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0. Introduction 

In order to analyze the singularities of hyperfunction solutions of systems of 
partial differential equations, M. Sato introduced in 1969 the microlocalization 
functor and, more fundamentally, the microlocal point of view. Then began an 
intense activity, in what is now called "microlocal analysis", and in the field of ana-
lytical partial differential equations the main tools, microdifferential operators and 
quantized contact transformations, were developed in Sato-Kawai-Kashiwara's 
paper [S-K-K]. However, after their study of micro-hyperbolic systems [K-Sl], 
M. Kashiwara and the author realized that for many problems these analytical 
tools were not really necessary on the condition to work with the complex of 
holomorphic solutions of the system, Rj&m@x(J£, Ox), and only to keep in mind 
the codirections of non-propagation of this complex, here the characteristic vari-
ety of Jt. In other words one simply works with a complex of sheaves F on a 
real manifold X, and what we defined as its micro-support, SS(F), a closed conic 
involutive subset of T*X. 

This was the starting point of the "microlocal study of sheaves", developed 
in [K-S3, K-S4]. 

It is not our purpose to discuss this theory here, but we need to recall a few 
basic facts in order to introduce the new notion of an elliptic pair (obtained 
in collaboration with J.-P. Schneiders), a generalization of that of an elliptic 
system, the real manifold M on which the system is elliptic being replaced by 
an R-constructible sheaf. We construct a characteristic class associated with an 
elliptic pair, and prove that when the pair has compact support, the complex of 
its holomorphic solutions has finite dimensional cohomology and the index is 
calculated as the integral of the characteristic class. 

1. Microlocal Study of Sheaves 

In this section we fix some notations and recall a few results of [K-S3, K-S4]. 
Let X be a real C00-manifold. One denotes by T : TX —> X and by n : 

T*X -> X its tangent and cotangent bundles, respectively. If M is a submanifold, 
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one denotes by TMX and T^X the normal and conormal bundles to M in X, 
respectively. In particular TxX is the zero-section of T*X. 

One denotes by 5 : A c-> X x X the diagonal embedding and we identify X 
with A and T*X with T^(X x X) by the first projection defined on X x X and on 
T*(X x i ) - T*X x T*X, respectively. If A is a subset of TX, Aa will denote 
its image by the antipodal map on T*Z. 

If X and Y are two manifolds, one denotes by q\ and #2 the first and second 
projection, defined on X x Y. 

Let A be a commutative unitary ring with finite global homological dimension 
(e.g. A = Z). One denotes by D(X) the derived category of the category of sheaves 
of ,4-modules on X, and by Db(X) the full subcategory consisting of objects with 
bounded cohomology. If Z is a locally closed subset of X, one denotes by Az 
the sheaf on X which is constant with stalk A on Z and zero on X\Z. One 
denotes by or# the orientation sheaf on X, and by a>x the dualizing complex on 
X. Hence: 

cox — orx[dimX], 

where dimX is the dimension of X 
The "six operations" (as says Grothendieck), that is, the operations ®L, 

Rjfàm, Rf*, Rf\, f~l, fl, are now classical tools that we shall not recall. We 
simply introduce some notations. For F e Ob(Db(X)) and G e Ob(Db(Y)), one 
sets: 

FMLG = qï1F®LqïiG, 

D'F = R3föm(F,Ax), 
DF = R3fö*n(F,CDX). 

There are other operations of interest on sheaves. If M is a closed submanifold 
of X and F e Ob(Db(X)), the specialization of F along M, VM(F), is an object of 
Db(TMX) and the microlocalization of F along M, PM(F), an object of Db(T*MX). 
Sato's functor PM has been generalized in [K-S3] as follows. For F and G in 
Db(X) on sets: 

phom(G, F)=pAR ^m(q^1 G, q[F). 

Then: 
Rn*p hom(G, F) ^ R M*n(G, F), 

juhom^M,^) ~pM(F). 

