexample was recently given in [Pi8]. The original proof of polynomial
boundedness in [Pi8] was rather technical but shortly afterwards simpler proofs
have been found by Kislyakov [Kis] and Davidson-Paulsen [DP]. They lead to the
same class of examples. Since the disc algebra fails (SP), it is now conceivable that
the same is true for any proper uniform algebra, but this remains open in general
(even though the case of the polydisc algebra or the ball algebra over Cn follows
easily from the disc case).
Of course, the similarity problem for continuous semi-groups of operators (Tt)t≥0

is also quite natural, see [LM7] and the references there for more on this topic.
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Example 2.2 (C∗C∗C∗-algebras). Let A be a unital C∗-algebra. Then it is easy
to check that a morphism u : A → B(H) is contractive (i.e. has ∥u∥ = 1) iff u
is a ∗-representation (i.e. u(x∗) = u(x)∗ for all x). We then have automatically
∥u∥cb = 1. It is an outstanding conjecture of Kadison (1955) that all C∗-algebras
have (SP ). is equivalent to the (open) problem whether, for any C∗-subalgebra
A ⊂ B(H), every bounded derivation δ : A → B(H) is inner. Many partial results
(mainly due to E. Christensen and U. Haagerup) are known (see Remark 2.10
below). In particular, it is known ([C1, H]) that if a bounded morphism has a
cyclic vector (or admits a finite cyclic set), then it is similar to a ∗-representation.
However, the general case remains open (and the author doubts its validity). The
reduced C∗-algebra of the free group with countably infinitely many generators
might be a counterexample, but actually even the von Neumann algebra A =⊕

n Mn (ℓ∞-direct sum) is not known to satisfy (SP ).

Example 2.3 (Group representations). Let G be a discrete group and let
A = ℓ1(G) be its group algebra under the convolution product. Then A has (SP )
iff every uniformly bounded representation π : G → B(H) is unitarizable. When
this holds, we will say that “G is unitarizable”. Note that we mainly restrict below
to the discrete case, but otherwise all representations are implicitly assumed to
be continuous on G with respect to the strong operator topology on B(H). Here,
we allow non-unitary representations (= homomorphisms from G to GL(H)), and
we set |π| = sup{∥π(t)∥ | t ∈ G}. We say that π is uniformly bounded (u.b. in
short) if |π| < ∞, and we call π unitarizable if there is an invertible ξ : H → H
such that t → ξ−1π(t)ξ is a unitary representation. (Note: There is a one to
one correspondence between the bounded morphisms u : ℓ1(G) → B(H) and the
u.b. representations π : G → B(H). An operator T is unitary iff T ∈ B(H) is
invertible and both T, T−1 are contractions. Hence u is s.c. iff π is unitarizable.)

Sz.-Nagy proved in 1947 that Z is unitarizable. Shortly afterwards (1950),
Dixmier and Day independently proved that, for any discrete (actually any lo-
cally compact) group G, amenable implies unitarizable and Dixmier [Di] asked
whether the converse also holds. This is still open in full generality. However,
in 1955, Ehrenpreis and Mautner showed that SL2(R) is not unitarizable. Since
“unitarizable” passes to quotients, it follows (implicitly) that non-commutative
free groups are not unitarizable, but very explicit constructions by many authors
(see [MP]) are now known for this, and, by induction, the same is true for any dis-
crete group containing a copy of F2 (the free group on 2 generators). This suggests
there might be a counterexample to Dixmier’s question (i.e. a unitarizable group
which is not amenable) among the Burnside groups which are the main examples
of non-amenable groups without free subgroups (see Olshanskii’s book [Ol], and
see also §5.5 in Gromov’s [Gr] for examples of infinite discrete groups with Kazh-
dan’s property T and without any free subgroup). Nevertheless, if one takes into
account the estimate in Dixmier’s argument for amenable ⇒ unitarizable, then a
converse result can be proved (see Theorem 2.11 below).

We now explain the intimate connection of the property (SP ) with dilation
theory and complete boundedness. For convenience, we first discuss the completely
contractive case. Consider a morphism u : A → B(H) on a unital operator algebra
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A ⊂ B(H). Then, since u is assumed unital, u is completely contractive (this
means ∥u∥cb = 1) iff u extends completely positively to B(H) (Arveson) or iff there
is a Hilbert space K containing H and a C∗-representation π : B(H) → B(K)
such that, for any x in A, we have u(x) = PHπ(x)|H . (One then says that π
restricted to A “dilates” u, or that u is a “compression” of it.) Moreover, the
subspace H ⊂ K is necessarily semi-invariant (in Sarason’s sense) for π(A), which
means that there is a pair of π(A)-invariant (closed) subspaces E2 ⊂ E1 ⊂ K such
that H = E1 ⊖ E2. Thus ∥u∥cb = 1 iff u can be “dilated” to a ∗-representation.
All this is well known, see Theorem 4.8 in [Pi7] for details. For convenience, we
will use the following definition (we prefer to avoid the term “maximal algebras”
used in [BP2], which might lead to some confusion with “maximal o.s.”).