After the introduction of the functor pM it became natural to work in T*X, and 
M. Kashiwara and the author introduced in 1982 (cf. [K-S2]) the micro-support 
SS(F) of an object F of Db(X). This is a closed conic subset of T*X which 
roughly speaking describes the set of codirections of non-propagation of F. More 
precisely: 

Definition 1.1. We say that an open subset U of T*X does not meet SS(F) if for 
any real C1-function cp on X and any XQ G X such that (xo;d(p(xo)) e U, one 
has: 
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Rr{x-Mx)*<p{xo)}(F) ) = 0 . 

An important property of the micro-support is given by : 

Theorem 1.2. Let F G Ob(Db(X)). Then SS(F) is an involutive subset of TX. 

(For the precise definition of "involutive", cf. [K-S4, Ch. VI].) . 
One can evaluate the micro-support of sheaves after the main operations 

described above. For example one proves that for F and G in Db(X)\ 

SS(phom(G,F)) c C(SS(F),SS(G)), (1.1) 

where C(A\,Ai) is the normal cone of A\ along Ai9 a closed subset of TTX 
that we identify with a subset of TTX by the Hamiltonian isomorphism. In 
particular: 

supp(/ihom(G,iO) <= SS(G) n SS(F). (1.2) 
Let / : Y —• X be a morphism of manifolds. One associates the maps; 

TY < Y x TX > TX (1.3) 
'/' x fn 

and one sets: 
TYX = tf~i(TYY). (1.4) 

Using (1.1), one can evaluate the micro-support of f~lF or f]F (cf. [K-S3]). 
In particular if / is non-characteristic for F, that is 

rYX n/-»(SS(F)) c Y x T'XX, (1.5) 

one gets : 
SS{f~1F)c:ff-l(SS(F)). (1.6) 

Similarly, if G G Ob(Db(Y)) and / is proper on supp(G), one proves: 

SS(Rf*G)czfny-i(SS(G)). (1.7) 

Remark that formulas (1.6) and (1.7) are similar to classical formulas obtained 
when calculating the wave front set of distributions or hyperfunctions or when 
calculating the characteristic variety of ̂ -modules, after non characteristic inverse 
images of proper direct images. 

2. Constructible Sheaves (cf. [K-S3, K-S4]) 

In this section we assume all manifolds are real analytic and the base ring 
A is noetherian. An object F of Db(X) is called weakly R-constructible(w-R-
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constructible for short) if there exists a subanalytic stratification X = UaXa such 
that for all a, all j G Z, the sheaves Hj(F) \xtt are locally constant. If moreover 
for each x G X, each j G Z, the stalk Hj(F)x is finitely generated, one says F is 
R-constructible. One denotes by D^_R_C(X) (resp. D^_C(X)) the full subcategory 
of Db(X) consisting of w-R-constructible (resp. R-constructible) objects. 

The involutivity Theorem 1.2 allows us to characterize microlocally w-R-
constructible objects. 

Theorem 2.1. Let F G Ob(Db(X)). The following conditions are equivalent. 
(a) F is w-R-constructible. 
(b) SS(F) is contained in a closed conic subanalytic isotropic subset of TX. 
(c) SS(F) is a closed conic subanalytic Lagrangian subset of TX. 

By this result one proves easily that the category of w-R-constructible (resp. 
R-constructible) sheaves is stable by the main operations on sheaves (Rf* when 
/ is proper, f~\ f, <g)L, R2ffcm, pM, vM, phom). 

If I is a complex manifold one defines similarly the notions of w-C-
constructible and C-constructible sheaves, by assuming that the stratas of the 
subanalytic stratification X = UaJfa are complex analytic submanifolds. Then the 
link between R- and C-constructibility is given by: 

Theorem 2.2. Let F G Ob(D^_n_c(X)). Then F is w-C-constructible if and only if 
SS(F) is conic for the action ofCx on TX. 

Remark 2.3. Note that the microlocal study of constructible sheaves was initiated 
by Kashiwara [Kl]. 

3. ^-Modules 

We shall not review this theory here and refer to [S-K-K, Kl , SI] for detailed 
expositions. We shall only fix a few notations and make the link with the micro-
support. 

From now on the base ring A is the field C of complex numbers. 
Let (X, &x) be a complex manifold of complex dimension n. One denotes by 

@x (resp. £Pg) the sheaf on X of finite order (resp. infinite order) holomorphic 
differential operators and one sets Qx = &x ® orx> where 0y is the sheaf of 
holomorphic n-forms. One denotes by D(ßx) (resp. D(@x)) the derived category 
of the abelian category of left (resp. right) ^-modules , and by Db(@x) (resp. 
Db

oh(@x)) the full triangulated subcategory of D(@x) consisting of objects with 
bounded (resp. bounded and coherent) cohomology. One defines similarly Db(^) 
a n d D c

6
o h ( ^ ) . 

If Ji is an object of Db
oh(<&x), its characteristic variety denoted char(^), is 

a closed conic analytic subset of TX, which is involutive ([S-K-K]). In fact one 
has: 
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Theorem 3.1 ([K-S2]). Let M G Ob(Db
coh(@x))- Then: 

SS(R J&mSx(J(9 0X)) = char (^ ) , 

Note that the inclusion cz in Theorem 3.1, which is the most useful for appli-
cations, is easily deduced from the Cauchy-Kowalevski theorem, in its precised 
form due to Leray [L]. The converse inclusion makes use of the sheaf of rings 
$x of [S-K-K], Also note that this result, combined with Theorem 1.2, gives a 
new proof of the involutivity of the characteristic variety of ^-modules. 

Let / : Y -> X be a morphism of complex manifolds. One denotes by @y->x 
the sheaf G y ®/-i% f~l@x endowed with its natural structure of a ( ^ y , / - 1 ^ ) -
bimodule. 

Let M G Ob(Db(@x)). One sets: 

rlM = ®Y^x®)-^xrxJi. 

Let Jf G Ob(Db(@°yP)). One sets 

f_^ = Rf«(Jr®%Y®Y->x). 

If M G Ob(Db(@x)) and Jf e Ob(Db(@Y)) one sets: 

M^Jf = @>XXY ®>@X®9y (Jt^Jf), 

and there is a similar formula for right modules. 
Finally one sets : 

I? M = R 3fé»m@x (M, ®x) > 
FUt = R 3fâ>m®x (J4, Qx ®&x @x [n]). 

(In this last formula, Jt is a right module.) 

4. Microfunction Solutions of ^-Modules 

Let M be a real analytic manifold, X a complexification of M, M a left coherent 
^x-module. By considering the complex R&fi>mg)X(Jt,(9x) and using Theorem 
3.1, one may recover many classical results. For example, applying (1.2) with 
G = Z>'(CM) one gets: 

supp(# ^m^M, <êM)) C T*MX n cha r (^ ) , 

where <é>M is the sheaf of Sato microfunctions. In particular this shows that the 
analytic wave front set of a hyperfunction solution of a system of linear differ-
ential equations is contained in the characteristic variety of the system ("Sato's 
principle"). More generally, the inclusion (1.1) immediately implies that the mi-
crofunction solutions of the system M extend in the micro-hyperbolic directions, 
and one recovers the results of [K-Sl] in the differential case. Microdifferential 
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systems can be treated similarly, once the microlocal action of i \ on &x is 
defined as in [K-S3]. 

These techniques can also be applied to the study of boundary value problems 
and diffraction, including the case of non smooth obstacles. It is then useful to 
introduce new sheaves of microfunctions (using the functor p horn) and new wave 
front sets. We refer to [S2] for details. 

5. Elliptic Pairs 

In this section we expose new results obtained in collaboration with J.-P. Schnei-
ders. Let X be a complex manifold of complex dimension n. If there is no risk 
of confusion, we identify X with the real underlying manifold. 