Definition 2.4. Let A ⊂ B(H) be a unital operator algebra. We say that A
satisfies condition (CC) if, for any morphism u : A → B(H) (H arbitrary Hilbert),
the implication ∥u∥ = 1 ⇒ ∥u∥cb = 1 holds.

The precise class of algebras which satisfy (CC) is not clear (see [DoP]).
However, it is satisfied by A(D), A(D2) (but not by A(Dn) for n > 2 by an
example of S. Parrott, see [P1]), by all C∗-algebras and also by K1[A] for any
unital operator algebra A. Thus the next result, provides a characterization of
the morphisms which are s.c. for a broad class of algebras. The C∗-case is due to
Haagerup [H] and the general one to Paulsen (see [P1]).

Theorem 2.5. Let A be a unital operator algebra and let u : A → B(H) be a
morphism. If u is c.b. then u is s.c. and, if A satisfies (CC), the converse holds.
We have then ∥u∥cb = Sim(u). Thus, assuming (CC), A satisfies (SP) iff for every
morphism u : A → B(H), ∥u∥ < ∞ implies ∥u∥cb < ∞.

Remark 2.6. Applying this to the disc algebra, we get Paulsen’s useful criterion:
an operator T : H → H is similar to a contraction iff it is completely polynomi-
ally bounded, which means that there is a constant C such that, for any N and
any N × N matrix (Pij) with polynomial entries we have ∥(Pij(T ))∥MN (B(H)) ≤
C supz∈D ∥(Pij(z))∥MN

. Now fix an integer N and denote by CN (T ) the smallest
C such that this holds for all N × N matrices (Pij). Then the above question
of Halmos is the same as asking whether C1(T ) < ∞ ⇒ supN≥1 CN (T ) < ∞,
and Theorem 2.5 implies that supN≥1 CN (T ) = inf{∥ξ−1∥ ∥ξ∥ | ∥ξ−1T ξ∥ ≤ 1}.
It can be shown (see [Pi8, Bo]) that there is a numerical constant β such that
CN (T ) ≤ β

√
N C1(T ) for all T and N ≥ 1. However, the counterexamples in

[Pi8] show that this cannot be improved: there is a numerical constant δ > 0 such
that for any N ≥ 1 and ε > 0, there is a T = TN,ε such that C1(T ) < 1 + ε but
still CN (T ) ≥ δε

√
N .

We now turn to a sufficient condition for the property (SP ).

Definition 2.7. We say that an operator algebra A has length ≤ d if there
is a constant K ≥ 0 such that, for any x in K[A], there are α0,α1, . . . ,αd in
K[C] and D1, . . . , Dd diagonal in K[A] such that x = α0D1α1D2 . . . Ddαd and∏

∥αi∥
∏

∥Di∥ ≤ K∥x∥.
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We will denote by ℓ(A) the smallest d such that this holds. Equivalently,
ℓ(A) ≤ d iff every x in K[A] can be factorized as above (the constant K then exists
by the open mapping theorem).

Remark. This notion from [Pi9] was inspired by the remarkable paper [BP2].
There, Blecher and Paulsen prove that a unital operator algebra A satisfies (CC)
iff any x in K[A] with ∥x∥ ≤ 1 lies in the norm closure of the set of all (arbitrarily
long) products of the form α0D1α1 . . .Ddαd with Π∥αi∥Π∥Di∥ ≤ 1 and d ≥ 1.

Proposition 2.8. If an operator algebra A has length ≤ d, then A satisfies (SP )
and more precisely any morphism u : A → B(H) satisfies (with the notation of
Definitions 2.7) ∥u∥cb ≤ K∥u∥d.

Proof. Using the notation in §1.1 and Definition 2.7, we have u∞(x) =
α0u∞(D1)α1 . . . u∞(Dd)αd hence ∥u∞(x)∥ ≤ Π∥αi∥Π∥u∞(Di)∥, but since each
Di is diagonal , we have ∥u∞(Di)∥ ≤ ∥u∥ ∥Di∥, whence ∥u∞(x)∥ ≤ K∥u∥d∥x∥,
and therefore ∥u∥cb ≤ K∥u∥d.

Let A be a unital Banach algebra. For any c ≥ 1, let ΦA(c) = sup{Sim(u)}
where the supremum runs over all morphisms u : A → B(H) (H arbitrary Hilbert)
with ∥u∥ ≤ c, and let d(A) = inf{α ≥ 0 | ∃K ∀c ≥ 1 ΦA(c) ≤ Kcα}.
Although the preceding criterion seems too restrictive at first glance, it turns out
that bounded “length” is essentially the only way that an operator algebra can
have (SP ), as the next result from [Pi9] shows.

Theorem 2.9. Let A be a unital operator algebra satisfying condition (CC). Then
A satisfies (SP ) iff there is a d such that A has length ≤ d. More precisely,
ℓ(A) = d(A) and the infimum defining d(A) is a minimum attained when α = ℓ(A).

Remark. One surprising feature of this result is that there is apparently no direct a
priori argument showing that d(A) is an integer. Note that even when A fails (CC),
the preceding result can be applied to a suitably defined “enveloping algebra” of
A satisfying (CC) (see [Pi9]).