Definition 5.1. An elliptic pair (M,F) on X is the data of M G Ob(Db
oh(ßx)) and 

F G Ob(D£_c(X)) satisfying: char(^) nSS(F) cz TXX. 

We use the same terminology for objects of Db
oh(^). 

Theorem 5.2 (cf. [S-Sc]). Let (Ji,F) be an elliptic pair. 
(i) Regularity. The natural morphism: 

R 3>%>m®x (M, D'F ®0X)-+R 2tä><m<2>x (M ® F, (9X) 

is an isomorphism. 
(ii) Assume supp(^) fi supp(10 is compact. 
(a) Finiteness. For all j G Z, the Q-vector spaces 

WRF (X; R Jßxm^ (M ® F, 0X)) 

are finite dimensional. 
(b) Duality. The pairing 

R M*n®x(J( ® F, Ox) ® (®x ®%x Jt®F) —> Qx ®%x 0X 

and the integration morphism Hc(X;Qx ®%x Ox) — H2n(X;orx) —> C induce 
a perfect duality on the spaces HìRr(X;R3fébwi@x(Jt ® F,Ox)) and 
Hn~JRr (X; Qx ®%x M ® F). 

(c) Parameters. Let Y be another complex manifold. Then the- natural morphism 

(Rq^.q^RMm^Ji ® F,0X)) ® ®y —• Rqï*R2të^q-^x(qt(Jl ® F),Ox*y) 

is an isomorphism. 

Sketch of Proof, (i) follows from a general result of [K-S4] which asserts that the 
natural morphism 

R #fom(F, Ax) ®LG^>R Mm(F, G) 

is an isomorphism as soon as SS(F) n SS(G) is contained in TXX. 
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(ii) Using techniques of [Sc] one can reduce the problem to the case where Jt 
admits a free presentation. Next by adding the Cauchy-Riemann system to M, one 
can assume F is supported by a real analytic manifold M whose complexification 
is X. Then one represents F by a bounded complex whose components are direct 
sums of sheaves Cu, U open, relatively compact, subanalytic in M and such 
that Df

MCu = C-jj, (here D'M is the duality functor on M). Then (ii) is proved by 
similar arguments as those in [B-S] or [R-R], D 

By adapting Kashiwara's construction of the characteristic cycle of R-
constructible sheaves (cf. [K-S4, Ch. IX]) we shall now construct a characteristic 
class associated with an elliptic pair. 

Let (Ji,F) be an elliptic pair and assume Jl is a right module. Sato's iso-
morphism ®3f — àl®xxx[nì induces a morphism: 

R MmQx (M®F,M®F)-±b' (D_(Jt ® F)M(Jf ® F) ®%XxX 0Xxx) • (5.1) 

Moreover the natural morphism : 

Qx ®&x @x[n] ®%xmx à-lOXxx -> Qx ®%x 0x[n] 

induces a morphism: 

ö~l(D(Jt ® F)MJt ® JO ®^XxX Oxxx) -> cox. (5.2) 

Set for short: 

H = D(M ®F)W(Jt®F) ®%xxx Oxxx . (5.3) 

We get the chain of morphisms : 

R2/fom®x(J( ®F,Jt®F) -+ ölH 

-+cox. 

Hence setting: 
S = chav(J/) n supp(F), • (5.4) 

we get a morphism : 

H o m ^ ( j r ® F, Jt ® F) - • E\(X\ œx). (5.5) 

In fact this construction can be made "microlocal". Set : 

A = cbav(Jt) + SS(F)a. (5.6) 

Since the micro-support of H is contained in A x Aa, we have the isomorphisms : 

ölH ~ Rn*pAH 
<^-R%*RFApAH, 
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and we get the morphism: 

Hom^x(Jt ® F,Jt ® F) -* HQ
A(TX;%-loox) • (5.7) 

Definition 5.3. We call the image of 1 in H$(X;cox) (resp. in H\(TX;%-l(Dx)) 
by the morphism (5.5) (resp. (5.7)) the Euler class (resp. the microlocal Euler 
class) of the elliptic pair (Jt,F) and we denote it byQu(Jt9F) (resp. pQ\x(Jt,F)). 

Of course Qu(Jt,F) is the restriction of ps\x(Jt, F) to the zero-sectiori of T*X 

Definition 5.4. Let (Jt, F) be an elliptic pair such that supp(^) n supp(F) is 
compact and assume Jt is a right module. One sets : 

X(X; Jt, F) = £ ( - l )Mim(J^ (RF (X;F ® Jt ®%x Ox))). 

By adapting to the case of ^-modules Kashiwara's proof of the index theorem 
for constructible sheaves (cf. [K-S4, Ch. IX|), we can prove: 

Theorem 5.5. In the situation of Definition 5.4, one has: 

X(X;Jt,F)= [ eu(Jt,F). (5.8) 
Jx 

Examples and Comments 5.6. (a) Assume X is the complexification of a real 
analytic manifold M, and let «J be a coherent ^ -modu le . Then Jt is elliptic 
on M in the classical sense if an only if (Jt, CM) is an elliptic pair, which simply 
means that: 

c h a r M O n T ^ X c T ^ X . 
In this case the isomorphism of Theorem 5.2 applied to the elliptic pair (Jt, D'CM) 
gives the isomorphism: 

R J^m^x (Jt, séM) — R #fi><mg)x (Jt, &M) 

where séM (resp. &M) denotes the sheaf of real analytic functions (resp. hyper-
functions) on M. If M is compact, one recovers the classical finiteness theorem 
for elliptic systems, and the index is calculated by the Atiyah-Singer theorem 
[A-S]. 

(b) Let Q be an open subset of X with real analytic boundary. Then (Jt, CQ) 
is an elliptic pair if and only if dQ is non-characteristic for Jt, that is: 

c h a r ( ^ ) n T ; ß X c z r ^ X . 

If Q is relatively compact, one gets the finiteness of the spaces ^xt3
3x(Q,Jt, Ox), 

a result of Bony and Schapira [B-S] (in case Jt = @x/@x-P, cf. Kashiwara [Kl] 
and Kawai [Ka] for various generalizations), extended to the relative case by 



Sheaf Theory for Partial Differential Equations 1195 

Houzel and Schapira [H-S], the index being calculated by Boutet de Monvel and 
Malgrange [B-M]. 

(c) For any Jt G Ob(D^o h(^)), (Jt,Cx) is an elliptic pair. In this case the 
duality theorem is due to Mebkhout [M]. If M has compact support one recovers 
many classical results. In particular if ^ is a coherent Ö?A'-module with compact 
support, one can apply the theorem with Jt = <2>x ®&x ^ anc^ recover theorems of 
Cartan and Serre (cf. [C-S, Se]). Concerning the index, let us recall that O'Brian, 
Toledo and Tong [O-T-T], generalizing the Hirzebruch-Riemann-Roch formula 
[H], constructed the Chern class of coherent ^-modules with compact support, 
and proved an index theorem in this case. For the case of ^ - m o d u l e s with 
compact support, cf. Angéniol-Lejeune [A-L]. 

(d) For any F G Ob(D^_c(X)), (Ox,F) is an elliptic pair and its microlocal 
Euler class coincides with the Lagrangian cycle of F defined by Kashiwara in 
[K2]. Remark that if G is an R-constructible object on a real manifold M, one 
can associate to it an elliptic pair, namely (Ox,i*G) where / : M -̂> X is a 
complexification of M. In this case the index is calculated by Kashiwara (loc. 
cit.) (cf. also Dubson [D] and Ginsburg [G] in the complex case). 

(e) Let B(XQ;B) denote the open ball (in a local chart at xo) with center xo 
and radius s and let Jt be an holonomic ^ -module . Then for a small enough, 
(Jt,CB(XolE)) is an elliptic pair (cf. [Kl]). 
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