Warning. Until progress is made, the really weak point (embarrassing for the
author) of the preceding statement is that, up to now, no example is known of A
with 3 < ℓ(A) < ∞. However, an analog of the equality ℓ(A) = d(A) is proved in
[Pi9] in the more general framework of an operator space generating an operator
algebra; in this generalized framework, it is easy to produce the desired examples.
We refer the reader to [LM4] for a version of Theorem 2.9 adapted to dual operator
algebras and weak-∗ continuous morphisms.

Remark 2.10. Here is a short list of the C∗-algebras which are known to have
(SP ): if A is a nuclear C∗-algebra (due to Bunce-Christensen, see [C1]) then
d(A) ≤ 2 (and actually d(A) = 2 unless dim(A) < ∞), if A = B(H) and dim(H) =
∞ we have (SP ) and d(B(H)) = 3 (see [H] for ≤ 3 and [Pi9] for ≥ 3). More
generally if A has no tracial state, it has (SP ) and d(A) ≤ 3, in particular this
holds if A = K1[B] with B an arbitrary unital C∗-algebra ([H]). (Note: if B is a
non-self-adjoint unital operator algebra, A = K1[B] satisfies (SP ) with d(A) ≤ 5.)
Let A be a C∗-algebra generating a semi-finite von Neumann algebra M , then
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d(A) ≤ 2 implies that M is injective ([Pi9]); in particular, if A is the reduced
C∗-algebra of a discrete group G, we conclude that G is amenable. Finally, if A
is a II1-factor with property Γ (in particular if it is hyperfinite), it has (SP ) with
d(A) ≤ 44 (see [C2], the latter estimate can presumably be improved significantly.)

Let us return to the group case (Example 2.3). Then we define d(G) =
d(ℓ1(G)). The following partial answer to Dixmier’s question holds:

Theorem 2.11 ([Pi9]). A discrete group G is amenable iff d(G) ≤ 2. More
precisely, G is amenable iff there is a constant K and α < 3 such that, for any
u.b. representation π : G → B(H), there is an invertible ξ with ∥ξ−1∥ ∥ξ∥ ≤ K|π|α
such that ξ−1π(·)ξ is a unitary representation. (When G is amenable, Dixmier [Di]
and Day proved that the latter holds with K = 1 and α = 2).

Warning: We know of no example of G such that 2 < d(G) < ∞!
See [Pi9] for an analog of Theorem 2.9 in the group case: the relevant notion of
length is like in Definition 2.7 with A = C∗(G), but the diagonal matrices Di are
now restricted to have their entries in the set of scalar multiples of elements of G
viewed, as usual, as embedded into A = C∗(G). The notion of length can also
be studied in the more general framework of a Banach algebra B generated by a
subset B of its unit ball, [Pi9, Pi10].
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[Pi5] , An introduction to the theory of operator spaces, to appear.

[Pi6] , Dvoretzky’s theorem for operator spaces and applications, Hous-
ton J. Math. 22 (1996), 399–416.

[Pi7] , Similarity Problems and Completely Bounded Maps, Springer
Lecture Notes 1618, 1995.

[Pi8] , A polynomially bounded operator on Hilbert space which is not
similar to a contraction, J. Amer. Math. Soc. 10 (1997), 351–369.

[Pi9] , The similarity degree of an operator algebra, St. Petersburg
Math. J. (1998), to appear.

[Pi10] , Joint similarity problems and the generation of operator algebras
with bounded length, Integr. Equ. Op. Th., to appear.

[PS] V. Paulsen and R. Smith, Multilinear maps and tensor norms on operator
systems, J. Funct. Anal. 73 (1987), 258–276.

[Ro] H. P. Rosenthal, The complete separable extension property, Preprint 1998.

[Ru1] Z. J. Ruan, Subspaces of C∗-algebras, J. Funct. Anal. 76 (1988), 217–230.

[Ru2] , Injectivity and operator spaces, Trans. Amer. Math. Soc. 315
(1989) 89-104.

[Ru3] , The operator amenability of A(G), Amer. J. Math. 117 (1995)
1449-1474.

[Ru4] , Amenability of Hopf von Neumann algebras and Kac algebras,
J. Funct. Anal. 139 (1996) 466-499.

[SSm] A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann
algebras, Cambridge Univ. Press, LMS lecture notes 203, Cambridge 1995.

[Sz] A. Szankowski, B(H) does not have the approximation property, Acta
Math. 147 (1981), 89–108.

[Va] A. Valette, An application of Ramanujan graphs to C∗-algebra tensor prod-
ucts, Discrete Math. 167/168 (1997) 597-603.

[Wa] S. Wassermann, Exact C∗-Algebras and Related Topics, Lecture Notes
Series, Seoul Nat. Univ., 1994.

[Z] C. Zhang, Representation and Geometry of Operator Spaces, Ph.D. Thesis,
University of Houston, 1995.

Gilles Pisier
Texas A&M University,
College Station, TX 77843, USA
and Université Paris 6,
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